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1School of Chemical Engineering, Universidade Federal do Pará, UFPA Campus Universitário do Guamá, Belém, PA, Brazil
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The mechanism of heat transfer intensification recently brought about by nanofluids is analyzed in this article, in the
light of the non-Fourier dual-phase-lagging heat conduction model. The physical problem involves an annular geometry
filled with a nanofluid, such as typically used for measurements of the thermal conductivity with Blackwell’s line heat
source probe. The mathematical formulation for this problem is analytically solved with the classical integral transform
technique, thus providing benchmark results for the temperature predicted with the dual-phase-lagging model. Differ-
ent test cases are examined in this work, involving nanofluids and probe sizes of practical interest. The effects of the
relaxation times on the temperature at the surface of the probe are also examined. The results obtained with the dual-
phase-lagging model are critically compared to those obtained with the classical parabolic model, showing that the increase
in the thermal conductivity of nanofluids measured with the line heat source probe cannot be attributed to hyperbolic
effects.

INTRODUCTION

The constitutive equation that classically relates the heat flux
vector to the temperature gradient is Fourier’s law, which con-
siders an infinite speed of propagation of heat in the medium.
Despite this unacceptable assumption, Fourier’s law provides
accurate results for most practical engineering applications.
However, in applications involving small scales of time and
space, the use of other constitutive equations, such as those in-
dependently derived by Cattaneo [1] and Vernotte [2], may be
required. Such models take into account a lag between the heat
flux vector and the temperature gradient, resulting in a hyper-
bolic model for heat conduction [1–13].

Thermal conductivity of fluids plays a vital role in the devel-
opment of energy-efficient heat transfer equipment. However,
traditional fluids used in those equipments have low thermal
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conductivity [14]. On the other hand, metals in the solid form
have thermal conductivity larger by orders of magnitude than
those of fluids. For example, the thermal conductivity of cop-
per at room temperature is about 700 times larger than that
of water and around 3000 times larger than that of engine oil.
Therefore, fluids containing suspended solid metallic particles
were expected to display significantly enhanced thermal con-
ductivities relative to conventional heat transfer fluids. Numer-
ous theoretical and experimental studies of the effective thermal
conductivity of dispersions containing particles have been con-
ducted since Maxwell’s theoretical work on the subject was
published more than 100 years ago [14, 15]. However, early
studies of the thermal conductivity of suspensions have been
confined to those containing particles with sizes of the order of
millimeters or micrometers. In fact, conventional micrometer-
sized particles cannot be used in practical heat-transfer equip-
ment because of severe clogging and sedimentation problems.
In addition, recent miniaturization, leading to the increasing
practical utilization of microchannels and microreactors, also
imposed a restriction on the use of micrometer-sized particles
[14, 16–18].

Modern nanotechnology provides great opportunities to pro-
cess and produce materials with average sizes below 50 nm
[14, 16–18]. Recognizing an opportunity to apply this emerg-
ing nanotechnology to established thermal energy engineering,
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1126 J. N. N. QUARESMA ET AL.

Choi and coworkers [14, 16–18] proposed that nanometer-sized
metallic particles be suspended in industrial heat transfer flu-
ids, such as water or ethylene glycol, to produce a new class
of engineered fluids referred to as nanofluids. Experiments with
nanofluids have indicated significant increases in thermal con-
ductivity, as compared to base liquids without nanoparticles
or with larger suspended particles [14, 16–23]. Generally, the
observed increase in thermal conductivity of nanofluids was
substantially larger than that predicted with the available the-
ory. On the other hand, some studies reported that such in-
crease in the thermal conductivity could not be detected with
optical experimental methods [24, 25]. In this context, such
a fact resulted in a search for physical phenomena not ac-
counted for in the theoretical predictions for suspensions of
micrometer-sized or larger particles, which included Brown-
ian motion, liquid layering, ballistic mechanisms, thermophore-
sis, aggregation of nanoparticles into clusters, etc. [16–26].
Due to previous experimental observations that non-Fourier
effects are significant at small time and space scales [1–11],
hyperbolic heat conduction models were naturally suggested
to explain the heat transfer enhancement in nanofluids [12,
13]. It was proposed [12, 13] that enhanced heat transfer in
nanofluids was caused by a heat transfer mechanism mod-
eled in terms of the dual-phase-lagging constitutive equation
[5, 7].

In this article we revisit the works of references [12] and [13]
and apply the dual-phase-lagging model to a one-dimensional
heat conduction problem in cylindrical coordinates. The geome-
try examined here is that typically used for the measurements of
thermal conductivity of nanofluids with Blackwell’s heat source
probe [27]. Such a technique consists of a line heat source, usu-
ally taken in the form of a heating wire, which is placed inside
the material with unknown properties. For large times, the tem-
perature variation of the heat source is shown to be linear with
respect to the logarithm of time, so that the thermal conduc-
tivity can be computed from the slope of such linear variation.
The temperature variation of the heat source can be measured
through the variation of the heating wire electrical conductivity.
Alternatively, the heating wire and a temperature sensor, such as
a thermocouple or a PT-100, can be encapsulated in a metallic
needle that is inserted into the medium with unknown thermal
conductivity [27–31]. Commercial probes are generally based
on this last construction arrangement [31].

The heat conduction problem under examination is solved
analytically by using the classical integral transform technique
(CITT) [32, 33]. The controlled accuracy and analytical nature
of the solution technique developed in this work allow for the
computation of benchmark results for the temperature variation
of the probe, based on the dual-phase-lagging model. Numerical
results are presented in this article for typical configurations
of probes and nanofluids, as well as for different values of
relaxation times, which result on hyperbolic effects with distinct
intensities. Such results are critically compared to the classical
parabolic heat conduction model, as well as to Blackwell’s large-
time solution.

PROBLEM FORMULATION

The analysis considered here is similar to that examined
in references [12] and [13] and involves a dual-phase-lagging
model (DPLM) [5, 7]. In such a model, a finite speed of heat
propagation in the medium is taken into account through a delay
time for the establishment of the heat flux, τq, and a lag between
the heat flux vector and the temperature gradient, τT. The consti-
tutive equation relating the heat conduction flux vector and the
temperature gradient in the dual-phase-lagging model is given
by [1–7, 12, 13]:

q + τq
∂q
∂t

= −K

[
∇T f + τT

∂(∇T f )

∂t

]
(1)

where q is the heat flux vector and K is the effective thermal
conductivity of the medium.

The energy conservation equation for a purely conducting
medium, considered in this work as a nanofluid, is written as

(Cs + C f )
∂T f

∂t
= −∇ · q (2)

where Cs is the volumetric heat capacity of the nanopar-
ticles and Cf is the volumetric heat capacity of the base
fluid.

The substitution of Eq. (1) into the energy conservation equa-
tion (2) results in:

τq
∂2T f

∂t2
+ ∂T f

∂t
= α∇2T f + α τT

∂(∇2T f )

∂t
(3)

with the effective thermal diffusivity given by:

α = K

Cs + C f
(4)

Therefore, the use of the constitutive Eq. (1) together with
the energy conservation Eq. (2) leads to a hyperbolic heat con-
duction model given by Eq. (3).

Equation (3) can be similarly obtained by considering that
the nanoparticles and the base fluid are not in local thermal
equilibrium. In this case, the energy conservation equation can
be written separately for the nanoparticles and the base fluid,
respectively, in the following form:

Cs
∂Ts

∂t
= h (T f − Ts); C f

∂T f

∂t
= K∇2T f − h (T f − Ts) (5, 6)

where h (W/m3oC) is a heat transfer coefficient between the fluid
and the nanoparticles. Note that it was considered a lumped
formulation for the nanoparticles, given by Eq. (5).

Then, by substituting Ts from Eq. (5) into Eq. (6), one ob-
tains:

CsC f

h(Cs + C f )

∂2T f

∂t2
+ ∂T f

∂t

= K

(Cs + C f )
∇2T f + K

(Cs + C f )

Cs

h

∂(∇2T f )

∂t
(7)

heat transfer engineering vol. 31 no. 14 2010
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A comparison of Eqs. (3) and (7) reveals the definition of
the effective thermal diffusivity given by Eq. (4), as well of the
relaxation times given by:

τq = CsC f

h(Cs + C f )
; τT = Cs

h
(8a, 8b)

Therefore,

τT = τq
Cs + C f

C f
(9)

or, alternatively,

τT

τq
= 1 + Cs

C f
> 1 (10)

Considering the case involving a line heat source probe of
radius a immersed in a cylindrical medium of radius b, Eq. (3)
can be rewritten as

τq
∂2T (r, t)

∂t2
+∂T (r, t)

∂t
= α

1

r

∂

∂r

{
r

∂

∂r

[
T (r, t) + τT

∂T (r, t)

∂t

]}
,

in a < r < b, for t > 0 (11a)

which is subjected to the following initial and boundary condi-
tions:

T (r, t) = T0;
∂T (r, t)

∂t
= 0 for t = 0, in a < r < b

(11b, 11c)

−K
∂

∂r

[
T (r, t) + τT

∂T (r, t)

∂t

]
= q0 + τq

∂q0

∂t

at r = a, for t > 0 (11d)

K
∂

∂r

[
T (r, t) + τT

∂T (r, t)

∂t

]
= 0 at r = b, for t > 0

(11e)
where q0 is the heat flux resulting from the electrical resistance
inside the probe and T0 is the initial temperature of the medium.

By defining the following dimensionless variables,

θ(R,τ) = T (r, t) − T0

(q0b/K )
; R = r

b
; A = a

b
; τ = αt

b2
; Foq = ατq

b2
;

FoT = ατT

b2
; β = FoT

Foq
(12a–f)

the problem given by Eqs. (11a–e) can be rewritten in dimen-
sionless form as:

Foq
∂2θ(R,τ)

∂τ2
+ ∂θ(R,τ)

∂τ

= 1

R

∂

∂ R

{
R

∂

∂ R

[
θ(R,τ) + FoT

∂θ(R,τ)

∂τ

]}
,

in A < R < 1, τ > 0 (13a)

θ(r,τ) = 0;
∂θ(R,τ)

∂τ
= 0 for τ = 0, in A < R < 1

(13b, 13c)

− ∂

∂ R

[
θ(R,τ) + FoT

∂θ(R,τ)

∂τ

]
= 1 at R = A, for τ > 0

(13d)

∂

∂ R

[
θ(R,τ) + FoT

∂θ(R,τ)

∂τ

]
= 0 at R = 1, for τ > 0

(13e)

where it was considered that heat flux imposed by the probe is
constant in time.

The classical parabolic heat conduction model, which uti-
lizes Fourier’s law as the constitutive equation that relates the
heat conduction flux vector and the temperature gradient, can
be directly obtained from Eqs. (13a)–(13e) by making the re-
laxation times, τq and τT, equal to zero (Eq. (1)). In terms of the
nonequilibrium model given by Eqs. (5) and (6), τq → 0 and τT

→ 0 can be obtained with h → ∞ (Eqs. (8a) and (8b))—that is,
the heat transfer coefficient between the fluid and the dispersed
nanoparticles becomes very large and local thermal equilibrium
is attained (Tf = Ts).

SOLUTION METHODOLOGY

For the solution of the hyperbolic heat conduction problem
given by Eqs. (13a)–(13e) we apply the classical integral
transform technique (CITT) [32, 33]. A split-up procedure [32]
is used in order to improve the convergence rate of the final
series solution. Hence, the solution for the temperature field is
written as:

θ(R,τ) = θav(τ) + θp(R) + φ(R,τ) (14)

where θav(τ) is the average temperature in the medium, which
is a priori obtained from Eqs. (13a)–(13e); θp(R) is a particular
solution and φ(R,τ) is the potential to be solved with the CITT.

The average temperature θav(τ) is defined as

θav(τ) =
∫ 1

A Rθ(R,τ)d R∫ 1
A Rd R

= 2

1 − A2

∫ 1

A
Rθ(R,τ)d R (15)

Now, in order to determine a solution for θav(τ), Eq. (13a) is
multiplied by [2/(1−A2)]R and integrated over the domain [A,1]
in the R-direction. The definition given by Eq. (15) is then em-
ployed and the boundary conditions (13d, 13e) are used to yield

Foq
d2θav(τ)

dτ2
+ dθav(τ)

dτ
= 2A

1 − A2
, for τ > 0 (16a)

From the initial conditions (13b) and (13c) together with the
definition (15), it results that

θav(τ) = 0;
dθav(τ)

dτ
= 0 for τ = 0 (16b, 16c)

heat transfer engineering vol. 31 no. 14 2010



1128 J. N. N. QUARESMA ET AL.

Therefore, the solution for θav(τ) is obtained as

θav(τ) = 2A

1 − A2

[
τ − Foq

(
1 − e−τ/Foq

)]
(19)

Equation (14) is now introduced into Eqs. (13a)–(13e) and
the problem for θav(τ) given by Eqs. (16a)–(16c) is used in order
to obtain the following problems given by Eqs. (17a)–(17d) and
Eqs. (18a–f), for θp(R) and φ(R,τ), respectively:

1

R

d

d R

[
R

dθp(R)

d R

]
= 2A

1 − A2
, in A < R < 1 (17a)

−dθp(R)

d R
= 1 at R = A;

dθp(R)

d R
= 0 at R = 1(17b, 17c)

with ∫ 1

A
Rθp(R)d R = 0 (17d)

and

Foq
∂2φ(R,τ)

∂τ2
+ ∂φ(R,τ)

∂τ

= 1

R

∂

∂ R

{
R

∂

∂ R

[
φ(R,τ) + FoT

∂φ(R,τ)

∂τ

]}
,

in A < R < 1, τ > 0 (18a)

φ(R,τ) = −θp(R);
∂φ(R,τ)

∂τ
= 0 for τ = 0, in A < R < 1

(18b, 18c)

− ∂

∂ R

[
φ(R,τ) + FoT

∂φ(R,τ)

∂τ

]
= 0 at R = A, for τ > 0

(18d)

∂

∂ R

[
φ(R,τ) + FoT

∂φ(R,τ)

∂τ

]
= 0 at R = 1, for τ > 0

(18e)
with ∫ 1

A
Rφ(R,τ)d R = 0 (18f)

The additional constraints given by Eqs. (17d) and (18f)
are obtained by substituting Eq. (14) into the definition of the
average temperature θav(τ) given by Eq. (15).

The integration of the problem given by Eqs. (17a)–(17d)
can be readily performed in order to obtain the solution for the
potential θp(R) in the form:

θp(R) = A

1 − A2

[
R2

2
− ln(R)

]
− A

4(1 − A2)2

× [4A2 ln(A) + (3 + A2)(1 − A2)] (19)

The homogeneous problem for the potential φ(R,τ) is now
solved with the classical integral transform technique (CITT)
[32, 33]. For this purpose, the following auxiliary eigenvalue
problem is utilized, which shall provide the basis for the eigen-
function expansion of the potential φ(R,τ):

d

d R

[
R

d�i (R)

d R

]
+ β2

i R�i (R) = 0, in A < R < 1 (20a)

d�i (R)

d R
= 0 at R = A;

d�i (R)

d R
= 0 at R = 1 (20b, 20c)

Equations (20a–c) can be analytically solved to yield the
eigenfunctions and the transcendental equation to compute the
eigenvalues respectively as [32, 33]:

�i (R) = Jo(βi R)Y1(βi ) − J1(βi )Y0(βi R) (21a)

J1(βi A)Y1(βi ) − J1(βi )Y1(βi A) = 0, i = 1, 2, 3, ... (21b)

It can be shown that the eigenfunctions �i(R) satisfy the
following orthogonality property [32, 33]:∫ 1

A
R�i (R)� j (R)d R =

{
0, i �= j

Ni , i = j
(21c)

where Ni is the normalization integral given by:

Ni = 2

π2

J 2
1 (βi A) − J 2

1 (βi )

β2
i J 2

1 (βi A)
(21d)

The auxiliary eigenvalue problem given by Eqs. (20a)–(20c)
allows the definition of the following integral transform–inverse
pair for the potential φ(R,τ):

φ̄i (τ) =
∫ 1

A
R�̃i (R)φ(R,τ)d R, transform (22a)

φ(R,τ) =
∞∑

i=1

�̃i (R)φ̄i (τ), inverse (22b)

where

�̃i (R) = �i (R)/
√

Ni (22c)

After the definition of the integral transform-inverse pair with
the auxiliary eigenvalue problem (20a)–(20c), the next step in
the CITT is thus to accomplish the integral transformation of the
original partial differential system given by Eqs. (18a)–(18e).
For this purpose, Eq. (18a) and the initial conditions (18b) and
(18c) are multiplied by R�̃i (R), integrated over the domain [A,1]
in the R-direction, and the inverse formula given by Eq. (22b)
is employed. After the appropriate manipulations, the following
system of ordinary differential results, for the calculation of the
transformed potentials φ̄i (τ):

d2φ̄i (τ)

dτ2
+
(
1 + FoT β2

i

)
Foq

dφ̄i (τ)

dτ
+ β2

i

Foq
φ̄i (τ) = 0, for τ > 0

(23a)

heat transfer engineering vol. 31 no. 14 2010
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φ̄i (τ) = f̄i ;
dφ̄i (τ)

dτ
= 0 for τ = 0 (23b, c)

where

f̄i = −
∫ 1

A
R�̃i (R)θp(R)d R (23d)

for i = 1, 2, 3,. . . .

The infinite system of ordinary differential equations (23a–c)
is uncoupled and can be readily solved to yield:

φ̄i (τ) = f̄i

2
exp

⎡
⎣−
(
1+FoT β2

i

)
2Foq

⎛
⎝1 −

√√√√1− 4Foqβ
2
i(

1+FoT β2
i

)2
⎞
⎠τ

⎤
⎦

×

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣1 + 1√

1 − 4Foqβ2
i(

1+FoT β2
i

)2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣1 − 1√

1 − 4Foqβ2
i

(1+FoT β2
i )2

⎤
⎥⎥⎦

× exp

⎡
⎣−

(
1 + FoT β2

i

)
Foq

√√√√1 − 4Foqβ
2
i(

1 + FoT β2
i

)2 τ

⎤
⎦
⎫⎬
⎭ (24)

By substituting Eq. (24) into the inverse formula (22b), the
analytical solution for the homogeneous potential φ(R,τ) is ob-
tained as

φ(R,τ) =
∞∑

i=1

f̄i

2
�̃i (R)

× exp

⎡
⎣−

(
1+FoT β2

i

)
2Foq

⎛
⎝1−

√√√√1− 4Foqβ
2
i(

1+FoT β2
i

)2
⎞
⎠ τ

⎤
⎦

×

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣1 + 1√

1 − 4Foqβ2
i

(1+FoT β2
i )2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣1 − 1√

1 − 4Foqβ2
i

(1+FoT β2
i )2

⎤
⎥⎥⎦

× exp

⎡
⎣− (1 + FoT β2

i )

Foq

√√√√1 − 4Foqβ
2
i(

1 + FoT β2
i

)2 τ

⎤
⎦
⎫⎬
⎭ (25)

Finally, by substituting Eqs. (16d), (19), and (25) into Eq.
(14), the solution for the dimensionless temperature field is
obtained as

θ(R,τ) = 2A

1 − A2
[τ − Foq (1 − e−τ/Foq )]

+ A

1 − A2

[
R2

2
− ln(R)

]
− A

4(1 − A2)2

× [4A2 ln(A)+(3 + A2)(1−A2)] +
∞∑

i=1

f̄i

2
�̃i (R)

× exp

[
−
(
1 + FoT β2

i

)
2Foq

(
1 −

√
1 − 4Foqβ

2
i

(1 + FoT β2
i )2

)
τ

]

×

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣1 + 1√

1 − 4Foqβ2
i

(1+FoT β2
i )2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣1 − 1√

1 − 4Foqβ2
i

(1+FoT β2
i )2

⎤
⎥⎥⎦

× exp

[
− (1 + FoT β2

i )

Foq

√
1 − 4Foqβ

2
i

(1 + FoT β2
i )2

τ

]}
(26)

The CITT is also applied in order to obtain the solution for
the classical parabolic problem, based on Fouriers’s law. In this
case, the analytical solution is given by:

θ(R,τ) = 2A

1 − A2
τ + A

1 − A2

[
R2

2
− ln(R)

]

− A

4(1 − A2)2
[4A2 ln(A) + (3 + A2)(1 − A2)]

+
∞∑

i=1

f̄i �̃i (R)e−β2
i τ (27)

where the eigenquantities that appear in Eq. (27) are the same
as those defined earlier for the solution of the problem for the
potential φ(R,τ).

For large times, Blackwell [27] derived an asymptotic so-
lution for the temperature variation at the surface of the line
heat source probe in the parabolic problem, which is shown to
be linear with respect to the logarithm of time. Such solution
is convenient for the measurement of the thermal conductivity
of the medium surrounding the probe, which can be computed
from the slope of the temperature variation [27–31]. Blackwell’s
solution [27], in terms of the dimensionless variables given by
Eqs. (12a), is

θa(τ) = 1

2
A ln τ + 1

2
A

[
ln

(
4

A2

)
− y

]
(28)

where y = 0.5772156649 is Euler’s constant. We note in Eq. (28)
that, in dimensionless terms, the slope of θa(τ) x ln τ is equal to
A/2.

RESULTS AND DISCUSSION

In this session we present numerical results for the dimen-
sionless temperature variation at the surface of the probe, that is,
at R = A, obtained with the hyperbolic heat conduction model
given by Eq. (26). Such results are compared to those obtained
with the classical parabolic problem given by Eq. (27), as well
as to those obtained with Blackwell’s model given by Eq. (28).
Such analytical solutions were implemented under the Visual
Fortran platform.
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Table 1 Test cases examined

Dimensions
Test
case Nanofluid a (m) b (m) A β

a Alumina in water 5 × 10−5 0.025 2 × 10−3 1.71
b Alumina in water 7.5 × 10−4 0.05 1.5 × 10−2 1.71
c Copper in ethylene glycol 5 × 10−5 0.025 2 × 10−3 2.29
d Copper in ethylene glycol 7.5 × 10−4 0.05 1.5 × 10−2 2.29

Different test cases were examined in this work, involving
different configurations of probe diameters and nanofluids. With
respect to the nanofluids, the following ones were considered
in the analysis: (i) alumina nanoparticles in water (K = 0.257
W/mK, Cs = 3.430 × 106 J/m3K, Cf = 2.649 × 106 J/m3-K,
β = 1.71) and (ii) copper nanoparticles in ethylene glycol (K =
0.627 W/m-K, Cs = 2.964 × 106 J/m3-K, Cf = 4.183 × 106

J/m3-K, β = 2.29). With respect to the probe geometry, it was
considered to be made of a thin resistance wire with diameter
a = 5 × 10−5 m inserted into a medium with outer diameter
b = 0.025 m, so that A = 2 × 10−3, such as in [12] and [13].
Also examined was another probe with diameter a = 7.5 ×
10−4 m, typical of those commercially available [31]. In this
case, the medium was considered with an outer diameter b =
0.05 m, so that A = 1.5 × 10−2. Table 1 summarizes the test
cases examined.

Figure 1 illustrates the convergence behavior of the temper-
ature at the probe surface, obtained with different truncation
orders (NT) for the series solution in Eq. (26), for A = 2 × 10−3,
Foq = 1 × 10−5, and β = 2.29 (test case c). This figure shows
that for small dimensionless times (τ ≤ 10−5), convergence at
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Figure 1 Convergence behavior of the analytical solution for A = 2 × 10−3,
Foq = 1 × 10−5, and β = 2.29.
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Figure 2 Comparison of analytical solution and finite-difference method so-
lution using Gear’s method (referred to as FDM-Gear) for A = 1.5 × 10−2 and
β = 2.29.

the graphic scale is obtained with 5000 ≤ NT ≤ 10000. On the
other hand, for larger dimensionless times the convergence is
reached with approximately 500 terms in the series solution.
The computation time in a Pentium Intel Dual E2160 1.8-GHz
computer was of the order of 9.7 minutes, for NT = 10000. For
the results presented next, NT = 10000 was used.

In order to validate the analytical solution just presented, we
compared its results with those obtained numerically with finite
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Figure 3 Comparison of the hyperbolic (Foq = 10−10) and parabolic solutions
for A = 2 × 10−3 and β = 2.29.

heat transfer engineering vol. 31 no. 14 2010



J. N. N. QUARESMA ET AL. 1131

1x10-20 1x10-15 1x10-10 1x10-5 1x100

τ

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011
θ(

A
,τ

)

A = 2x10-3;  β = FoT/Foq = 1.71

Foq = 1x10-3

Foq = 1x10-4

Foq = 1x10-5

Foq = 1x10-6

Foq = 1x10-10

Hyperbolic Heat Conduction 
Dual-Phase-Lagging Model

(a)

1x10-20 1x10-15 1x10-10 1x10-5 1x100

τ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

θ(
A

,τ
)

A = 1.5x10-2;  β = FoT/Foq = 1.71   

Foq = 1x10-3

Foq = 1x10-4

Foq = 1x10-5

Foq = 1x10-6

Foq = 1x10-10

Hyperbolic Heat Conduction 
Dual-Phase-Lagging Model

(b)

1x10-20 1x10-15 1x10-10 1x10-5 1x100

τ

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

θ(
A

,τ
)

A = 2x10-3;  β = FoT/Foq = 2.29

Foq = 1x10-3

Foq = 1x10-4

Foq = 1x10-5

Foq = 1x10-6

Foq = 1x10-10

Hyperbolic Heat Conduction 
Dual-Phase-Lagging Model

(c)

1x10-20 1x10-15 1x10-10 1x10-5 1x100

τ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

θ(
A

,τ
)

A = 1.5x10-2;  β = FoT/Foq = 2.29   

Foq = 1x10-3

Foq = 1x10-4

Foq = 1x10-5

Foq = 1x10-6

Foq = 1x10-10

Hyperbolic Heat Conduction 
Dual-Phase-Lagging Model

(d)

Figure 4 Temperature variation at the probe surface for test cases: (a) A = 2 × 10−3 and β = 1.71; (b) A = 1.5 × 10−2 and β = 1.71; (c) A = 2 × 10−3 and β =
2.29; (d) A = 1.5 × 10−2 and β = 2.29.

differences. In this case, the problem given by Eqs. (13a)–(13e)
was discretized in the radial direction with second-order differ-
ences and the resulting system of ordinary differential equations
was integrated in time with Gear’s method. Figure 2 shows a
comparison of the results obtained with the analytical solution
against those obtained with the finite-difference method solu-
tion (referred to in Figure 2 by FDM-Gear) for test case d (A =
1.5 × 10−2, β = 2.29) and different values of Foq. The agree-
ment between such solutions is excellent, thus validating the
numerical code here developed. The finite-difference solution
was obtained with 2000 nodes in the spatial grid.

Figure 3 presents a comparison of the hyperbolic and
parabolic solutions given by Eqs. (26) and (27), respectively,
for test case c (A = 2 × 10−3 and β = 2.29) and Foq = 1 ×
10−10. We note in this figure that for such a small value of Foq

the hyperbolic model behaves exactly as the parabolic one, that
is, non-Fourier effects are negligible. Such was also the case for
other values of A and β examined in this article.

We now examine the non-Fourier effects of the probe sur-
face temperature variation, for Foq ranging from 10−3 to 10−10.
The results obtained for the different test cases described in
Table 1 are presented in Figure 4a–d. These figures show that
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Figure 5 Comparison of hyperbolic and Blackwell’s [27] solutions for test cases: (a) A = 2 × 10−3 and β = 1.71; (b) A = 1.5 × 10−2 and β = 1.71; (c) A = 2 ×
10−3 and β = 2.29; (d) A = 1.5 × 10−2 and β = 2.29.

non-Fourier effects are only noticeable for very small times;
as time increases, the temperature variations gradually tend to
the parabolic one. In fact, even for an extremely large value
of Foq such as 10−3, the non-Fourier effects vanish for τ >

10−2. At small times, non-Fourier effects are more pronounced
for smaller diameters A. On the other hand, the choice of
the nanofluid does not seem to affect significantly the tem-
perature behavior. Similar conclusions can be obtained by
comparing the hyperbolic solution with the asymptotic one de-

veloped by Blackwell for the parabolic formulation, as depicted
in Figure 5a–d.

The results presented in Figures 4a–d and 5a–d permit to ex-
amine the suitability of the hyperbolic formulation to the actual
heat conduction problem in nanofluids, during thermal conduc-
tivity measurements with the line heat source probe. For this
analysis, we bring into picture the heat transfer coefficient be-
tween the base fluid and the particles considered in the thermal
nonequilibrium model given by Eqs. (5) and (6), which results
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Table 2 Dimensional times
corresponding to τ = 10−4

Time

Test case τ t (s)

a 10−4 0.7
b 10−4 2.9
c 10−4 1.5
d 10−4 5.9

in the hyperbolic formulation addressed in this article. Note in
these equations that such heat transfer coefficient is defined in
volumetric terms, but can be easily converted to the usual defi-
nition of the heat transfer coefficient by using the nanoparticle’s
volume to surface area ratio. Figure 6 presents the heat transfer
coefficient between the base fluid and the particles for different
values of Foq, and for spherical particles of different diameters.
Only test cases a and c are examined in this figure, since they
present more significant non-Fourier effects (Figures 4a–d and
5a–d). By considering a threshold value for the heat transfer
coefficient, it is possible to establish the maximum expected
value of Foq for which the system behaves hyperbolically. If we
assume such a threshold value as 1 W/m2-K, which is indeed
extremely small in macroscopic means, we notice in Figure 6
that Foq is actually smaller than 10−5. Figure 4a–d, shows that
for Foq = 10−5, non-Fourier effects are negligible for τ > 10−4.
Table 2 gives the physical times equivalent to τ = 10−4 for
the four test cases addressed in this work. Notice in this table
that non-Fourier effects would have disappeared for times much
smaller than those typically considered for the measurement
of the thermal conductivity with Blackwell’s solution for the
line heat source probe [27–31]. Indeed, notice in Figure 5, a–d,
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Figure 6 Heat transfer coefficient for different nanoparticle diameters.

that Blackwell’s solution would not be considered appropriate
for the measurement of the thermal conductivity for τ < 1.2
× 10−4 (ln τ = –9) for test cases a and c, and for τ < 2.5 ×
10−3 (ln τ = –6) for test cases b and d. In other words, the
increase generally detected with the line heat source probe for
the thermal conductivity of nanofluids cannot be attributed to
the non-Fourier heat transfer mechanisms examined earlier. In
fact, recent theoretical predictions corroborate our findings and
demonstrate that nanoparticles and the base fluid are in thermal
equilibrium in nanofluids [23, 34].

CONCLUSIONS

In this article we presented an analytical solution based on the
classical integral transform technique for the dual-phase-lagging
heat conduction model. The physical problem examined was
representative of that used for the measurement of thermal con-
ductivity with the line heat source probe. Results were obtained
for the temperature variation at the probe surface, for different
combinations of nanofluids and probe diameters. Such results
were compared to those obtained with the classical parabolic
heat conduction model based on Fourier’s law, as well as to the
asymptotic solution proposed by Blackwell [27] for the line heat
source probe.

The foregoing analysis reveals that non-Fourier effects are
significant only for very small times, generally in the range
where Blackwell’s solution is not valid for the measurement of
thermal conductivity. Therefore, the increase detected with the
line heat source probe for the thermal conductivity of nanofluids
cannot be attributed to the non-Fourier heat transfer mechanisms
addressed in this article.

NOMENCLATURE

a probe radius
A dimensionless probe radius
b radius of the cylindrical medium
Cf volumetric thermal capacity of the base fluid
Cs volumetric thermal capacity of the nanoparticles
f̄i transformed initial condition
Foq dimensionless relaxation time associated with the heat

flux
FoT dimensionless relaxation time associated with the tem-

perature gradient
h heat transfer coefficient
K effective thermal conductivity of the nanofluid
Ni normalization integral
NT truncation order in the summations
q heat flux vector
q0 heat flux at the surface of the probe
r radial variable
R dimensionless radial variable
t time variable
T temperature
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Tf temperature of the base fluid
Ts temperature of the nanoparticles
T0 initial temperature
y Euler’s constant

Greek Symbols

α thermal diffusivity of the nanofluid
β ratio of relaxation times
βi eigenvalues
�i eigenfunctions
�̃i normalized eigenfunctions
θ dimensionless temperature
θa dimensionless temperature from Blackwell’s solution
θav dimensionless average temperature
θp particular solution for the dimensionless temperature field
ρ density
τ dimensionless time variable
τq relaxation time associated with the heat flux
τT relaxation time associated with the temperature gradient
φ homogeneous solution for the dimensionless temperature

field
φ̄i transformed potentials

Subscripts

i order of the eigenvalue problem
f relative to the base fluid
s relative to the nanoparticles

Superscripts

integral transformed quantities
∼ normalized eigenfunctions
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