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This paper presents a methodology for the development of discontinuity-capturing operators for general
elastodynamics. These operators are indicated for problems with sharp gradients in the space and in the
time. The development here presented is based on the methodology for obtaining discontinuity-captur-
ing operators developed by Dutra do Carmo and Galeão (1986) for diffusion–convection problems and is
inspired in the works presented by Hughes and Hulbert (1988 and 1990). It is shown that their operator
belongs to the families of operators developed here. The formulation is applied to one-dimensional and
two-dimensional problems. The results show that the method produces better results than classic meth-
ods for the one dimensional case and presents robust performance for the two-dimensional case.
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differential equations (PDE) that must be resolved analytically or
numerically to obtain the solution. In the specific case of dynamic
problems, algorithms using discretization in the time are rou-
tinely used to find solutions dependent of the time. Among the
various numerical methods used to solve such problems, the fi-
nite difference method (FDM) has a high computational perfor-
mance, while the finite element method (FEM) is versatile and
robust.
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The analysis of structural dynamics problems is usually car-
ried out by the so called semidiscrete methods, where the FEM
is used to model the spatial domain and the FDM is used to inte-
grate on the time. Semidiscrete methods are effective for com-
puting smooth responses, however, their performance to model
problems with sharp gradients or discontinuities is not
satisfactory.

Alternatively to semidiscrete methods, the use of the FEM to
represent both space and time domains, was first proposed in
[1–3]. Space–time finite elements can represent better the solution
of a problem than semidiscrete methods. However, both present
difficulties in the presence of discontinuities as described in refer-
ences [4,5].

It was developed in [6] a space–time finite element formulation
for elastodynamics where the solution and it’s derivative in the
time are discontinuous between of two consecutive time intervals.
Capturing operators were included in this formulation to capture
the discontinuities.

Since then many works have been developed to represent dis-
continuities or sharp gradients for the FD and FE methods. A gen-
eral review can be seen in [7,8] and a very instructive review
concerning spurious oscillations for convection–diffusion equa-
tions can be seen in [9].

In [10] it was presented another time discontinuous Galerkin
method where time and space are decoupled.

The objective of the present work is to extend the methodology
developed in [11,12] to elastodynamics. This paper is organized as
follows.

In Section 2 we present the basic equations of the elastody-
namics. Section 3 is devoted to the time discontinuous Galerkin
formulation. In Sections 4 and 5 we present the general method-
ology to obtain the discontinuity capturing operators. In Sections
6 and 7 we show how to obtain the capturing operator for wave
propagation in one-dimensional spaces and determine the param-
eters of the proposed operator. Section 8 presents two numerical
examples for one-dimensional case. In Section 9 we propose a
possible extension of the discontinuity capturing operator to the
d-dimensional case, and the Section 10 presents one numerical
example for two-dimensional case using the extension proposed
in the previous section. Finally we present the conclusions in
Section 11.

2. General elastodynamic equations

Let X � Rd, where d is space dimension, be an elastic linear
solid with boundary Lipshitz continuous C = oX = Cg [ Ch and
being meas (Cg \ Ch) = 0, where meas(.) denotes Lebesgue posi-
tive measure. Elastic wave propagation in solids is governed by
the following second order hyperbolic partial differential
equation

q€u�r:rðruÞ � f ¼ 0 on Q ¼ X� ½0; T�; ð1Þ

where the stress r(ru) is given by the generalized Hooke’s law:

rðruÞ ¼ C:ru; ð2Þ

where C is a fourth-order tensor whose components are the elastic
coefficients.

Therefore, the component ri j is given as follows

rij ¼
Xd

l¼1

Xd

k¼1

Cijkl
@uk

@xl
; ð3Þ

with boundary conditions and initial conditions given below
u ¼ g on Cg � ½0; T�;
n � rðruÞ ¼ h on Ch � ½0; T�;
uðx;0Þ ¼ u0ðxÞ;
_uðx;0Þ ¼ v0ðxÞ;

ð4Þ

where g and h represent respectively the prescribed boundaries dis-
placement and traction, n denotes the unit outward vector normal
to C, u denotes the displacement vector, _u denotes the differentia-
tion of u with respect to the time variable t. T > 0, q denotes the
mass density and u0(x) and v0(x) represent respectively initial dis-
placement and initial velocity.

3. Space–time finite element formulation

For n 2 {0, . . . ,N} consider the time interval In = [tn�1, tn], the
time step Dt = tn � tn�1, and the jump operator defined as

suðtnÞt ¼ u tþn
� �

� u t�n
� �

; ð5Þ
u tþn
� �

¼ lim
e!0þ

u tn þ eð Þ; ð6Þ

u t�n
� �

¼ lim
e!0�

u tn þ eð Þ: ð7Þ

The variational equation or weak form can be derived from a
weighting residual form as given in [6,7], (see expression (8)), by
considering the jump operator in the time for displacement and
velocity, as followsZ tn

tn�1

Z
X

_Wðx; tÞq€uðx; tÞdXdt �
Z tn

tn�1

Z
X

_Wðx; tÞr:rðruðx; tÞÞdXdt

�
Z tn

tn�1

Z
X

_Wðx; tÞfðx; tÞdXdt þ
Z

X

_W x; tþn�1

� �
qs _uðx; tÞtdX

þ
Z

X
W x; tþn�1

� �
r:rðsruðx; tn�1ÞtÞdX ¼ 0: ð8Þ

After applying integration by parts to reduce the order of the spatial
operator and by considering the divergence theorem, one obtainsZ tn

tn�1

Z
X

_Wðx; tÞq€uðx; tÞdXdt þ
Z tn

tn�1

Z
X
r _Wðx; tÞrðruðx; tÞÞdXdt

�
Z tn

tn�1

Z
Ch

_Wðx; tÞhðx; tÞdt �
Z tn

tn�1

Z
X

_Wðx; tÞfðx; tÞdXdt

þ
Z

X

_W x; tþn�1

� �
q _u x; tþn�1

� �
dX�

Z
X

_W x; tþn�1

� �
q _u x; t�n�1

� �
dX

� �
þ

Z
X
rW x; tþn�1

� �
r ru x; tþn�1

� �� �
dX

�
�
Z

X
rW x; tþn�1

� �
r ru x; t�n�1

� �� �
dX
�
¼ 0: ð9Þ

In order to work out the approximate formulation through the finite
element method, consider a usual partition of the domain X into ne
elements. For each Xe and each time interval In, let Pk Qe

n

� �
be the

space of the polynomials of degree 6k in the local coordinates
where Qe

n ¼ Xe � In. By considering k P 2 one has the set of the
admissible approximations

Sh;k ¼ uhjuh 2 C0 [N
n¼1Q n

� �� �
;uh

e 2 Pk Qe
n

� �
;uh ¼ g on Cg � I

n o
;

ð10Þ

and the space of the admissible variations

Vh;k ¼ WhjWh 2 C0 [N
n¼1Qn

� �� �
;Wh

e 2 Pk Qe
n

� �
;Wh ¼ 0 on Cg � I

n o
;

ð11Þ

where uh
e denotes the restriction of uh to Qe

n. The Time Discontinu-
ous Galerkin formulation associated to the variational problem
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given by (9), consists of finding uh 2 Sh,k satisfying the variational
equation

ATDGðuh;WhÞn ¼ FTDGðWhÞn8Wh 2 Vh;k; ð12Þ

ATDGðuh;WhÞn ¼
Xne

e¼1

R tn

tn�1

R
Xe

_Whðx; tÞq€uhðx; tÞdXdtþR tn

tn�1

R
Xe
r _Whðx; tÞrðruhðx; tÞÞdXdtþR

Xe
_Wh x; tþn�1

� �
q _uh x; tþn�1

� �
dXþR

Xe
rWh x; tþn�1

� �
r ruh x; tþn�1

� �� �
dX

2666664

3777775;
ð13Þ

FTDGðWhÞn ¼
Xne

e¼1

R tn

tn�1

R
Che

_Whðx; tÞhðx; tÞdXdt�R tn

tn�1

R
Xe

_Whðx; tÞfðx; tÞdXdtþR
Xe

_Whðx; tþn�1Þq _uh x; t�n�1

� �
dXþR

Xe
rWh x; tþn�1

� �
r ruh x; t�n�1

� �� �
dX

26666664

37777775 if n > 1;

ð14Þ

FTDGðWhÞ1 ¼
Xne

e¼1

R tn

tn�1

R
Che

_Whðx; tÞhðx; tÞdXdt�R tn

tn�1

R
Xe

_Whðx; tÞfðx; tÞdXdtþR
Xe

_Wh x; tþn�1

� �
qv0ðxÞdXþR

Xe
rWh x; tþn�1

� �
rðru0ðxÞÞdX

26666664

37777775: ð15Þ
4. Discontinuity-capturing operators for elastodynamics

In this section we present a general methodology to develop
discontinuity-capturing operators for the general elastodynamic
problem presented in Section 2. We consider again, an elastic body
occupying a bounded region X contained in Rd, where d 2 {1,2,3},
the stress components ri j being given as

rij ¼
Xd

l¼1

Xd

k¼1

Cijkl
@uk

@xl
; ð16Þ

where i, j, k, l 2 {1,. . ., d} and Cijkl are the elastic coefficients.
In order to extend to elastodynamics the methodology pre-

sented in [11] for diffusion–convection problem, we consider the
equilibrium equations

q
@2ui

@t2 �
Xd

j¼1

Xd

k¼1

Xd

l¼1

Cijkl
@2uk

@xj@xl
þ @Cijkl

@xj

@uk

@xl

" #" #
¼ fi ði ¼ 1; . . . ; dÞ:

ð17Þ

By following the methodology presented in [11], associated to one
uh fixed, we consider the approximate coefficients Ch

ijkl;
@Ch

ijkl

@xi
and qh

i

satisfying

qh
i
@2uh

i

@t2 �
Xd

j¼1

Xd

k¼1

Xd

l¼1

dijklC
h
ijkl

@2uh
k

@xj@xl
þ dj

ijkl

@Ch
ijkl

@xj

@uh
k

@xl

" #" #
� fi ¼ 0 ði ¼ 1; . . . ;dÞ; ð18Þ

where

dijkl ¼
1; if Cijkl – 0
0; otherwise

�
and dj

ijkl ¼
1; if @Cijkl

@xj
– 0

0; otherwise:

(
ð19Þ

Therefore, given an approximate solution uh, the goal is to find the

approximate coefficients, Ch
ijkl;

@Ch
ijkl

@xi
and qh

i satisfying (18) and as
close to Cijkl;
@Cijkl

@xi
and qi as possible. To achieve this goal, we con-

sider the functional J⁄, defined as

J� ¼
Xd

i

Xd

j

Xd

l

Xd

k

Ch
ijkl � Cijkl

h i2

2
þ hi

2
@Ch

ijkl

@xj
� @Cijkl

@xj

" #2
8><>:

9>=>;
þ ci

2
qh

i � q
	 
2

; ð20aÞ

where hi and ci are dimensional parameters so that the terms of the
equation above can have the same dimension and are defined as
follows

ci ¼
Ciiii

q

� �2

; ð20bÞ

hi ¼ ðCouriÞ2ðhe;iÞ2; ð20cÞ

where Couri is the Courant number on the direction i, and he,i is the
characteristic length on the direction i, both will be defined later on
in this section.

Our objective is to minimize the functional J⁄ subjected to the
restriction given by (18). The problem of minimization of the func-
tional J⁄ satisfying the restrictions (18) is equivalent to minimize
the functional J, defined as

J¼
Xd

i

Pd
j

Pd
l

Pd
k

Ch
ijkl�Cijkl½ �2

2 þ hi
2

@Ch
ijkl

@xj
� @Cijkl

@xj

� �2
( )

þ ci
2 qh

i �q
	 
2þ

ki �
Pd

j

Pd
k

Pd
l

Ch
ijkldijkl

@2uh
k

@xj@xl

� �
þ dj

ijkl

@Ch
ijkl

@xj

� �
@uh

k
@xl

� �� �
þqh

i
@2uh

i
@t2 � fi

" #
2666664

3777775;
ð21Þ

where ki are Lagrange Multipliers.
By minimizing the J functional with respect to Ch

ijkl;
@Ch

ijkl

@xi
;qh

i and
ki, for one uh fixed, and by performing subsequently some manip-
ulations and by considering the vector

UiðuhÞ ¼ Ui;1ðuhÞ;Ui;2ðuhÞ; 1ffiffiffiffici
p

@2uh
i

@t2

 !
; ð22aÞ

where

Ui;1ðuhÞ ¼ di111
@2uh

1

@x2
1

; . . . ; dijkl
@2uh

k

@xj@xl
; . . . ; diddd

@2uh
d

@x2
d

 !
; ð22bÞ

Ui;2ðuhÞ ¼ d1
i111ffiffiffiffi
hi
p @uh

1

@x1
; . . . ;

dj
ijklffiffiffiffi
hi
p @uh

k

@xl
; . . . ;

dd
idddffiffiffiffi
hi
p @uh

d

@xd

 !
; ð22cÞ

one can obtain the Lagrange multipliers in the compact format

ki ¼
RiðuhÞ
kUiðuhÞk2 ði ¼ 1; . . . ;dÞ; ð23aÞ

where

RiðuhÞ ¼ �
Xn

j

Xn

k

Xn

l

Cijkl
@2uh

k

@xj@xl

 !
þ @Cijkl

@xj

@uh
k

@xl

" #" #
þ q

@2uh
i

@t2

� fi ði ¼ 1; . . . ; dÞ: ð23bÞ

By defining the vector of disturbance or error vector

Vh;i
p ðuhÞ ¼ Vh;i;1

p ;Vh;i;2
p ;

ffiffiffiffi
ci

p
q� qh

i

� �� �
ð24aÞ
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where

Vh;i;1
p ðuhÞ ¼ Ch

i111 � Ci111

� �
; . . . ; Ch

ijkl � Cijkl

� �
; . . . ; Ch

iddd � Ciddd

� �� �
ð24bÞ

Vh;i;2
p ðuhÞ ¼

ffiffiffiffi
hi

p @Ch
i111

@x1
� @Ci111

@x1

 !
; . . . ;

 
ffiffiffiffi
hi

p @Ch
ijkl

@xj
� @Cijkl

@xj

 !
; . . . ;

ffiffiffiffi
hi

p @Ch
iddd

@xd
� @Ciddd

@xd

 !!
; ð24cÞ

with (i = 1, . . . ,d), and from Eqs. (22a-c), (23a-b) and (24a-c) we
obtain

Vh;i
p ðuhÞ ¼ RiðuhÞUiðuhÞ

UiðuhÞ
��� ���2 ði ¼ 1; . . . ;dÞ; ð25Þ

bVh;i
p ðuhÞ ¼

Vh;i
p ðuhÞ

Vh;i
p ðuhÞ

��� ��� ¼ RiðuhÞUiðuhÞ
jRiðuhÞj UiðuhÞ

��� ��� ði ¼ 1; . . . ;dÞ; ð26Þ

Associated to Ui(uh) we consider the vector Ui,loc(uh) in the local
coordinates,

Ui;locðuhÞ ¼ di111
@2uh

1

@n2
1

. . . ; dijkl
@2uh

k

@nj@nl
; . . . ; diddd

@2uh
d

@n2
d

;
@2uh

i

@n2
0

 !
;

ði ¼ 1; . . . ;dÞ; ð27Þ

where (n1, . . . ,nd) are the dimensionless coordinates of the element
related to the physical or global coordinates and n0 is a dimension-
less coordinate related to the time.

In order to obtain the Petrov–Galerkin disturbance necessary
for building a discontinuity-capturing operator family, we use
the expressions (24a)–(24c), (25)–(27) for introducing the
functions

hlocðuhÞ ¼ Ui;locðuhÞ
kUiðuhÞk

" #1=2

; ð28Þ

siðuh;aiÞ ¼
1

kUiðuhÞk
RiðuhÞ

qðciÞ
1=2

��� ���h iai
; if kUiðuhÞk > 0

0; if kUiðuhÞk ¼ 0

8<: ; ð29Þ

Couri ¼
ðciÞ

1=4Dt
he;i

; ð30Þ

he;i ¼ Supx;y2Xe
jxi � yij; ð31Þ

where Sup denotes Supremum and ai = ai(Couri) P 0.
Our Petrov–Galerkin disturbance is then given by

piðuh;WhÞ ¼ Dtqcisiðuh;aiÞ
bVh;i

p ðuhÞ
qðciÞ

1=2 �WiðWhÞ
" #

; ð32Þ

where Wi(Wh) 2 Rd "Wh 2 Vh,k.
Finally, a discontinuity-capturing operator family related to the

degree of freedom i can be obtained by integrating over the space–
time domain the product between the residue Ri(uh) and the Pet-
rov–Galerkin disturbance pi(uh,Wh) as follows

ACDðuh;WhÞn ¼
Xd

i¼1

Xne

e¼1

Z tn

tn�1

Z Dt

Xe

qcisiðuh;ai þ 1Þ

� ½UiðuhÞ:WiðWhÞ�dXdt: ð33Þ

We notice that to each pair (Wi(Wh), ai) corresponds a capturing
operator.
5. Families of discontinuity-capturing operators

Families of discontinuity-capturing operators for elastodynam-
ics can be obtained by defining suitable Wi(Wh). For instance, con-
sider the following form

WiðWhÞ ¼ biðCouri; h
locðuhÞ;aiðCouriÞÞ:

1

hlocðuhÞ
� �4

�
Ui;locðuhÞ � Ui;locðWhÞ
h i

UiðuhÞ � UiðWhÞ
UiðWhÞ ð34Þ

where bi is a non-negative dimensionless function.
A specific family of operators can be obtained by making the ai

(Couri) equal to a real number independent of the Courant number
as follows

aiðCouriÞ ¼ �a P 0 8i and 8Couri: ð35Þ

By considering Wi(Wh) as given by the Eq. (34), si(uh,ai + 1) as given
in the Eq. (29) and �a constant, we can obtain the class of capturing
operator characterized by the Eq. (36) below

Ae
CDðuh;WhÞ ¼

X
i

Z tn

tn�1

Z
Xe

Dt
jRiðuhÞj�aþ1

q�acð�a�1Þ=2
i

�
UiðuhÞ
��� ���1��a

Ui;locðuhÞ
��� ���2 bi Ui;locðuhÞ � Ui;locðWhÞ

h i
dXdt; ð36Þ

where bi ¼ biðCouri; h
locðuhÞ; �aÞ.

In this class many discontinuity-capturing operators can be ob-
tained by choosing �a and bi. The operator presented in [7,8] for the
one-dimensional case, can be obtained with �a ¼1 and

b1 ¼ Dt= 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cour4

p� �� �
=Dt.

6. Formulation for the one-dimensional case

In this section we present the expressions concerning the dis-
continuity-capturing operator for the one-dimensional elastic case
and subsequently present a methodology to determine the opera-
tor parameters.

Consider the wave propagation problem on a one-dimensional
bar with constant coefficients, given by Eq. (37)

1
c1=2

@2u
@t2 �

@2u
@x2 ¼ f ðtÞ: ð37Þ

The discontinuity-capturing operator for this one-dimensional case
is

ACDðuh;WhÞn ¼
Xne

e¼1

Z tn

tn�1

Z Dt

Xe

qcsðuh; �aþ 1Þ UðuhÞ:WðWhÞ
h i

dXdt;

ð38Þ
where the vector U(uh) is given by

UðuhÞ ¼ @2uh

@x2 ;
1

c1=2

@2uh

@t2

 !
; ð39aÞ

and the weight vector W(Wh) was chosen as being

WðWhÞ¼
W�ðWhÞ¼l�ðCourÞ @2Wh

@x2 ;
Cour4

c1=2
€Wh

� �
; if Cour<1

WþðWhÞ¼lþðCourÞ Cour�4 @2Wh

@x2 ;
1

c1=2
€Wh

� �
; if Cour P1

8><>: ;

ð39bÞ

where �a is a real number to be determined, c 1/2 = c2 (c being the
wave propagation velocity) and l+(Cour) and l�(Cour) are
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Fig. 1. Homogeneous elastic bar used to determine the discontinuity capturing
parameters.
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dimensionless functions dependent of the Courant number. In the
next section we present how the parameters for the one-dimen-
sional elastic bar are determined.

7. Determination of the parameters

The parameters �a; lþðCourÞ and l�(Cour) are determined via
numerical experiments. The problem chosen to determine these
parameters is a one-dimensional elastic bar. The bar has one end
fixed and the other loaded by an axial force as shown in Fig. 1,
and has the following properties: the length is Lx = 1 m, the square
cross section area is 0.01 m2, the mass density is q = 1 kg/m3 and
Young’s modulus is E = 1 N/m2. The exact solution for this problem
can be found in [13].

The developed formulation uses space–time elements unlike
traditional semidiscrete finite element formulations. The space–
time slab was discretized using 50 quadrilateral elements of 9
nodes, as shown in Fig. 2.

The variables used to determine the functions l+(Cour),
l�(Cour) and the exponent �a are the velocity distribution along
Fig. 3. Behavior of the function l+/
the time at the point A (free end of the bar) and the stress distribu-
tion along the bar at a specific time.

The experiment for the determination of the parameters
l+(Cour), l�(Cour) and the exponent �a is limited to Cour 2 [0.2,
4.0], with the Courant number step D Cour = 0.05. The exponent
�a was determined as follows: the functions l+/�(Cour) were fixed
equal to unity, and for each Courant number in the range above,
the values 0.25, 0.50 and 0.75 for the exponent �a were tested.
The best value found was 0.50 which corresponds to the smallest
mean square error between exact and numerical solutions. After
determining the �a value, the next step was to determine the
l+/�(Cour) functions. By using �a ¼ 0:5, for each Courant number
fixed, was determined as being the best value for these functions
those that gave the smallest mean square error between exact
and numerical solutions. The final results are presented in the
Fig. 3. We notice that a fast interpolation scheme to obtain the
functions l+/�(Cour) at any point inside the range can be easily
determined.

8. Numerical examples for one-dimensional case

In this section we present two numerical examples for a one-
dimensional case. The operator obtained with the methodology
here presented will be denoted by TDG + DC. The results are com-
pared with exact solution, TDG method and with the method pre-
sented in [8], which will be denoted by TDG + HH.

8.1. Example 1 – Homogenous one-dimensional elastic bar

The first example presented here considers a homogenous one-
dimensional elastic bar with one end fixed and the other loaded by
an axial force, which represents a typical one-dimensional wave
propagation problem. In this example both stresses and velocities
present discontinuity on space and time. The properties of the
bar are: length Lx = 4 m, square cross section 0.04 m2, mass density
q = 1 kg/m3 and Young’s modulus E = 1 N/m2. A 200 � 1 mesh of
quadratic Lagrangian space–time elements was used in each
time-step. The force applied at the free end of the bar at initial time
is a Heaviside of intensity 10�2N.

The results for velocities and stresses obtained for Courant
numbers 0.57, 1.03 and 2.03, which correspond respectively to
�(Cour) with Courant number.
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the following time steps 1.14 � 10�2 s, 2.06 � 10�2 s and
4.06 � 10�2 s, are depicted in Fig. 4. Figs. 4a, 4c and 4e show the
behavior of the velocity at the tip of the bar along the time, while
Figs. 4b, 4d and 4f show the behavior of the stress distribution at a
specific time along the bar. It should be noted that only a small
interval of the time and space are presented in those figures. The
exact solution of this example can be found in [13].
Fig. 4a. Velocity at the tip of the bar alon

Fig. 4b. Stress distribution along th

Fig. 4c. Velocity at the tip of the bar alon
Some remarks can be done about the behavior of the methods
results. In all tests, the TDG method presented an overshoot and
an undershoot close to the discontinuity, because this method does
not control the second derivative. The other methods do not
present these oscillations. For all ranges of Courant numbers, the
proposed method (TDG + DC) is less dissipative than the TDG + HH
method. The difference between the two methods is more
g the time for Courant number 0.57.

e bar for Courant number 0.57.

g the time for Courant number 1.03.



Fig. 4d. Stress distribution along the bar for Courant number 1.03.

Fig. 4e. Velocity at the tip of the bar along the time for Courant number 2.03.

Fig. 4f. Stress distribution along the bar for Courant number 2.03.

E.G. Dutra Do Carmo et al. / Comput. Methods Appl. Mech. Engrg. 201–204 (2012) 127–138 133
pronounced for Courant numbers close to 1. We can observe from
the results presented that the TDG + DC method does not present
overshoots and undershoots. It should be noted that the methods
TDG + DC and TDG + HH are non-linear; for the numerical tests,
presented here, the number of iterations to achieve convergence
of the proposed method was equal to two.
8.2. Example 2 – Non-homogeneous one-dimensional elastic bar

The second example analyzed considers a one-dimensional
elastic bar consisting of two different homogenous domains. The
material properties are: L1 = 2 m, E1 = 4 N/m2; c1 = 2.0 m/s and
L2 = 2 m, E2 = 1 N/m2; c2 = 1.0 m/s, and the square cross section is
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0.04 m2 along the entire bar. A 200 � 1 mesh of quadratic Lagrang-
ian elements was used in each time-step. The force applied at the
free end of the bar has intensity of 10�2N and short duration (only
one time step) as depicted in Fig. 5. Fig. 6 shows results obtained
for Courant numbers equal to 0.57, 1.03 and 2.03, which corre-
spond respectively to the following time steps 1.14 � 10�2 s,
2.06 � 10�2 s and 4.06 � 10�2 s.

Figs. 6a, 6c and 6e show the time history of the displacement at
the tip of the bar, while the Figs. 6b, 6d and 6f correspond to the
Lx1 = 2.0m 

Material 2 

0 

Material 1 

Lx2 = 2.0m

Fig. 5. Two mater

Fig. 6a. Displacement at the tip of the bar a

Fig. 6b. Stress distribution along th
behavior of the stress distribution along the bar at a specific time.
It should be noted that only a short interval of the time and space
are presented in those figures.

Again, the proposed discontinuity-capturing operator does not
present oscillations and we observe that for all ranges of Courant
number, the proposed method (TDG + DC) is less dissipative than
the TDG + HH method, and the difference between the two meth-
ods is more pronounced for Courant numbers close to 1. Again,
the convergence of the method was achieved with two iterations.
f(t)

t(s)

10-2N 

0 
Δt

A f(t) 

x

ial elastic bar.

long the time for Courant number 0.57.

e bar for Courant number 0.57.



Fig. 6c. Displacement at the tip of the bar along the time for Courant number 1.03.

Fig. 6d. Stress distribution along the bar for Courant number 1.03.

Fig. 6e. Displacement at the tip of the bar along the time for Courant number 2.03.
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Fig. 6f. Stress distribution along the bar for Courant number 2.03.
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Fig. 7. Square membrane under prescribed initial velocity, over the area A, superior
view.
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9. Extension for the d-dimensional case

In this section we propose an extension of the discontinuity-
capturing operator for d-dimensional problems. However, the
extension for the d-dimensional problem of the capturing operator
is not trivial. The results obtained from a one-dimensional experi-
ment, suggests that the stabilization parameter of the discontinu-
ity-capturing operator is a function of Courant number. However,
for problems of dimension greater than one, there are many possi-
ble choices to evaluate the Courant number for each direction.
Based on numerical experiments, an optimal or quasi-optimal
parameter was obtained for one-dimensional problems. However,
numerical tests with quadrilateral elements using this parameter
on all directions and with only one Courant number suggested:
(a) Appropriated Courant numbers must be evaluated on each
direction and, b) one reduction factor must multiply the one-
dimensional stabilization parameter for each direction in d-dimen-
sional problems, otherwise, excessive dissipation can appear.

Numerical experiments with quadrilateral elements have indi-
cated that an appropriate expression for the Courant number on
the i-direction can be similar to that given in Section 4 and adopted
as follows

Couri ¼
jCiiii j
q

� �1=2
Dt

he;i
; ð40Þ

where he,i is as given in Section 4, Eq. (31). The same numerical
experiments also have indicated that an appropriate reduction fac-
tor must possess information concerning the distortion of the
element.

By noting that the Jacobean matrix possesses intrinsically this
information, we propose the following expression for the reduction
factor on the i-direction

Fred;i ¼ Fred;0
ðHe;JÞi
kHe;Jk

; ð41Þ

with He,J given by

He;J ¼ J
he;1

:

he;d

0B@
1CA; ð42Þ

where J is the Jacobean matrix, (He,J)i is the i-order component of
vector HJ and Fred,0 6 1 is a dimensionless number.
Extensive numerical tests with meshes of quadrilateral ele-
ments were made to Fred,0 = 0.25, Fred,0 = 0.50 and Fred,0 = 0.75. De-
spite the low sensitivity for this range of values of Fred,0, was
observed that the best results for all ranges of Courant number
were obtained with Fred,0 = 0.50.

Preliminary tests with various Courant numbers using triangu-
lar meshes obtained from regular meshes with quadrilateral ele-
ments, making each quadrilateral into two triangles, have been
made with Fred, 0 = 0.25, Fred,0 = 0.50 and Fred,0 = 0.75. Again, there
was little sensitivity and the best results were obtained for Fred,

0 = 0.50. However it would be good to repeat these tests for trian-
gular unstructured meshes in order to confirm this result.

By using the functions l+/�(Couri) obtained for the one-dimen-
sional case, one can define the factors Fþ=�1 ðCour1Þ; . . . ; Fþ=�d ðCourdÞ
to each direction x1, . . .xi, . . .xd as follows

Fþ=�i ðCouriÞ ¼ Fred;i � lþ=�ðCouriÞ: ð43Þ

By considering the cross factors Fþ=�mk and Fþ=�t given by the expres-
sions that follow

Fþ=�mk ¼ Fþ=�m ðCourmÞ � Fþ=�k ðCourkÞ
� �1=2

; ð44Þ
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and

Fþ=�t ¼ Max Fþ=�1 ðCour1Þ; . . . ; Fþ=�d ðCourdÞ
n o

; ð45Þ

then for each i 2 {1, . . . ,d} a function Wi(Wh) can be defined for the
d-dimensional case as follows

WiðWhÞ ¼
Wi;�ðWhÞ; if Couri < 1

Wi;þðWhÞ; if Couri P 1

(
; ð46Þ
Wi;�ðWhÞ¼ W1
i;�ðW

hÞ;W2
i;�ðW

hÞ;F�t �ðCouriÞ4
1ffiffiffiffici
p

@2Wh
i

@t2

 !
; ð47aÞ

W1
i;�ðW

hÞ¼ F�11di111
@2Wh

1

@x2
1

;...;F�jl dijkl
@2Wh

k

@xj@xl
;...;F�dddiddd

@2Wh
d

@x2
d

;

 !
ð47bÞ

W2
i;�ðW

hÞ¼ F�11
d1

i111ffiffiffiffi
hi
p @Wh

1

@x1
;...;F�jl

dj
ijklffiffiffiffi
hi
p @Wh

k

@xl
;...;F�dd

dd
idddffiffiffiffi
hi
p @Wh

d

@xd
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 !
ð47cÞ
Wi;þðWhÞ¼ W1
i;þðW

hÞ;W2
i;þðW

hÞ;Fþt
1ffiffiffiffici
p

@2Wh
i

@t2

 !
; ð48aÞ
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@2Wh
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1

; .. . ;Fþjl dijkl
@2Wh

k
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@2Wh
d

@x2
d

;

 !
ð48bÞ

W2
i;þðW
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d1

i111ffiffiffiffi
hi
p @Wh

1

@x1
; .. . ;Fþjl

dj
ijklffiffiffiffi
hi
p @Wh

k

@xl
; .. .;Fþdd

dd
idddffiffiffiffi
hi
p @Wh

d

@xd
;

 !
ð48cÞ

where Wh
i is the component of ith order of the vector Wh.
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10. Numerical example for two-dimensional case

In this section we present one numerical example for a two-
dimensional case. The operator obtained with the methodology
here presented will be denoted by TDG + DC. The results are com-
pared with the exact solution found in [13], classical Newmark’s
method and TDG method.

10.1. Example 3 – Transverse motion of quadrangular membrane
under prescribed initial velocity

The last example considers the transverse motion of a square
membrane with initial velocity 1 m/s applied transversely over
the shaded area A (0.2 m x 0.2 m) and zero displacements pre-
scribed over all boundary and zero initial displacement prescribed
over the domain (see Fig. 7). The length of each side of the mem-
brane is equal to 1 m and the wave propagation velocity is 1 m/s.
The variable chosen to verify accuracy is the velocity time history
at the center of the membrane. Due to the symmetry of the prob-
lem, only the one quarter of the membrane needs to be discret-
ized. Each space–time slab of the one quarter was discretized
with 1600 hexahedral elements of twenty-seven nodes. In this
example, the methods considered were classical Newmark with
parameters (d = 0.50 and a = 0.25) as given in [14], TDG and
TDG + DC. The results are compared with the exact solution. The
Courant numbers considered were 0.50, 1.00 and 1.75 which
correspond respectively to the time steps 6.25 � 10�3 s,
1.25 � 10�2 s, and 2.19 � 10�2 s. The results are presented in the
Fig. 8.
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This example uses the extension proposed to 2D problems in
previous section to the discontinuity-capturing operator. As well
as the one-dimensional examples, this case presents discontinuity
in the velocity. As can be seen in Fig. 8, the (TDG + DC) method has
dissipation slightly higher that the TDG method but without spuri-
ous oscillations, overshoots and undershoots.

Remark. As can be observed in the results presented, the New-
mark’s method has spurious oscillations in the presence of high
gradients (on velocities and stresses) while the TDG method does
not exhibit strong spurious oscillations but only presents over-
shoots and undershoots, and has equivalent dissipation or less than
the Newmark’s method. These observations apply to other tradi-
tional methods as well as to all methods of the Newmark’s family.
Therefore, the TDG method can be the basis for evaluating the
performance of the (TDG + DC) method presented in this paper.
11. Conclusions

In this paper we present a general methodology to obtain fam-
ilies of discontinuity capturing operators for elastodynamics. This
methodology is based on the work developed in [12] to diffu-
sion–convection problems, and inspired in the operator presented
in [7]. The operators are indicated for problems with discontinu-
ities. The methodology was applied to problems with discontinu-
ities in the time and in the space and for all ranges of Courant
numbers presented the operator proposed here was less diffusive
than the operator presented in [7]. The tests show that the pro-
posed method (TDG + DC) does not present overshoots and under-
shoots, because the discontinuity-capturing operator controls the
second order derivatives of the displacement. This difference is
more pronounced for Courant numbers close to 1.

In addition it is proposed an extension for d-dimensional prob-
lems. It should be noted that the proposed extension presented in
Section 9 is not definitive, but a possible extension for d-dimen-
sional case. Robust tests with distorted meshes including those
with triangular elements must be done, in such a way to validate
or suggest modifications on the proposed extension.

The TDG + DC and TDG + HH are non-linear methods, and the
numerical simulations with the proposed discontinuity-capturing
operator give a clear indication that two iterations are sufficient
to achieve convergence of the solution, more iterations lead to no
improvement.
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