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Simultaneous estimation of space-variable thermal conductivity and heat capacity
in heterogeneous samples of nanocomposites is dealt with by employing a
combination of the generalized integral transform technique (GITT), for the
direct problem solution, Bayesian inference as implemented with the Markov
chain Monte Carlo (MCMC) method, for the inverse analysis and infrared
thermography, for the temperature measurements. Another aspect of the
proposed approach is the integral transformation of the thermographic exper-
imental data along the space variable, which allows for a significant data
compression since the inverse analysis is undertaken within the transformed field.
Results are presented for the covalidation of the experiment with a homogeneous
polyester plate, as well as for a plate made of polyester–alumina nanoparticles
composite with abrupt variation of the filler concentration.

Keywords: heterogeneous media; nanocomposites; Bayesian inference; inte-
gral transforms; infrared thermography

1. Introduction

Heat conduction problems defined in heterogeneous media involve space variations of the
physical properties in different forms, depending on the type of heterogeneity that prevails,
such as large-scale variations in functionally graded materials, abrupt variations in
laminated media and random variations due to fluctuations of local concentrations in
dispersed systems [1–5]. The accurate determination of local variations in physical
properties within heterogeneous media requires an experimental technique that pro-
vides abundant information on spatially distributed measurements, in order to provide
a firm basis for application of the appropriate inverse problem analysis. In addition, as the
morphology of the medium directly influences the spatial behaviour of the physical
properties, it becomes critical not to disturb the structure along the experimental
campaign by introducing intrusive sensors, such as thermocouples in the case of
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temperature measurements. Therefore, aiming at the identification of spatially variable
thermophysical properties, the adoption of the non-intrusive technique of infrared
thermography becomes of major interest, providing a large volume of measurements, both
in space and time, and offering new perspectives towards the analysis of heat conduction in
heterogeneous media [6–8]. On the other hand, the large volume of measurements
provided by the infrared thermography technique yields an additional challenge for the
inverse analysis, in terms of processing such a large amount of information. Thus, the
development of techniques that are able to handle the large amount of temperature
measurements provided by infrared thermography within feasible computation time
becomes of major interest [9,10].

This work thus provides an experimental demonstration of a recently proposed inverse
analysis methodology [10,11] that combines the integral transform method for the direct
problem solution and for the compression of the experimental data, which is obtained by
infrared thermography, as well as Bayesian inference for the inverse problem solution.
Bayesian inference has been demonstrated to be a powerful tool in the estimation of
spatially variable equation and boundary condition coefficients in heat diffusion problems
[10–12], by employing the Markov chain Monte Carlo (MCMC) method, with the
Metropolis–Hastings algorithm for the sampling procedure [13–16]. This sampling
procedure used to recover the posterior distribution is in general the most expensive
computational task, since the direct problem is calculated for each state of the Markov
chain. In this context, the use of a fast, accurate and robust computational implementation
of the direct solution is extremely important. Thus, the integral transformation method
[17–22] becomes very attractive for the combined use with the MCMC method. Such is the
case because analytical expressions can be obtained for different quantities required in the
implementation, thus avoiding repetitive numerical tasks [22]. Also, instead of seeking the
function estimation in the form of a sequence of local values for the variable coefficients,
an alternative path is utilized based on the eigenfunction expansion of the coefficients to be
estimated [22]. Another important aspect of this combined methodology is the analysis of
the inverse problem in the transformed temperature field, instead of employing the directly
measured temperature data along the domain. Thus, the experimental spatially distributed
temperature values at each time are first integral transformed to yield transformed
temperature values of increasing order. This procedure is particularly advantageous when
a substantial amount of experimental measurements are available, such as with the
infrared thermography technique employed here, permitting a remarkable data
compression.

In order to demonstrate the applicability of the proposed thermophysical properties
estimation approach, an experiment was built and tested [23,24], which employs samples
made of thin plates partially heated with an electrical resistance on one surface, while the
other surface is exposed to the infrared thermography system. Studies have been
undertaken with this methodology, demonstrating the recovery of the homogeneous
thermophysical properties of a bakelite plate without the assumption or previous
knowledge of its uniform distribution behaviour [24]. In another verification, we have used
polystyrene plates manufactured with a controlled thickness that varies linearly along the
plate’s length, modelling the variable thickness as space-varying effective thermophysical
properties [25], which have then been estimated.

In this article, the proposed combined approach is further challenged, as applied to
identify the thermophysical properties of an actual heterogeneous material. Controlled
experiments are performed with a thin nanocomposite plate, made of polyester resin and
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alumina nanoparticles, with an abrupt variation in the thermophysical properties as a

consequence of the variation in the filler concentration. Furthermore, two other novel

aspects of the present inverse analysis are investigated. First, we compare the use of

informative and non-informative filtering functions in the properties eigenfunction

expansions. Second, the effects of the heater position on the estimation procedure are

examined, showing that significant improvements can be achieved by properly locating the

heater across the region of spatial variation on the properties to be estimated.

2. Direct problem solution

We consider a one-dimensional special case of the general formulation on transient heat

conduction presented in [22], for the transversally averaged temperature field within a

thermally thin plate, Tmðx, tÞ, in the region x2 [0,Lx]. The formulation includes the space-

variable thermal conductivity and heat capacity, as shown in problem (1). The equation

coefficients �ðxÞ , cpðxÞ and kðxÞ are thus responsible for the information related to the

heterogeneity of the medium. The heat conduction equation with initial and boundary

conditions is given by

wðxÞ
@Tmðx, tÞ

@t
¼
@

@x
kðxÞ

@Tmðx, tÞ

@x

� �
� dðxÞ½Tmðx, tÞ � T1� þ Pðx, tÞ, 05 x5Lx; t4 0,

ð1aÞ

Tmðx, 0Þ ¼ T1, 0 � x � Lx, ð1bÞ

@Tmðx, tÞ

@x

����
x¼0

¼ 0, t4 0,
@Tmðx, tÞ

@x

����
x¼Lx

¼ 0, t4 0, ð1c; dÞ

where

wðxÞ ¼ �ðxÞcpðxÞ; dðxÞ ¼
heffðxÞ

Lz
; Pðx, tÞ ¼

qðx, tÞ

Lz
: ð1e�gÞ

Problem (1) models a typical one-dimensional transient thermal conductivity exper-

imental setup for a thermally thin plate, including prescribed heat flux at one surface and

convective and radiative heat losses at the opposite surface (Figure 1), and based on a

lumped formulation across the sample thickness. The exposed surface allows for

temperature measurements acquisition via infrared thermography [23–25].
The formal exact solution of problem (1) is then obtained with the classical integral

transform method [22], and is written as

Tmðx, tÞ ¼ T1 þ
X1
i¼1

~ iðxÞ

Z t

0

�giðt
0Þe��

2
i ðt�t

0Þdt0, ð2Þ

where the eigenvalues �i and eigenfunctions  iðxÞ are obtained from the eigenvalue

problem that contains the information about the heterogeneous medium in the form:

d

dx
kðxÞ

d iðxÞ

dx

� �
þ �2

i wðxÞ � dðxÞ
� �

 iðxÞ ¼ 0, x 2 ½0,Lx�, ð3aÞ
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with boundary conditions

d iðxÞ

dx
¼ 0, x ¼ 0,

d iðxÞ

dx
¼ 0, x ¼ Lx: ð3b; cÞ

Also, the other quantities that appear in the exact solution (2) are computed after
solving problem (3), such as

~ iðxÞ ¼
 iðxÞffiffiffiffiffi
Ni

p , normalized eigenfunctions, ð4aÞ

Ni ¼

Z Lx

0

wðxÞ 2
i ðxÞdx, normalization integrals, ð4bÞ

�giðtÞ ¼

Z Lx

0

Pðx, tÞ ~ iðxÞdx, transformed source terms: ð4cÞ

The generalized integral transform technique (GITT) is employed here for the solution
of the Sturm–Liouville problem (Equations 3a–c) via the proposition of a simpler auxiliary
eigenvalue problem, and expanding the unknown eigenfunctions in terms of the chosen
basis. Also, the variable equation coefficients are themselves expanded in terms of known
eigenfunctions, so as to allow for a fully analytical implementation of the coefficients
matrices in the transformed system. For instance, the coefficients wðxÞ, k(x) and d(x) are
expanded in terms of eigenfunctions, together with filtering solutions (identified by the
subscript f ), in the following form:

wðxÞ ¼ wf ðxÞ þ
X1
j¼1

~�j ðxÞ �wj, inverse, ð5aÞ

Figure 1. Schematic representation of the experimental setup for thermophysical properties
identification in heterogeneous media.
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�wj ¼

Z Lx

0

ŵðxÞ½wðxÞ � wf ðxÞ� ~�j ðxÞdx, transform, ð5bÞ

kðxÞ ¼ kf ðxÞ þ
X1
j¼1

~�j ðxÞ �kj, inverse, ð5cÞ

�kj ¼

Z Lx

0

ŵðxÞ½kðxÞ � kf ðxÞ� ~�j ðxÞdx, transform, ð5dÞ

dðxÞ ¼ df ðxÞ þ
X1
j¼1

~�j ðxÞ �dj, inverse, ð5eÞ

�dj ¼

Z Lx

0

ŵðxÞ½dðxÞ � df ðxÞ� ~�j ðxÞdx, transform, ð5fÞ

where ŵðxÞ is the weighting function for the chosen normalized eigenfunction ~�j ðxÞ. The

expansion basis may be chosen by employing the same auxiliary problem, but with first-

order boundary conditions, while the filtering function could be a simple analytic function

that satisfies the boundary values for the original coefficients or just an average value of

the respective coefficient. The filtering functions are used to incorporate as much

information as possible regarding the functional form of each space-variable coefficient, in

order to enhance the convergence of the eigenfunction expansions. As a consequence, the

number of expansion coefficients to be estimated through the inverse analysis can be

reduced.

3. Inverse problem solution

In the Bayesian approach, inference is drawn by constructing the joint probability

distribution of all unobserved quantities, based on all that is known about them. This

knowledge incorporates previous information about the phenomena under study and is

also based on values of observed quantities when they are available. This approach is

based on Bayes’ theorem, which can be written as [13,15]

pðPjYÞ ¼
pðYjPÞ pðPÞ

pðYÞ
: ð6Þ

In summary, solving an inverse problem within the Bayesian framework may be

broken into three subtasks: (i) based on all information available for the unknown P, find

a prior probability density pðPÞ that reflects judiciously this prior information; (ii) find the

likelihood function pðYjPÞ that describes the interrelation between the observations and

the unknowns and (iii) develop methods to explore the posterior probability

density pðPjYÞ.
When it is not possible to analytically obtain the corresponding posterior distributions,

one needs to use a method based on simulation. The inference based on simulation

techniques uses samples from the posterior pðPjYÞ to extract information about it.
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Several sampling strategies are proposed in the literature, including the Monte Carlo

method via Markov chain (MCMC), adopted in this work.
The most commonly used MCMC sampling algorithm is the Metropolis–Hastings

employed here [13,15]. The Metropolis–Hastings algorithm uses the same idea of the

rejection methods, i.e. a value is generated from an auxiliary distribution and accepted

with a given probability. This correction mechanism ensures the convergence of the chain

to the equilibrium distribution. The following steps briefly summarize the Metropolis–

Hastings algorithm employed for the construction of the chains:

Step 1 Sample a candidate P� from the candidate-generating density �ðPt,P�Þ.

Step 2 Calculate

� ¼ min 1,
pðP�jYÞ�ðP�,PtÞ

pðPtjYÞ�ðPt,P�Þ

� �
: ð7aÞ

Step 3 If Uð0, 1Þ5�, then

Ptþ1 ¼ P�, ð7bÞ

else,

Ptþ1 ¼ Pt, ð7cÞ

where Uð0, 1Þ is a random number from an uniform distribution between 0 and 1.

Step 4 Return to Step 1 in order to generate the chain P1,P2, . . . ,PNMCMC

 �

.

We should stress that the first states of this chain must be discarded until the

convergence of the chain is reached. These ignored samples are called the burn-in period,

whose length will be denoted by Nburn-in.
In this work, as the candidate-generating density � we have used normal distributions

centred in the current state. In this case, � is symmetric, i.e. the probability to move from

P� to Pt is the same as to move from Pt to P�, so �ðP�,PtÞ ¼ �ðPt,P�Þ. Thus, Step 2 is

simplified and Equation (7a) can be rewritten as

� ¼ min 1,
pðP�jYÞ

pðPtjYÞ

� �
: ð7dÞ

The unknown quantities in this work, the variable thermal properties and the effective

heat transfer coefficient, were expressed as eigenfunction expansions, which significantly

reduces the number of parameters to be estimated. The truncation orders and the choices

of filtering functions in the proposed expansions, Equations (5a–f), govern the number of

parameters to be estimated. Thus, the total number of parameters NP is given by the sum

of parameters in each expansion, including the number of parameters in each filter

function, and the number of parameters in the heat flux expression, which are also to be

estimated. Therefore, we have:

NP ¼ ðNkF þNkÞ þ ðNwF þNwÞ þ ðNdF þNd Þ þNq, ð8Þ

where NkF, NwF and NdF are the number of parameters appearing in the filter functions for

k(x), w(x) and d(x), respectively.
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Another important aspect of this study is the solution of the inverse problem in the
transformed field, from the integral transformation of the experimental temperature data,
thus compressing the experimental measurements in the space variables into a few
transformed temperature modes. Once the experimental spatially distributed temperature
readings have been obtained, one proceeds to the integral transformation of the
temperature field at each time through the integral transform pair below:

Transform : �Texp ,iðtÞ ¼

Z Lx

0

wðxÞ ~ iðxÞ½Texpðx, tÞ � T1�dx, ð9aÞ

Inverse : Texpðx, tÞ ¼ T1 þ
XNi

i¼0

~ iðxÞ �Texp ,iðtÞ: ð9bÞ

Both the direct and inverse problem solutions were implemented in the symbolic–
numerical computation platform Mathematica [26].

4. Experimental setup and procedure

The experimental setup presented in Figure 2 employs temperature measurements
obtained from the infrared camera FLIR SC660, a high performance infrared system
with 640� 480 image resolution and a temperature range of �40�C to 1500�C. The main
components of the setup are marked in Figure 2 as: (a) IR camera (FLIR SC660); (b)
camera stand for vertical experiment configuration; (c) frame with sandwiched heated

Figure 2. General view of the experimental setup for the infrared thermography analysis.
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plates; (d) sample support; (e) data acquisition system (Agilent 34970-A) and (f)
microcomputer for data acquisition. Figure 3 shows the nanocomposite plate used in
this experiment, which is composed by polyester resin as matrix and alumina nanoparticles
as filler, manufactured in such a way that g of the plate’s length has 28.5% of alumina
nanoparticles in mass and the other ¼ of the plate’s length is composed only by polyester
resin, with no addition of filler. The thickness of the plate is 1.51mm and its lateral and
vertical dimensions are 40� 80mm. An electrical resistance (38.2 �) was employed for the
heating of the plate, with the same lateral dimensions as of the plate but half the length
(40� 40mm), joined here at the upper half of the plate’s height with the aid of a thermal
compound paste. As a reference case, we have used a pair of homogeneous polyester resin
plates in a plate–heater–plate sandwich setup; this case is hereafter called Case 1. For the
nanocomposite plate we have set up a plate–heater–insulation sandwich setup and
investigated two cases by varying the position of the plate with respect to the electrical
resistance: first, the portion with no addition of filler has been placed in contact with the
electrical resistance and for the last case the plate has been turned upside down. These
experimental setups are hereafter called Cases 2 and 3, respectively, and are schematically
represented in Figure 4. In order to reduce uncertainty in the IR camera readings, the plate
surface that faces the infrared camera was painted with a graphite ink, which brought its
emissivity to " ¼ 0:97, as stated by the ink manufacturer.

The experimental procedure is initiated by prescribing a voltage difference to be
imposed on the electrical resistance, with a DC voltage regulator. The data acquisition is
started and, after preliminary measurements used to allow for averaging the initial

Figure 3. Polyester resin–alumina nanocomposite plate used in the experiment with dimensions
1.51mm (thickness), 40mm (width) and 80mm (length).
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conditions, the DC source is turned on to heat the sample plates (a nominal voltage of 8V
has been applied through the DC source in all experiments). The temperature increase may
be followed through computer monitoring. For instance, Figure 5 illustrates the images
produced by the FLIR SC660 camera acquisition system, both 40 s after that the DC
source is turned on, in Figure 5(a), and after 300 s, when the heated plate image is much
brighter, in Figure 5(b). Once steady state is achieved, the DC source is turned off.

5. Results and discussion

Some verifications have been performed in order to test the constructed setup. First, we
have observed a practically perfect superposition of the temperature measurements by
thermocouples (type K) installed at a bakelite plate sample, with the infrared camera
measurements. Then, the temperature measurements from three independent experimental
runs have demonstrated the repeatability of the experimental procedure, which resulted on
an average standard deviation of 0.11�C [25].

The number of pixels of the infrared camera in the vertical direction provides 325
spatial measurements along the 80mm plate and, with the frequency of measurements
used, 222 transient measurements per pixel are available. Figure 6 illustrates the time
evolution of the transformed temperature modes, consecutively numbered up to the 10th
transformed potential, as obtained from Equation (9a). The transformed temperatures are
in fact the quantities that are employed in the inverse problem analysis. Although the first
four transformed potentials of the measurements are significantly more important than the
subsequent ones, for the results presented below we preferred to use for the inverse
analysis the first ten transformed potentials. Indeed, the determinant of the information
matrix does not increase substantially, and hence the conditioning of the inverse problem,
if the number of transformed modes is increased beyond, as examined in ref. [10] by using
simulated data. Therefore, a significant data compression of more than 96% is achieved,
as one chooses to solve the inverse problem in the transformed temperature domain.

Figure 4. Schematic representation of the experimental setup involving the nanocomposite sample
for (a) Case 2 and (b) Case 3.
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In fact, we drop from a total of 72,150 temperature measurements to only 2220 data points
in the transformed domain.

For the inverse analysis, the hypothesis of a Gaussian likelihood has been adopted.
Figures 7 and 8 show the infrared images of plates with uniform temperatures, as well as
the histogram of the measurements of the camera pixels. These histograms clearly show

Figure 5. Infrared camera image acquired at (a) 40 s after the DC source is turned on and
(b) t¼ 300 s, during heating period.

618 D.C. Knupp et al.



that the measurement errors can be fairly well approximated by a Gaussian distribution.
We point out that a quite low acquisition frequency has been used (0.1 frame per second),
which avoids autocorrelation of the measurements and significantly minimizes the noise
due to time increments [27]. Besides that, the temperature measurements obtained with the
infrared camera were directly used for the inverse analysis, without any spatial averaging
or filtering, which could make the measurements correlated. Further discussions on the
local noise level of uncooled microbolometric infrared cameras are found in ref. [27].

The time variation of the applied heat flux, which accounts for the thermal capacity of
the resistance itself and of the thermal paste, besides the thermal contact resistance, has
been parametrized. The applied heat flux is considered here to be given by

qðx, tÞ ¼ qwðxÞ f ðtÞ, f ðtÞ ¼ c� ae�bt, qwðxÞ ¼
q1, 05 x5 xC,

q2, xC 5 x5Lx,

�
ð10a�cÞ

where x ¼ xC ¼ 40mm gives the length of the electric resistance over the plate. Therefore,
the unheated portion of the plate corresponds to a heat flux q2 ¼ 0. Since the dissipated
power in the resistance is accurately measured, Equation (1a) is thus divided by q1, and
then the estimated parameters can be obtained by multiplying each one by the measured
heat flux value q1 and its associated uncertainty.

The effective heat transfer coefficient, d(x), has been expanded in eigenfunctions, such
as given by Equations (5e, f). In light of the nature of the applied heating, a filter was
considered in the form of a step function that assumes two different characteristic values
for the heat transfer coefficient at the heated and unheated plate portions, that is,

hf ðxÞ ¼
h1, 05 x5 xC,

h2, xC 5 x5Lx:

�
ð11Þ

Figure 6. Time evolution of the first ten integral transformed experimental temperatures.
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The initial guesses for h1 and h2 were then obtained from correlations for natural
convection over vertical plates and linearization of the radiative heat flux.

As previously discussed, the truncation orders of the expansions for each unknown
parameter govern the number of parameters in the estimation procedure. The total
number of parameters refers to the filters and expansions for the thermal conductivity,
heat capacity and effective heat transfer coefficient, in addition to the parameters a, b
and c in Equations (10a–c), that control the time variation of the applied heat flux,

Figure 7. (a) Thermal image of a 4� 4 cm uniformly heated plate and (b) histogram of the
temperature measurements of the uniformly heated plate.
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so that we have:

P ¼ kx0, kxL, �k1, �k2, . . . , �kNk

� �
, wx0,wxL, �w1, �w2, . . . , �wNw

� �
, dx0, dxL, �d1, �d2, . . . , �dNd

� �
, a, b, c

 �
:

ð12Þ

In order to have available reference values for the thermophysical properties of the

polyester resin employed in this study, we have performed the inverse analysis of Case 1

Figure 8. (a) Thermal image of the 8� 4 cm plate experiment setup employed in this work. The plate
is in its initial condition (before turning the heater on) and (b) histogram of the temperature
measurements of the plate.
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with the homogeneous pure polyester resin sample. In this case, we have adopted normal

priors with 15% standard deviation, centred in the literature values [28], obtaining the

estimates: k ¼ 0:16� 0:02Wm�1�C�1 and w ¼ ð1:57� 0:08Þ � 106 Jm�3�C�1, for the

thermal conductivity and heat capacity, respectively.
We now consider for the inverse analysis the estimation of the space-varying properties

of the nanocomposite plate with the setup of Case 2 (Figure 4a). We assume the filter for

the thermal conductivity and heat capacity in the form of linear functions that vary

between the end values kx0 and kxL , and wx0 and wxL, respectively. For these parameters

we have adopted normal priors, with 15% standard deviation, centred in the literature

values for the polyester resin [28] and in Lewis–Nielsen’s formula prediction [29] for the

region filled with alumina nanoparticles. For the results presented below, seven terms are

used for the expansions in Equations (5a–d) of w(x) and k(x), while three terms are used in

the expansion of d(x). The inverse analysis with simulated data of refs [10–12] reveals that

accurate estimates can be obtained for the unknown parameters, with such parametri-

zation. In fact, the maximum magnitude of the determinant of the information matrix

rapidly decreases by increasing the number of unknown parameters in the expansions used

for w(x), k(x) and d(x), as a result of the ill-posed character of the inverse problem. Table 1

presents the parameters and type of prior information that has been adopted in this inverse

analysis (N¼Gaussian distribution, U¼ non-informative uniform distribution) as well as

the estimated mean values obtained for each one of the parameters. Markov chains of

NMCMC ¼ 60,000 states were used, and the statistics were computed by neglecting the first

Nburn-in ¼ 20,000 states needed for the warm up of the chains. For the sake of illustration,

Figure 9(a) and (b) shows, respectively, the evolution of the Markov chains for the

parameter kxL and for the first coefficient in the expansion of the thermal conductivity in

Equations (5c, d), �k1, where one can clearly observe the convergence of the states.

Figure 10(a) and (b) presents, respectively, the estimated spatial variations for the thermal

conductivity and heat capacity, with their 99% confidence intervals, as well as the initial

guess employed in this test case. One must observe that with the linear filter functions used

for the thermophysical properties in this case, which does not provide informative priors

regarding their functional forms, the proposed methodology was able to identify a

transition of the space-varying properties from the end values at x ¼ 0 towards constant

values. Figure 10(a) and (b) shows that this transition is centred around x ¼ 0:02m, where,

in fact, a sharp interface exists between the two materials that compose the plate.

Figure 11(a) depicts the residuals between calculated and experimental quantities for the

first five transformed temperature modes. Although presenting some correlation, which

results from the integral transformation procedure that is truncated at the low order of 10

modes, the residuals are small. Similar behaviour can be observed for the residuals in the

temperature field, presented in Figure 11(b) at three different positions. Some tests

have been performed with more than seven terms in the expansions of the sought

coefficients. However, as expected from the analysis of the determinant of the information

matrix [10–12], no improvements were observed in the estimated quantities. This is due to

the small sensitivity coefficients of the coefficients of higher order in the expansions.
On the basis of the observations described above, we now consider a filter function for

the thermophysical properties that approximates a step transition between the end values

at x¼ 0 and x¼Lx, in the form:

kf ðxÞ ¼ kx0 þ ðkxL � kx0Þ�ðxÞ,wf ðxÞ ¼ wx0 þ ðwxL � wx0Þ�ðxÞ, ð13a; bÞ
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where

�ðxÞ ¼
1

1þ e��ð�xþxtÞ
: ð13cÞ

In Equation (13c), � is a parameter that controls the transition sharpness and xt is the

transition point. Both are considered as fixed parameters, not to be estimated with the

inverse analysis, the values of which are taken as � ¼ 1500m�1 and xt¼ 0.02m (based on

the above observations with the linear filter function).
Figure 12(a) and (b) shows the estimated spatial variations for the thermal conductivity

and heat capacity obtained with the experimental arrangement of Case 2 (see Figure 4a),

but with the filter function given by Equations (13). The estimated 99% confidence

intervals and the employed initial guesses are also presented in these figures. Similar to the

case examined above with the linear filter functions, the values used for the end parameters

were obtained from normal priors, with 15% standard deviation, centred in the literature

values for the polyester resin [28] and in Lewis–Nielsen’s formula prediction [29] for the

Table 1. Prior information and estimated parameters.

Parameter Prior information
Estimates

(mean values)

Thermal conductivity (Case 2 – linear filter)
kx0 (Wm�1�C�1) N (0.16, 15%) 0.1621
kxL (Wm�1�C�1) N (0.193, 15%) 0.201
k1 U (�0.0279, 0.0279) 0.00427344
k2 U (�0.00698, 0.00698) 0.0002019
k3 U (�0.00931, 0.00931) �0.0007205
k4 U (�0.00349, 0.00349) �0.0003482
k5 U (�0.00559, 0.00559) �0.0004592
k6 U (�0.00232, 0.00232) 0.0002434
k7 U (�0.00399, 0.00399) 0.0001065

Heat capacity (Case 2 – linear filter)
wx0 (Jm�3�C�1) N (1.595� 106) 1.601� 106

wxL (Jm�3�C�1) N (1.736� 106) 1.74� 106

w1 U (�255921.0, 255921.0) 17048.43
w2 U (�63980.3, 63980.3) �1479.72
w3 U (�85307.0, 85307.0) �1193.36
w4 U (�31990.1, 31990.1) �3341.41
w5 U (�51184.2, 51184.2) �477.34
w6 U (�21326.8, 21326.8) 668.28
w7 U (�36560.2, 36560.2) �1002.42

Heat transfer coefficient (Case 2 – linear filter)
hx0 (Wm�1�C�1) N (15.03, 5%) 14.286
hxL (Wm�1�C�1) N (11.63, 5%) 12.041
h1 N (�0.23, 5%) �0.2492
h2 N (0.69, 5%) 0.7197
h3 N (�0.044, 5%) �0.0437

Applied heat flux (Case 2 – linear filter)
a N (0.19, 5%) 0.197
b N (0.00332, 5%) 0.00315
c N (0.66, 5%) 0.64
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Figure 9. (a) Markov chain evolution of the parameter kxL in the linear filter in Equations (5c, d)
and (b) Markov chain evolution of the first coefficient in the expansion in Equations (5c, d), �k1,
considering a linear filter.
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Figure 10. (a) Estimated thermal conductivity with linear filter and 99% confidence intervals and
(b) estimated heat capacity with linear filter and 99% confidence intervals.
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Figure 11. (a) Residuals (m�C) between calculated and experimental temperature modes in the
transformed domain (linear filter case) and (b) residuals (�C) between calculated and experimental
temperatures at three different positions (linear filter case).
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Figure 12. (a) Estimated thermal conductivity with the step function filter and (b) estimated heat
capacity with the step function filter.
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Figure 13. (a) Residuals (m�C) between calculated and experimental temperature modes in the
transformed domain (step function filter case) and (b) residuals (�C) between calculated and
experimental temperatures at three different positions (step function filter case).
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Figure 14. (a) Comparison of the mean values estimated for the thermal conductivity curves
obtained with the linear filter and with the step function filter and (b) comparison of the mean values
estimated for the heat capacity curves obtained with the linear filter and with the step function filter.
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region filled with alumina nanoparticles. Figure 13(a) depicts the residuals between
calculated and experimental quantities for the first five transformed temperature modes,
while Figure 13(b) presents the residuals in the temperature field at three measurement
positions. A comparison of Figures 11 and 13 reveals that both estimates, with the linear
filter and with the step function filter, yield similar correlated residuals patterns, because
the inverse analysis is performed with a reduced number of modes in the transformed
domain. Nevertheless, the magnitude of the residuals obtained with the step function filter
case are smaller than those obtained with the linear filter function, especially when
considering the transformed potentials which are in fact used in the inverse analysis (see
Figures 11a and 13a). This clearly indicates the more accurate estimates obtained with the
step filter function. A comparison of the estimates obtained via the linear filter and the
step function filter is presented in Figure 14(a) and (b). These figures show that, even
without an informative prior in the filter function, like the linear variation considered here,
the proposed methodology was able to identify the transition that occurs due to the
variation of filler concentration in the nanocomposite plate.

In order to provide a better assessment on the estimates obtained, we now compare the
experimental arrangements of Cases 2 and 3 (see Figure 4). The approximate step filter
function given by Equations (13) is used for this comparison, with �¼ 1500m�1 and xt
given by the transition point of materials in the manufactured plate. The remaining
quantities, such as the number of expansion terms used in the eigenfunction approxima-
tions of Equations (5) and the prior distributions, were the same as specified above.
Table 2 presents the estimated thermophysical properties obtained with the experimental
arrangements of Cases 1–3, where NMCMC ¼ 120,000 states in the MCMC method have
been generated, being the first Nburn-in ¼ 40,000 states neglected in order to achieve the
equilibrium of the chains. One may observe that the estimates obtained for the polyester
resin properties of the nanocomposite plate in Case 2 are very close to those obtained in
Case 1, where the experimental setup involved homogeneous polyester resin plates. On the
other hand, the estimated parameters for the polyester in Case 3 are not in good agreement

Table 2. Prior information and estimated thermophysical properties in Cases 1–3. A step filter has
been used for Cases 1 and 2.

Property Material Prior
Estimates

(mean values)

Case 1
k (Wm�1�C�1) Polyester N (0.16, 15%) 0.159
w (Jm�3�C�1) Polyester N (1.595� 106, 15%) 1.566� 106

Case 2
k (Wm�1�C�1) Polyester N (0.16, 15%) 0.162

Polyesterþ alumina N (0.193, 15%) 0.204
w (Jm�3�C�1) Polyester N (1.595� 106, 15%) 1.59� 106

Polyesterþ alumina N (1.736� 106, 15%) 1.760� 106

Case 3
k (Wm�1�C�1) Polyester N (0.16, 15%) 0.149

Polyesterþ alumina N (0.193, 15%) 0.203
w (Jm�3C�1) Polyester N (1.595� 106, 15%) 1.529� 106

Polyesterþ alumina N (1.736� 106, 15%) 1.743� 106
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with those estimated for Case 1. That is probably because for Case 3 the portion of the
nanocomposite plate composed with polyester resin without addition of filler has been
placed away from the applied heat flux. This result was expected, since this homogeneous
portion of the plate suffers a smaller variation of temperature during the experiment,
yielding locally low sensitivity coefficients for the parameters. For the portion of the
nanocomposite plate corresponding to the polyester resin filled with alumina nanopar-
ticles, it may be observed that Cases 2 and 3 yield estimates very close to each other. The
estimated values for the thermal conductivity are slightly higher than those provided by
the Lewis–Nielsen formula [29], and similar results have been observed in ref. [30].

Figure 15 presents the estimated heat transfer coefficient hðxÞ for Cases 1–3. One may
observe that the three curves show similar behaviour, especially for Cases 2 and 3, where
the estimated curves are very near each other – we stress that Cases 2 and 3 employed the
same plate sample, but with different positions of the material sharp transition with respect
to the heater. Although, the heat transfer coefficient in this experiment is also function of
temperature, because of free convection and radiation, the obtained results show that such
non-linear effects are not significant for the cases examined. In fact, in order to further
illustrate the accuracy of the proposed approach for the identification of the spatially
varying thermophysical properties, we present a comparison of experimental temperature
measurements and predictions obtained with the utilization of the estimated parameters in
an independent computer program developed by our group for the direct problem solution
[31]. The measurements and the simulations refer to Case 2 and the parameters used in the

Figure 15. Estimated heat transfer coefficient, hðxÞ, in Cases 1–3.
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simulation were those estimated with the linear filter function. Figure 16(a) and (b)
presents the experimental and theoretically predicted time evolutions of the temperatures
at x ¼ 0:02m and x ¼ 0:04m, respectively, up to steady state, whereas Figure 17(a)
and (b) shows the vertical spatial distribution of the temperatures at times t¼ 400 s and
t¼ 2210 s, respectively. An excellent agreement is observed in Figures 16 and 17, between
the experimental data and the temperatures predicted with our independent direct problem
solution, by using the parameters estimated with the present inverse analysis.

Figure 16. (a) Time evolution of the temperature at x¼ 0.02m and (b) time evolution of the
temperature at x¼ 0.04m.
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6. Conclusions

In this work, we have used a combination of integral transforms for the direct problem

solution and compression of the experimental data, together with Bayesian inference for

the inverse problem analysis, and infrared thermography as the temperature measurement

technique, for the estimation of spatially variable thermophysical properties in

nanocomposites. We demonstrated the proposed methodology in experiments involving

Figure 17. (a) Vertical spatial distribution of temperatures at t¼ 400 s and (b) vertical spatial
distribution of temperatures at t¼ 2210 s.
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a nanocomposite plate made of polyester resin and alumina nanoparticles, with an abrupt
variation in the thermophysical properties due to the abrupt variation of the filler
concentration. We highlight two innovative aspects of the proposed inverse analysis, which
are the representation of the unknown properties as eigenfunction expansions, with the
subsequent estimation of the expansions coefficients instead of a swarm of local values,
and the integral transformation along the space variable of the temperature measurements,
thus compressing the experimental data into a few modes of the transformed temperatures.
Furthermore, two novel aspects have been investigated here that complement the
understanding of the combined inverse analysis approach. First, the use of non-
informative filtering functions in the properties eigenfunction expansions allowed for
the proper identification of the expected behaviour of an abrupt spatial variation, while
the subsequent use of a filter with some information on this observed variability pattern
provided further refinement on the predicted thermophysical properties profiles. Second,
two different experimental setups were analysed, by varying the heater positioning. It has
then been concluded that significant improvement can be achieved by properly choosing
the heater spatial location across the region of marked spatial variation on the properties
to be estimated, and thus of increased sensitivity, either based on prior information on this
spatial pattern, or again in subsequent experiments aimed at refining the estimated space-
variable properties.

Nomenclature

a, b, c parameters in parametrized transient behaviour of the heat flux,
Equations (10a–c)

f ðtÞ parametrized transient behaviour function of the applied heat flux,
Equations (10a–c)

cp(x) specific heat
d(x) linear dissipation operator coefficient
�giðtÞ transformed source terms, Equation (4c)

heff(x) effective heat transfer coefficient
h1, h2 parameters in the heat transfer coefficient filtering function,

Equation (11)
k(x) thermal conductivity

kx0 , kxL parameters in the thermal conductivity filtering function
Lx plate length
Lz plate thickness
N truncation order in temperature expansion

Nw, Nk, Nd truncation orders for the expansions of the coefficients w(x), k(x) and
d(x)

NP number of parameters to be estimated
Ni normalization integrals in eigenvalue problem, Equations (4a, b)

Nburn�in number of states of the burn-in period in the MCMC method
NkF,NwF,NdF number of parameters appearing in the filtering functions for kðxÞ,

wðxÞ and dðxÞ, respectively
p probability density

P(x, t) source term
q(x, t) applied heat flux
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qw(x) applied heat flux spatial distribution
q1, q2 parameters in the applied heat flux spatial variation, Equations

(10a–c)
t time variable

Tm(x, t) temperature distribution
T1 temperature of surrounding air

Texpðx, tÞ experimental temperature measurements
w(x) thermal capacity

wx0 ,wxL parameters in the thermal capacity filtering function
x space coordinate
xc end position of the electrical resistance over the plate
xt transition point in the step function �ðxÞ, Equation (13c)
Y vector of measurements
P vector of unknown parameters

Greek letters

� acceptance factor in the Metropolis–Hastings algorithm, Equation
(7a)

� eigenfunctions of the variable equation coefficients expansions
� parameter that controls the transition sharpness in �ðxÞ, Equation

(13c)
�ðxÞ step function, Equation (13c)
� candidategenerating density
� eigenvalues of the direct problem
 eigenfunctions of the direct problem

�(x) space-variable density

Subscripts and superscripts

i, j order of eigenquantities
_ integral transform
	 normalized eigenfunction
f filtering function in coefficients expansion
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