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Abstract: The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced 
Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent the cross-flow force acting on 
the cylinder, leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable. The GITT 
approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically 
solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library 
(IMSL). Numerical results were presented for comparison to those given by the finite difference method and experimental results,
allowing a critical evaluation of the technique performance. The influence of variation of mean axial tension induced by elongation 
of flexible cylinder was evaluated, which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.

Key words: Vortex-Induced Vibration (VIV), nonlinear wake oscillator, flexible cylinder, integral transform 

Introduction�
Vortex-Induced Vibration (VIV) is a major con- 

cern in the design of deep-water risers, such as drilling 
risers, top tensioned risers, and steel catenary risers, 
since it can result in large amplitude responses in both 
In-Line (IL) and Cross-Flow (CF) directions, and 
further lead to accumulation of fatigue damage within 
a relatively short time period[1,2].

Many research work has been carried out to 
understand the characteristics of multi-mode VIV, in- 
cluding experimental study[3-5], computational fluid 
dynamic codes[6,7], semi-empirical models[8,9] and 
wake oscillator models[10-12]. Due to its simplicity, the 
wake oscillator model has been employed to perform 
comprehensive parametrical studies for the VIV of 
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flexible cylinders. Instead of direct application of 
measured fluid forces to structural motion equation, 
wake oscillator models couple structural motion equa- 
tion with a nonlinear oscillator equation that describes 
fluid force. The oscillator models generally have seve- 
ral good characteristics, such as the oscillator is self- 
exciting and self-limiting, the natural frequency of the 
oscillator is proportional to the flow velocity and 
thereby the Strouhal relationship is satisfied, the cyli- 
nder motion interacts with the oscillator. Facchinetti et 
al.[13] systematically evaluated three different coupling 
terms, that is, acceleration, velocity, and displacement 
couplings, and concluded that the acceleration cou- 
pling can succeed in modeling the features of 2-D 
VIV. Lin et al.[14] improved the wake oscillator by 
using a nonlinear fluid damping model, which can 
predict response amplitude in VIV more accurately 
than the linear fluid damping model. Xu et al.[15] pre- 
sented a simple empirical model and studied dynamics 
of high aspect-ratio (  riser under VIV. Later, 
Xu et al.[11] estimated empirical parameters in the 
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wake oscillator model for the VIV of an elastically 
supported cylinder. Violette et al.[16] performed the 
VIV prediction of a straight slender cylinder oscilla- 
ting in cross-flow direction under uniform flow, non- 
uniform flow, and linearly sheared flow, and achieved 
good agreement with direct numerical simulation and 
experimental results. Besides cross-flow response, 
wake oscillator models have been extended successfu- 
lly to predict in-line dynamic response in recent litera- 
ture[10,12].

Many different methods have been applied for 
numerical solution of coupled nonlinear oscillator 
models, such as the Finite Difference Method 
(FDM)[10,12,15-17] and Finite Element Method 
(FEM)[18,19]. However, there are no previous study en- 
deavored to perform the vibration analysis of such 
coupled nonlinear oscillator model based on the Gene- 
ralized Integral Transform Technique (GITT) app- 
roach. Being a hybrid numerical-analytical approach, 
the most interesting feature of GITT is automatic and 
straightforward global error control procedure, which 
makes it particularly suitable for benchmarking purpo- 
ses. Although GITT has been largely used in natural 
convection problem[20,21] and 3-D Navier-Stokes equa- 
tions[22,23], its application in solid and structure mecha- 
nics is only at the beginning. Ma et al.[24] applied 
GITT to solve a transverse vibration problem of an 
axial moving string and the convergence behavior of 
integral transform solution was examined. Recently, 
An and Su[25] employed GITT to obtain a hybrid ana- 
lytical-numerical solution for dynamic response of 
clamped axially moving beams. 

The present contribution aims at advancing this 
computational tool towards an accurate solution of 
dynamic response analysis of flexible structures exe- 
rted by external forces. The present paper is organized 
as follows. In the next section, the coupled structure 
and nonlinear oscillator model is formulated. In the 
following section, the exact analytical solution is ob- 
tained by carrying out integral transform. Numerical 
results with automatic global accuracy control are then 
presented, including resonant frequencies, mode 
numbers and maxima amplitudes, which are illustrated 
and compared with those given by the FDM[10] and 
experiments[1] to verify practicability of the present 
approach. Finally, the influence of mean axial tension 
on dynamic response of flexible cylinder is investiga- 
ted.

1. Model description 

1.1 Nonlinear wake oscillator model 
The marine riser can be modeled as a beam with 

low flexural stiffness. The deflection of a beam is des- 
cribed by means of the Euler-Bernoulli beam equation. 
As is shown in Fig.1, a Cartesian coordinate system is 

used, with its origin at one end of the cylinder model , 
in which the x -axis is parallel to flow velocity, the -
axis coincides with spanwise axis of the cylinder 
model in its undeflected configuration, and the -
axis is perpendicular to both. The equation for the 
transverse displacement  of the cylinder model is 
given by 

z

y

Y

22 2 4

2 2 4+ ( + ) + =
2

L
s f a

U DCY Y Y Ym r r T EI
TT Z Z
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where  denotes the flexural stiffness,  the 
applied axial tension, 

EI aT
�  the fluid density,  the 

fluid velocity, 
U

D  the diameter of the cylinder model, 
LC  the vortex lift coefficient, sr  the structural dam- 

ping, fr  the fluid added damping,  the time, and T
Z  the coordinate in the spanwise direction. The mass 

 is composed of mass of cylinder model m sm , inte- 
rnal fluid mass fm  and external fluid-added mass 

 per unit length, which can be determined by the 
following relations 

am

= + +s f am m m m ,
2

=
4

M
f

C D
m

� �
, 2=fr D� � �

(2)

where MC  denotes the added mass coefficient, �
the reference frequency. In the case of transverse vib- 
ration, �  is defined by vortex-shedding angular fre- 
quency, , and  is the 
Strouhal number. The fluid-added damping coefficient 
is

= = 2 /f StU D� � �

4 St

St

= /DC� � , directly related to the mean sec- 
tional drag coefficient DC  of the structure. 

Fig.1 Schematic diagram of the structure-wake oscillators cou- 
pling model of VIV 

A forced Van Der Pol nonlinear oscillator equa- 
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tion is adopted to describe fluid dynamics of fluctua- 
ting wake around the cylinders, and an acceleration 
coupling is selected based on previous work by 
Faccinetti et al.[13] , given as 

2
2 2

2 2+ ( 1) + =f f
q qq q

T T
	� �� �

�
� �

2 yA
t
�
�

    (3) 

where  is reduced fluctuating lift coefficientq
) =( , 2 ( , ) /L Loq Z T C Z T C  and the coefficient LoC

denotes amplitude of fluctuating lift for a fixed rigid 
cylinder subjected to vortex shedding. The values of 
the Van Der Pol parameter 	  and scaling parameter 

 can be derived from experimental results from 
Faccinetti et al.[13]. Under the acceleration coupling 
model, the value of 

A

	  is set as 0.3 according to a 
best-fitting on the lock-in bands for synchronization of 
vortex shedding with transverse cylinder vibration. 
The value of the combined parameter / =A 40	  is 
proposed from a least-square interpolation between 
lift magnification and the imposed structure motion 
amplitude, thus setting 12A 
 . By introducing di- 
mensionless mass ratio 2D= /m� � , dimensionless 
time = ft T�

= /z Z
, transverse displacement 

and span position , the coupled fluid-stru- 
cture dynamical system Eqs.(1) and (3) turn to be 
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The dimensionless damping � , tension , bending 
stiffness  and mass number 

c
b M  are given by 
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The cylinder model is pin-ended, and hence defle- 
ctions and curvatures are equal to zero at each end, 
giving the following boundary conditions: 

(0, ) = 0y t ,
2

2

(0, ) = 0y t
z

�
�

, t
         (6a)

(1, ) = 0y t ,
2

2

(1, ) = 0y t
z

�
�

, t
               (6b)

1.2 The variation of top tension 
For a pin-ended cylinder towed in a water tank, 

the applied axial tension is in fluctuation due to 
in-line and cross-flow vibrations. Using Hooke’s law, 
a mean tension can be defined as 

aT

meanT

mean = +ini c
LT T EA

L
�                       (7)

where is initial tension force, ,
and  denote initial length and instantaneous length 
of the cylinder model, respectively, and 

iniT =L S L� �

c

L
S

A  the wall 
cross section area. For long flexible cylinder, the de- 
flection induced by drag force is much greater than lift 
force, therefore the elongation is mainly induced by 
drag force, and the approximate relation reads 

2

0
= 1 d

L
S Y ��� Z                        (8)

For small deflections, Y  is sufficiently small to 
allow Eq.(8) to be approximated as 

�

2

0

1= 1+ d
2

L
S Y� ��� �

� �� Z                   (9)

Simplify the equation yields 

2

0

1=
2

L
L Y �� � d Z                        (10)

For a pin-ended beam, an analytical solution can be 
found if deflection shape is represented by a sine 
series

4 2

mean4 2

=
+

sinP ZY
LEI T

L L
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              (11)

where P  is external force exerted perpendicularly on 
the model. Here only deflection induced by drag force 
is considered, and therefore, P  can be approxima- 
tely expressed as 

21=
2 DP U DC�                           (12)

The mean tension, related to flow velocity , is 
finally obtained by combining Eqs.(7), (10), (11) and 
(12)

U

2 2

mean 2
mean

( )
=

16( + )
c D
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EA U DC L

T T
EI T L
�

�
� 2             (13)
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while the norm is evaluated to yield 

1=
2iN , = 1, 2, 3,i �                    (20)

The eigenvalue problem (14) allows the definition of 
the following integral transform pairs: 

1

0
= (( , )( ) ) di iy z yt z�� � t z , transform          (21a)

=1
( ( )) = ), i i

i
y z zt �

�

� � (ty , inversion            (21b)

Fig.2 Overall layout of the VIV experiment with the carriage 
speed of 0.3 m/s-2.4 m/s at Marintek[1] where  is the normalized eigenfunction ( )i z��

1/ 2=
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( ) ( )2i
i

iN
zz i z

�
� 
� �                    (22) 2. Integral transform solution 

Following the ideas in the GITT, the next step is 
that of selecting eigenvalue problem and proposing 
eigenfunction expansion. The eigenvalue problem for 
transverse displacement  of the cylinder 
model is chosen as 

( , )y z t
The reduced lift coefficient  of the cyli- 

nder model is chosen as 
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Together with the following boundary conditions 
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2
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where  is the eigenfunction of problem (14) 
corresponding to the eigenvalue 

( )i z�

i� , satisfying the 
following orthogonality property 

where  is the eigenfunction of problem (23), 
and

( )k z�

k�  the corresponding eigenvalue. Then the same 
mathematical manipulation is carried out as for 
Eqs.(15)-(20), and the eigenvalue problem (23) allows 
the definition of the following integral transform pairs, 
where  is the normalized eigenfunction. ( )k z��

1

0
= ( ) ( ,( ) )dk kq z qt z�� � t z , transform          (24a) 
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0
( )( ) d =i j ijz zz� � �� iN                   (16)

=1
( , ) = ( ) ( )k k

k
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where with ij�  is the Kronecker delta. The norm, or 
normalization integral, is written as 

1 2

0
)= (i i zN �� dz

i

                          (17)

Problem (14) is readily solved analytically to 
yield 

Now, to perform integral transform process, the 
dimensionless form of Eq.(4) are multiplied by opera- 

tor  and , respectively, the in- 

verse formula (21) and (24) are applied, yielding, after 
some mathematical manipulations, the following set 
of ordinary differential equations: 
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able 1 The main parameters of VIV experiments performed by Trim et al.[1]T

Total
length, 
L  (m)

Outer Inner Bending 
d , d ,iameter

D  (m)
iameter
d  (m)

stiffness, 
EI  (Nm2)

Mass 
ratio, 
�

Aspect
ratio, 
 

T po  
tension,

Flow

(m/

Reynolds Damping
ratio, !

aT  (N)
speed, 

U
s)

number,
Re

38 0.027 0.021 37.2 1.62 1 407 4 000-6 000 8 100-648 00 0.010.3-2.4

2

2
=1 =1 =1

d ( ) d ( )
+ ( ) ( )

d
k

klrs l r
l r s

q t q t
R q t q t

t
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d

s

t

2

2
=1

( ) d ( )
+ ( ) =

d
k

k ki
i

dq t y t
q t A S

dt t
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                    (25b)

here the coefficients are analytically determined 

= 1, 2, 3,k �

w
from the following integrals: 
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In a similar manner, the boundary conditions are 
also
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The equation system (25) is now in the appro- 
priat

lift coefficient  are then truncated to 

e form for numerical solution through dedicated 
routines for initial value problems, such as the Adams- 
Moulton and Gear method (DIVPAG) from Interna- 
tional Mathematics and Statistics Library (IMSL), 
which are well-tested and capable of handling such 
situations, offering an automatic accuracy control 
scheme, and for this problem the error 10–6 is sele- 
cted. For this computational purpose, the expansions 
for the transverse displacement ( , )y z t  and reduced 

( , )q z t N

ts
orders, so as to reach the user requested accuracy 
target in the fina ion. The related coefficien  
given by Eq.(26) are also handled well through IMSL 
Library. Once 

l solut

( )iy t  have been numerically evalua- 
ted, the analytical inversion formula (21) recovers the 
dimensionless fu n ( , )y z t .nctio

d discussion 

riments on

om no

3. Results an

ion, numerical sim
wed riser model in

by e

3.1 Case study
To validate the GITT solut ula- 

 uni- tion of the expe
form

 a to
 flow conducted by Trim et al.[1] is carried out. 

The experimental investigation was performed at the 
Marintek Ocean Basin in Trondheim. The overall lay- 
out of the experiments is shown in Fig.2. The riser 
model was 38 m in length and 0.027 m in diameter 
with an aspect-ratio of 1 407. It was equipped with a 
dense array of high-quality instrumentation, and the 
flow profile was uniform stepped from 0.3 m/s to  
2.4 m/s with an increasing step of 0.1 m/s. The sum- 
mary of main parameters of the experiments is given 
in Table 1. 

We now present numerical results for transverse 
displacement ( , )Y Z T  of the long flexible cylinder 

mploying the GITT approach. For all initial con- 
ditions, a rand ise with amplitude of order 

3(10 )O �  is applied to fluid variable q [16]. Zero y
and y�  initial conditions are applied to the structure. 

ed mass coefficient The add MC  is endent o  
flow elocity, cylinder vibration amplitude, etc.. 
Hence, it is difficult to evalu lue. The constant 
value of = 1.0MC  is taken as was done by Ge et 
al.[10,12]. The coefficient 

dep n
v

ate its va

LC  is usually taken as 0.3 in 
 range of the large Re , and DC  is set as for a 

rigid cylinder at the subcritical range, 300 < <
1.2

Re
1.5×105[10,1 . For a cylinder undergoing vibration, 
the Strouhal number is set as 0.17. This value r 
than the usually-quoted 0.2, but has been found to 
apply for moving cylinders[1].

The solution of system (25) is obtained with 
maximum truncation order =N 50 to analyze the 
conv

2,13]

 is lowe

ergence behavior.  
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ig.3 TF ime history of GITT solutions with truncation order =N 40 at (a) Time history of displacement-to-diameter= 1.0 m / sU
e spanwise diratio of the whole run at 5 equidistant space interv ng th rection of the cylinder, (b) Time history of 

displacement-to-diameter ratio in a time interval [15,17] sT
al alo

$ , (c) Spectral analysis of (b) 

ig.4 GITT solutions with different truncation orders F N  for 

The typical time histories and response freque- 
ncies

s of second c
vibration of displacement arrives at a stable state after 

10 s. Only one peak of vibration frequency appears in 

ig.5

the time history of displacement-to-diameter r o at 
= 0.4 m /sU

ati

 are shown in Fig.3, at = 1.0 m / sU  for the tru- 
ncation order = 40N . The  is the time 
history of displac t-to-diameter ratio of the whole 
run at 5 equidistant space interval along the spanwise 
direction of the cylinder, the second column is time 
history of displacement-to-diameter ratio in a time in- 
terval [15,17] sT $ , and the third column is spectral 
analysi olumn. It can be observed that the 

each result of the spectral analysis, which means that 
there is a unique mode contributing to the response. 

 first column
emen

F GITT solutions with different truncation orders N  for 
 at 

solution is exam ed by increasing truncation orders 
10, 20, 30, 40 and 50. The time traces of 

the time history of displacement-to-diameter 
= 1.0 m / sU

ratio

The convergence behavior of integral transform 
in

=
0.4
N =U

m/s at [49.0, 50.0] sT $  and = 1.0 m / sU  at 
[19.0, 20.0] sT $  are shown in Figs.4 and 5. For tran- 

sverse displacements with = 0.4 m / sU  and =
1.0 m/s, the con te fav on- 

U
vergence is qui orable, dem
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strated by time t
ould  ou

ig.6

races of = 40N  and = 50N  being 
nearly overlapped. However, it pointed t 
that very low truncation orders may not capture actual 
displacement, such as the one in ig.5 wi h = 10.

 sh

 F

 be 

t N

F GITT solutions with different truncation orders N  for 

ig.7

rms of displacement-to-diam io at eter rat

iffere

= 0.4U

rders

m / s

F GITT solutions with d nt truncation o N  for 

ig.8 R bration 

se dis- 

analy ode 
um

table st e o

ig.9

mod  by the proposed approach and 
ose reported by Ge et al.[10] is performed to verify 

the a

rms of displacement-to-diameter ratio at = 1.0U m

d

/ s

F esonant frequency of the flexible cylinder v
versus towing speed 

The root mean square (rms) of the transve

i

r

plitude and m

numbers 

placement in a time interval is popularly used in VIV 
sis to evaluate vibration am

ate an

n bers. Figures 6 and 7 depict the rms of transverse 
displacements at = 0.4 m / sU and = 1.0 m / sU , re- 
spectively. Note that with increasing truncation order 
N , the rms values along the cylinder spanwise dire- 
ction approach a s d mod  not 

change at the higher truncation orders. 

F Dominant mode number of the flexible cylinder vibration
versus towing speed 

The comparison of the resonant frequencies and 
e numbers obtained

th
ccuracy of GITT solution, as shown in Figs.8 and 

9. Most of resonant frequencies from GITT solution 
are in good agreement with those from the FDM[10]

and experiments[1]. The resonant frequencies are 
higher about 10% compared with the measuring fre- 
quencies at higher flow velocity. As for the prediction 
of mode numbers, the results from GITT show good 
agreement with the measuring mode numbers when 
flow velocity is lower than 1.6 m/s. Above the value 
of 1.6 m/s, the prediction of mode numbers is overe- 
stimated by the factor 1-3, which may result from in- 
sufficient consideration of structural model, such as 
the effect of variable added mass coefficient and mean 
axial tension. The added mass coefficient is dependent 
on various factors, such as flow velocity and cylinder 
vibration amplitude. Hence it is difficult to evaluate 
this value accurately. The influence of mean axial ten- 
sion will be detailedly discussed in Subsection 3.2. 

Figure 10 indicates the instantaneous displace- 
ments in one period within time interval 0.0126 s at 

= 0.4 m / sU  (the first row), 0.0072 s at U =

sta-
spe

0.7 m

stantaneous m
nding wa
ctively. 

/ s  (the second row) and 0.0034 s at =U
1.5 m / s  (the third row), respectively. The stable in- 

ode shapes show clearly standard  
ves with mode numbers of 3, 5 and 8, re - 

Although multi-modal VIV was observed in 
some tests such as those by Trim et al.[1] and Chaplin 
et al.[3], the dynamic response was still dominated by 
one mode number. The present result depicts that the 
vibration of cylinder is locked on pure single modal 
rather than multi-modal one, hence it could not repre- 
sent full information of multi-modal VIV. Neverthe- 
less, this single modal should be the dominated mode 
number which has much greater energy than other 
mode numbers. The maxima amplitudes ( / )MY D  of 
transverse displacements are shown in Fig.11, as well
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ig.10 Instantane (the first row), 
0.0072 s at (the second row) and 0.0034 s at (the third row) 

ig.11 le riser 

 t plitudes increase slightly as 

 relation between mean axial tension and 
lidated by compa- 

F ous displacements of the flexible riser in one period with time interval 0.0126 s at = 0.4 m / sU
= 0.7 m / sU = 1.5 m / sU

F  Maximum vibration amplitudes of the flexib
versus towing speed 

as the comparison with measurement data. It can be 
hat maximum amseen

flow velocity increases, which are around 10% larger 
than the amplitudes of the corresponding experimental 
results.

3.2 Influence of mean axial tension 
The

flow velocity given by Eq.(13) is va
rison with the experimental data[26], as shown in 
Fig.12, where rU  is the reduced velocity defined by 

= ( ) /r nU UD f , where nf  is the fundamental natural 
frequency. The dashed lines are calculated by Eq.(13), 

ction 3.1. he values of the mean axial 
tension increase from initial 6 000 N to 10 625 N as 
flow velocity arrives at its maximum value of 2.4 m/s. 

The effect of the mean axial tension on the dyna- 
mic response of flexible cylinder is investigated. 
Figure 14 shows the plots of model numbers versus 
flow velocity with different applied axial tensions. 
The line with triangle symbol represents the FDM re- 

and good agreements can be ure 13 depi- 
l tension 

 observed. Fig
cts the mean axia variation of the case consi- 
dered in Subse  T

sults with the constant axial tension of 5 000 N simu- 
lated by Xu et al.[15], the line with the diamond symbol 
represents the GITT solution considering the constant 
axial tension of 6 000 N, and the line with the square 
symbol represents the GITT simulations with variable 
mean axial tensions based on the Eq.(13). 

In Fig.14, it can be observed that at the flow 
velocity 1.1 m / sU � , GITT solutions have good 
agreement with experimental results by considering 
whether or not the variation of mean axial tension. 
However, when 1.1 m / sU % , the mode numbers ob- 
tained by ith the variation of mean axial 
tension give more accurate information. The pheno- 
menon can be explained by the fact that the mean 
axial tension doe  n h nge too much at the low- 
flow-velocity range, as shown in Fig.13, therefore, a 
constant mean axial tension can be adopted to appro- 
ximately simulate the real case. When the flow

 the GITT w

s ot c a
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ig.12 Comp

ig.13 Mean axial tension obtained by Eq.(13) for the experi- 
ment carried out by Trim et al.[1]

ion fails n exactly. From 

 results than the one given by Xu et
al.  which did not consider the axial tension varia- 

ig.14  vibra- 

l 

ig.9

F arison of the mean axial tension obtained by Eq.(13) and from experiments 

the experimental
[15]

F

velocity is quite higher, the constant mean axial ten- 
 to represent the top tensios

the theory of vibration, we know that an increased 
axial tension can increase natural frequency of cyli- 
nder model at a specific mode number. To excite stru- 
cture to yield the same mode number, the frequency of 
excitation (i.e., the vortex shedding frequency) needs 
to increase correspondingly, which means a higher 
towing speed should be applied. In other words, when 
towing speed is not changed, the frequency of excita- 
tion only can be “controlled” at a lower mode number, 
which explains why the mode number does not increa- 
se linearly with towing speed increasing. Besides, it 
shows that both the GITT solutions agree better with 

tion.

F  Dominant mode number of the flexible cylinder
tion versus towing speed 

However, the prediction of mode numbers is stil
overestimated by a factor 1-3 through the GITT app- 
roach when flow velocity 1.6 m / sU %  as shown in 
F . In addition to the uncertainty of added mass, the 
underestimate of mean axial tension at high flow velo- 
city may be another reason. Although Fig.12 shows 
good simulation of top ten 3), there still 
exists a microscopic underestimate of mean axial ten- 
sion when = 810 NiniT  and = 1175 NiniT . As for 
the present case, the mean axial tension may be grea- 

sion by Eq.(1
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ter than the one obtained from Eq.(13) as shown in 
Fig.13, espec 1.6 m / s ,
which can induce the overestimate of prediction of 
mode numbers by a factor 1-3. Hence, the prediction 
of mode numbers is quite sensitive to th l 
tension. 

4. Conclusions 
In this 

ially when flow velocity 

paper, a GITT has been 
lution of VIV prediction of a long fle

r oscillator. The an

thors acknowledge gratefu
pport provided by CNPq, CAPES and

rch work. Gu Ji-j
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rimental investigation of vortex-induced vibration of 

arine risers[J]. Journal of Fluids and Structu- 
, 21(3): 335-361. 

f Fluids and Structures,

[5]

tures, 2004, 19(4): 467-489. 

0, 26(7-8): 1098-1122. 

[11]

s with Applications, 2010, 60(3): 520- 

[12] 

 330-338. 

123-140.

U %

e mean axia

proposed for the
xible cylinder

alysis of converge-

lly financial
 FAPERJ of 

un and An Chen

et al. A. Expe- 

so
using a nonlinea
nce behavior and comparisons between experimental 
results and numerical simulation has shown that this 
hybrid numerical-analytical approach is adequate to 
deal with such nonlinear coupling system. The follo- 
wing conclusions can be drawn: 

(1)The generalized integral transform technique 
exhibits good convenience behavior as the truncation 
order approaches 50. 

(2)The solution from GITT of wake oscillator 
model is capable of evaluating multi-mode lock-in re- 
sponse, dominant resonant frequencies and mode 
numbers, which are in good agreement with the FDM 
and experimental results. 

(3)The program evaluates instantaneous displace- 
ment with standard standing waves, and the maximum 
amplitudes are around 10% larger than the amplitudes 
of the corresponding experimental results. 

(4)The increase of mean axial tension can de- 
crease the mode number of response, and the relation 
with initial axial tension is yielded as Eq.(13), there- 
fore, its variation induced by elongation of flexible 
cylinder cannot be neglected in such numerical simu- 
lation. 

This investigation verifies that the proposed 
GITT approach can be performed in dynamic response 
of string-like structures coupled with environmental 
loads, such as current, wind or waves in offshore. Due 
to the simplicity of wake oscillator model, all results 
presented in this paper require a short period of com- 
putational time, which is more practicable than CFD 
methods. 
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