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Dynamic  response  of  pipe  conveying  fluid  was  studied  numerically.
The  generalized  integral  transform  technique  (GITT)  was  applied.
Numerical  solutions  with  automatic  global  accuracy  control  were  obtained.
Excellent  convergence  behavior  was  shown.
Modal  separation  analysis  was  carried  out  and  the  influence  of mass  ratio  was  analyzed.
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a  b  s  t  r  a  c  t

Analysis  of  dynamic  response  of pipe  conveying  fluid  is  an  important  aspect  in nuclear  power  plant
design.  In  the  present  paper,  dynamic  response  of  a clamped–clamped  pipe  conveying  fluid was  solved
by  the  generalized  integral  transform  technique  (GITT).  The  governing  partial  differential  equation  was
transformed  into  a set  of  second-order  ordinary  differential  equations  which  is  then  numerically  solved  by
making use  of  the  subroutine  DIVPAG  from  IMSL  Library.  A  thorough  convergence  analysis  was performed
to yield  sets  of  reference  results  of  the  transverse  deflection  at different  time  and  spanwise  position.  We
eywords:
ipe conveying fluid
luid–structure interaction
nternal fluid
lamped–clamped pipe

ntegral transform
odal analysis

found  good  agreement  between  the  computed  natural  frequencies  at mode  1–3  and  those  obtained  by
previous  theoretical  study.  Besides,  modal  separation  analysis  was  carried  out  and  the  influence  of  mass
ratio on  deflection  and  natural  frequencies  was  qualitatively  and  quantitatively  assessed.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Pipes conveying fluids are essential parts of a nuclear power
lant. Flow-induced vibration of such pipes is a major concern for
esign, operation, maintenance, and safety analysis of a nuclear
ower plant. A fluid flowing in a pipe may  exert forces on the pipe
all, deflect the pipe, cause vibration, and eventually result in

ong-term fatigue failures. Analysis of dynamic response of a pipe
xcited by internal flowing fluid is an important aspect in the design
f nuclear power plants, since vibrations related to fluid–structure

nteraction may  lead to pipe rupture and thus possible accidents.
he main consideration might focus on the natural frequency and
ode shapes of pipe, as well as the critical fluid velocity. The

∗ Corresponding author. Tel.: +55 21 2562 8448; fax: +55 21 2562 8444
E-mail addresses: sujian@nuclear.ufrj.br, sujian@lasme.coppe.ufrj.br (J. Su).

029-5493/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.nucengdes.2012.09.018
accurate prediction of natural frequencies and mode shapes of a
pipe will help select the proper support locations, which could
reduce the occurrence of fatigue-related pipe failures. Meanwhile,
a critical fluid velocity will cause system instability, which would
induce the pipes fail suddenly in a short time duration.

Various aspects of the dynamic characteristics of pipes convey-
ing fluid have been extensively studied (Ibrahim, 2010, 2011), as
well as cantilevered pipe conveying fluid (Païdoussis et al., 2002,
2007; Lopes et al., 2002; Semler et al., 2002; Wadham-Gagnon et al.,
2007; Modarres-Sadeghi et al., 2007). In the nuclear engineering
fields, Kang (2010) studied the effects of rotaty inertia of concen-
trated masses on the natural vibrations of a fluid-conveying pipe
by theoretical modeling and numerical calculations. Sinha et al.

(2005) derived a combination of a linear and a non-linear opti-
mization methods for the prediction of the flow-induced excitation
forces and the structural response at each measured frequency all
along the pipe length. Huang et al. (2010) investigated the natural

dx.doi.org/10.1016/j.nucengdes.2012.09.018
http://www.sciencedirect.com/science/journal/00295493
http://www.elsevier.com/locate/nucengdes
mailto:sujian@nuclear.ufrj.br
mailto:sujian@lasme.coppe.ufrj.br
dx.doi.org/10.1016/j.nucengdes.2012.09.018
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Nomenclature

Aij integral transformation coefficient
Bij integral transformation coefficient
EI flexural stiffness
f dimensionless natural frequency
i index
j index
L length of the pipe
mf mass of the fluid
mp mass of the pipe
N truncation order
Ni normalization integral
t dimensionless time
T time
u dimensionless flow velocity
ucd dimensionless critical flow velocity
U flow velocity
y transformed lateral deflection of the pipe
y dimensionless lateral deflection of the pipe
Y lateral deflection of the pipe
z dimensionless axial coordinate
Z axial coordinate

Greek symbols
ˇ  mass ratio
ı  coefficient
� eigenvalue
� eigenfunction
�̃ normalized eigenfunction
ω natural angular frequency

Acronyms
DTM Differential Transformation Method
DQM Differential Quadrature Method
FDM Finite Difference Method
FFT Fast Fourier Transform
GITT Generalized Integral Transform Technique
HPM Homotopy Perturbation Method
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IMSL International Mathematics and Statistics Library

requency of pipe conveying fluid with different boundary condi-
ions. Li et al. (2011) analyzed free vibration of multi-span pipe
onveying fluid by dynamic stiffness method. Zhai et al. (2011)
nalyzed the dynamic response of pipeline conveying fluid under
andom excitation.

For numerical simulation of dynamic response of a beam or
ipe, many different methods have been applied. Galerkin method

s used widely to deal with this linear differential equation prob-
ems, see Lopes et al. (2002), Wadham-Gagnon et al. (2007),

odarres-Sadeghi et al. (2007) and Huang et al. (2010).  Besides,
any other numerical methods have been proposed, such as

ifferential transformation method (DTM) implemented by Ni
t al. (2011) to analyze vibration of pipes conveying fluid, pre-
ise integration method (PIM) performed by Liu and Xuan (2010)
o analyze supported pipes conveying pulsating fluid, as well as
omotopy perturbation method (HPM) (Xu et al., 2010) and dif-

erential quadrature method (DQM) (Lin et al., 2007; Qian et al.,
009). However, there are no previous study endeavored to per-
orm vibration analysis of a clamped–clamped pipe conveying

uid based on generalized integral transform technique (GITT)
pproach. This approach, with its intrinsic characteristic of finding
olutions with automatic global error control (Cotta, 1993, 1998;
otta and Mikhailov, 1997), opened up an alternative perspective
Fig. 1. Pipe conveying fluid with clamped–clamped boundary condition.

in benchmarking and covalidation for such dynamic response prob-
lems. Ma  et al. (2006) applied GITT to solve a transverse vibration
problem of an axial moving string, An and Su (2011) performed GITT
to analyze dynamic response of clamped axially moving beams, and
convergence behavior of integral transform solution was examined.
At the present stage, GITT methodology was already success-
fully employed in the solution of bending problem of clamped
orthotropic rectangular plates (An et al., 2011). The resulting sys-
tem of transformed functions then offered an ordinary differential
equation system as a boundary value problem, due to the parabolic
nature of the modelling equations. Following the same line of
research, the present work is thus aimed at utilizing the ideas
in GITT methodology to construct a hybrid analytical–numerical
solution, now for dynamic response of a clamped–clamped pipe
conveying fluid. By adopting the same fourth-order eigenvalue
problem, the transformed functions system results in an initial
value problem to be numerically solved along the axial coordinate.
The main purposes are: (1) computation of deflection and natu-
ral frequencies at several modes for various values of internal flow
velocity and mass ratio, following a thorough convergence analysis
of eigenfunction expansions; (2) critical comparisons with earlier
published works for a covalidation against the present GITT results.
This contribution will benefit the dynamic analysis of flow-induced
vibrations on the design and maintenance of nuclear power plants.

2. Analysis

Consider an elastic pipe conveying fluids of a constant velocity
U, as shown in Fig. 1. If gravitational forces, internal damping, exter-
nally imposed tension and pressurization effects are neglected, the
linear equation of transverse motion Y(Z, T) is given by Lee and Mote
(1997a,b)

2 2 2 4
(mf + mp)
∂ Y

∂T2
+ 2mf

∂ Y

∂Z∂T
+ mf U2 ∂ Y

∂Z2
+ EI

∂ Y

∂Z4
= 0,

Z ∈ (0,  L), (1)
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here mf and mp are mass densities of the fluid and pipe, L is
he length of the pipe, and EI is the flexural stiffness of the pipe.
ntroducing the following dimensionless variables

 = Y

L
, z = Z

L
, t = EI

(mf + mp)
T

L2
, u =

√
mf

EI
UL,  ˇ= mf

mf + mp
.

(2)

q. (1) can be written in dimensionless form as

∂2
y

∂t2
+ 2

√
ˇu

∂2
y

∂z∂t
+  u2 ∂2

y

∂z2
+ ∂4

y

∂z4
= 0, z ∈ (0,  1). (3)

he dimensionless boundary conditions are given as follows:

(0, t) = 0, y(1, t) = 0,
∂y(0, t)

∂z
= 0,

∂y(1,  t)
∂z

= 0 (4)

ith initial conditions defined as follows:

(z, 0) = 0,
∂y(z, 0)

∂t
= O(10−3) random noise, (5)

here O(10−3) represents a random noise. These initial conditions
re usually adopted to analyze dynamic transverse vibration of a
lender pipe, see Violette et al. (2007).

. Integral transform solution

Following the ideas in GITT, the next step is that of selecting
igenvalue problems and proposing eigenfunction expansions. The
igenvalue problem for transverse displacement y(z, t) is chosen as
xpression (6):

d4�i(z)
dz4

= �4
i �i(z), 0 < z < 1 (6)

ith the following boundary conditions

�i(0) = 0, �i(1) = 0,
d�i(0)

dz
= 0,

d�i(1)
dz

= 0, (7)

here �i(z) is the eigenfunction of problem (6),  �i is the cor-
esponding eigenvalue, they satisfy the following orthogonality
roperty

1

0

�i(z)�j(z) dz = ıijNi (8)

ith ıij = 0 for i /= j, and ıij = 1 for i = j. The norm, or normalization
ntegral, is written as

i =
∫ 1

0

�2
i (z) dz. (9)

The selection of eigenfunction is computed based on the aux-
liary eigenvalue problem with the boundary condition satisfied,
ven for some complex cases (Su, 2006). Then problem (6) is readily
olved analytically to yield the eigenfunction

i(z) =

⎧⎪⎨
⎪⎩

cos[�i(x − 0.5)]
cos(�i/2)

− cosh[�i(x − 0.5)]
cosh(�i/2)

for i odd,

sin[�i(x − 0.5)]
sin(�i/2)

− sinh[�i(x − 0.5)]
sinh(�i/2)

for i even,

(10a,b

here the eigenvalues are obtained from the transcendental equa-

ions:

anh(�i/2) =
{

− tan(�i/2) for i odd,

tan(�i/2) for i even.
(11)
 Design 254 (2013) 237– 245 239

The eigenvalue problem (6) allows definition of the following inte-
gral transform pair⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yi(t) =
∫ 1

0

�̃i(z)y(z, t) dz, transform

y(z, t) =
∞∑

i=1

�̃i(z)yi(t), inversion,

(12a,b)

where �̃i(z) is the normalized eigenfunction

�̃i(z) = �i(z)

N1/2
i

. (13)

Now, the next step is thus to accomplish the integral transfor-
mation of the original partial differential system. For this purpose,
Eq. (6),  followed by the boundary conditions given by Eq. (7),  are

multiplied by
∫ 1

0
�̃i(z) dz, integrated over the domain in z [0,1], and

the inverse formula given by Eq. (12b) is employed. After the usual
manipulations, the following coupled ordinary differential system
results, for the calculation of the transformed y(t):

d2yi(t)
dt2

+ 2
√

ˇu

∞∑
j=1

Aij
dyi(t)

dt
+ u2

∞∑
j=1

Bijyi(t) + �4
i yi(t) = 0,

i = 1, 2, 3, . . . , (14)

where the coefficients of the ordinary differential system are given
by the following expressions:

Aij =
∫ 1

0

�̃i(z)
d�̃j(z)

dz
dz, Bij =

∫ 1

0

�̃i(z)
d2�̃j(z)

dz2
dz. (15)

The boundary conditions are naturally satisfied by the eigen-
functions. The initial conditions are also integral transformed to
eliminate the spatial coordinate, yielding

yi(0) = 0,
dyi(0)

dt
=

∫ 1

0

�̃i(z)
∂y(z, 0)

∂t
dz, i = 1, 2, 3, . . . (16)

System (14) is now in an appropriate form for numerical solution
through dedicated subroutines for initial value problems. The sub-
routine DIVPAG from IMSL Library (IMSL, 2003) is well tested and
capable of handling such problems, offering automatic accuracy
control, and for this problem the error tolerance 10−6 is selected.
For computational purpose, the expansions are then truncated to
N orders, so as to reach the user established accuracy target in final
solution. The related coefficients given by Eq. (15) are also handled
through IMSL Library. Once yi(t) have been numerically evaluated,
the analytical inversion formula (12b) is recalled to recover the
dimensionless function ỹ(z, t).

4. Results and discussion

The typical time histories and response frequencies are shown in
Fig. 2, with dimensionless parameters u = 4.5,  ̌ = 1.0, and truncation
order N = 64. The first column is dimensionless time history of y of
the whole run at 5 equidistant space interval along the pipe, the
second column is dimensionless time history in a interval t ∈ [15,
17], the third column is the spectral analysis of second column. As
shown in the first column, the vibration of the displacement keeps
in long-term stability, and the second column demonstrated more
clearly a fairly stable vibration. Several peaks of vibration dimen-
sionless frequency appeared in spectral analysis, which indicates

the mode shape have multi-mode contributions.

The convergence behavior of integral transform solution is
examined for increasing truncation orders N = 4, 8, 16, 32and64, the
instantaneous deflections at dimensionless time t = 11 are shown in
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Fig. 2. Time history of simulation at N = 64, u = 4.5,  ̌ = 1.0. First column: dimensionless time history of transverse dimensionless deflection of the whole run at 5 equidistant
space interval along the pipe; second column: dimensionless time history in a dimensionless time interval t ∈ [15, 17]; third column: spectral analysis of second column.
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ig. 4. GITT solutions with different truncation orders N for dimensionless time
istory y(z, t) at u = 4.5,  ̌ = 1.0.

ig. 3 with a combination of dimensionless flow velocity u = 1.5, 4.5
nd mass ratio  ̌ = 0.5, 1.0. It can be observed that when N � 16,
ITT solutions present a perfect convergence in the plots where

hese lines are nearly overlapped. Figs. 4–6 illustrate the conver-
ence of dimensionless time trace in an interval t ∈ [10, 13] with a
ombination of u = 1.5, 4.5 and  ̌ = 0.5, 1.0. It is noticed that the con-
ergence is quite favorable. However, it should be pointed out that
ery low truncation orders may  not capture actual displacement,
uch as the one in Fig. 3 with N = 4 and 8.

From FFT analysis shown in the third column of Fig. 2, the
ulti-mode contribution is captured. It is convenient to perform
odal analysis by GITT since the solution is in form of eigenfunc-

ion expansions. Fig. 7 shows the mode contribution from 1 to 5
t u = 4.5,  ̌ = 1.0, with truncation order N = 64. It is clearly seen
hat the maximum deflections decreases when the mode num-
er increases, and the deflection at mode 1 has a same vibration
mplitude scale with the original one, which means the origi-
al deflections are dominated by mode 1, confirmed also by the
ower energy of FFT analysis shown in Fig. 2. Actually, the vibra-
ion amplitude approaches to 0 when truncation term N approaches

o infinity, illustrating the excellent convergent behavior.

Figs. 8 and 9 present modal separation of dimensionless time
race in an interval t ∈ [15, 17] and u = 4.5,  ̌ = 1.0, truncation order

 = 64, at spanwise position z = 0.5 and 0.16, respectively. It depicts
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ig. 5. GITT solutions with different truncation orders N for dimensionless time
istory y(z, t) at u = 4.5,  ̌ = 0.5.
Fig. 6. GITT solutions with different truncation orders N for dimensionless time
history y(z, t) at u = 1.5,  ̌ = 0.5.

that mode 2 and 4 have zero amplitudes when z = 0.5, which can be
verified in the Fig. 8, since z = 0.5 is the midpoint which keeps still
at mode 2 and 4. The second column shows the clear dominated
dimensionless frequencies of each mode. When z = 0.16, spectral
analysis presents clearly the multi-mode contributions, and natural
frequency at each mode can be easily obtained.

We now proceed towards the validation of proposed approach
against previously reported results in literature. Here, we defined
dimensionless natural angular frequency ω = 2�f, where f is dimen-
sionless natural frequency. A comparison of variations of ω at mode
1–3 with increasing u between GITT and theory (Païdoussis, 1998)
are illustrated by Fig. 10,  which shows that ω decreases with the
increasing of u, and ω at mode 1 is approaching 0 as u is approaching
2�. The value 2� is defined as a critical internal flow velocity ucd of
the pipe with a clamped–clamped boundary condition by theoret-
ical analysis (Païdoussis, 1998), when u < ucd, the eigenfrequencies
are all purely real, whilst for u > ucd those associated with the first
mode are purely imaginary, which means the system loss stabil-
ity. Our GITT solution presents a divergence when u > ucd, which
verifies the critical velocity. Besides, it can be seen that numerical
results obtained in present work agree very well with theoretical
predictions by Païdoussis (1998).

The maximum vibration deflection increases as the flow veloc-
ity increases, which is verified by experiment Guo and Lou (2008).
However, the variation of deflection versus flow velocity was not
qualitatively and quantitatively evaluated. GITT is used here since
it is convenient to analyze dynamic response of pipe conveying
fluid both at frequency and time domain. Fig. 11 presents deflection
ratio yM/y∗

M versus u at  ̌ = 0.1, where yM and y∗
M denote maximum

deflections when u /= 0 and u = 0, respectively. It is seen that when
u increases from 0 to 5, yM/y∗

M increases slowly from 1 to 1.5, but
when it increases from 5 and approaches to critical velocity 2�,
yM/y∗

M increases exponentially from 1.5 to 6. This phenomenon
depicts that the influence of internal flow velocity has a dramatical
increase when u approaches the critical flow velocity, which should
be careful in pipe design.

Finally, we consider the influence of mass ratio  ̌ on dynamic
responses of pipe conveying fluid. Païdoussis (1998) evaluated
the influence of mass ratio on the critical velocity to yield a map
of different kinds of instabilities predicted by linear theory for
clamped–clamped pipes. However, the maximum vibration deflec-

tion and natural angular frequencies under different mass ratios
are also valuable to engineers. Fig. 12 presents yM/y∗

M versus ˇ, at
u = 4.5. It is observed that the yM/y∗

M decreases linearly from 1 to
0.865 when  ̌ increases from 0 to 1. The variation of dimensionless
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From the excellent agreement of the present results with previ-
ously theory shown above, the solution of GITT could be considered
as the exact solution. To clarify the so-called “exact solution”, it is

necessary to make final remarks about the nature of the proposed
approach. Each term of �̃i(z) and yi(t) satisfies boundary condi-
tions, besides, there is no approximation involved in the analytical

0

1

2

0

1

2

−1

0

1

0

1

2

−1

0

1

17 0 10 20 30 40 50
0

0.2

0.4

(b)  f

rval t ∈[15, 17] at u = 4.5,  ̌ = 1.0, truncation order N = 64, spanwise position z = 0.5.



J. Gu et al. / Nuclear Engineering and Design 254 (2013) 237– 245 243

−1

0

1

O
rig

in
al

 y
 (

10
−

3 )

0

0.5

−1

0

1
m

od
e 

1
 y

 (
10

−
3 )

0

0.5

−5

0

5

m
od

e 
2

 y
 (

10
−

4 )

0

1

2

−5

0

5

m
od

e 
3

 y
 (

10
−

4 )

0

1

2

−2

0

2

m
od

e 
4

 y
 (

10
−

4 )

0

0.5

1

15 16 17
−1

0

1

m
od

e 
5

 y
 (

10
−

4 )

(a)  t 
0 10 20 30 40 50

0

0.2

0.4

(b)  f

F e inte

d
t
t
b
s
u
fi
m
t
b
a

F
l

ig. 9. Mode separation of dimensionless time history y(z, t) in a dimensionless tim

erivation of GITT approach, the problem solution represented by
he summation of a rapidly converging infinite series (12b) simul-
aneously satisfies the governing differential equation (3) and the
oundary conditions (4).  In real calculations, the derived series
olution needs to be truncated somewhere for computational eval-
ation. In other words, the problem can only be dealt with through
nite series instead of the infinite range in the analytical for-
ulation. Therefore, the exact solution can be characterized as a

runcated series solution with the desired precision, which can

e achieved by controlling every numerical step with prescribed
ccuracy. This automatic and straightforward global error control
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procedure makes GITT particularly suitable for benchmarking pur-
poses of such dynamic analysis of structures.

However, there are some other good methods, such as the time
step integration method. There have been tremendous researches
on the method of direct integration algorithms, including the
Runge-Kutta method, the Houbolt method, the Newmark method,
the Wilson method, the central difference method, etc. They are
all FDM (Finite Difference Method) approaches, but the finite dif-
ference approximation is always accompanying with error, and has
also numerical problem including stiff, stability etc., not so ideal. For

instance, a good implementation of a Runge-Kutta method requires
an efficient step size control. In principle, one tries to choose the
step size in each step such that the new local error does not exceed a
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Table 1
Dimensionless natural angular frequencies ω1, ω2, ω3, ω4, ω5 versus mass ratio ˇ,
at u = 4.5.

 ̌ ω1 ω2 ω3 ω4 ω5

0.05 15.6182 53.6764 112.4690 191.0986 289.6548
0.10  15.4387 53.7661 112.5588 191.2781 289.8344
0.15  15.3489 53.9456 112.7383 191.4576 290.0139
0.20  15.1694 54.0354 112.9178 191.6372 290.1934
0.25  15.0796 54.1252 113.0076 191.8167 290.3729
0.30  14.9899 54.2149 113.1871 191.9064 290.5524
0.35  14.8104 54.3944 113.2769 192.0860 290.7320
0.40  14.7206 54.4842 113.4564 192.2655 290.9115
0.45  14.6308 54.5740 113.5461 192.4450 291.0910
0.50  14.4513 54.5740 113.7257 192.5347 291.1808
0.55  14.3616 54.6637 113.8154 192.7143 291.3603
0.60  14.2718 54.7535 113.9052 192.8938 291.5398
0.65  14.1820 54.8432 114.0847 193.0733 291.7193
0.70  14.0923 54.9330 114.1745 193.1631 291.8988
0.75  14.0025 54.9330 114.2642 193.3426 292.0784
0.80  13.9128 55.0228 114.4437 193.5221 292.2579
0.85  13.7332 55.0228 114.5335 193.6119 292.4374
0.90  13.6435 55.1125 114.6233 193.7914 292.5272
0.95  13.5537 55.1125 114.8028 193.8811 292.7067

p
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Qian, Q., Wang, L., Ni, Q., 2009. Instability of simply supported pipes conveying fluid
1.00  13.4640 55.2023 114.8925 194.0607 292.8862

rescribed tolerance. Unfortunately, explicit Runge-Kutta methods
re generally unsuitable for the solution of stiff equations because
heir region of absolute stability is small. This issue is especially
mportant in the solution of partial differential equations. The insta-
ility of explicit Runge-Kutta methods motivates the development
f implicit methods, but the computational costs would be signifi-
antly increased.

. Conclusions

The integral transform method was applied to obtain a
ybrid numerical–analytical solution of dynamic response of a
lamped–clamped pipe conveying fluid. The analysis of conver-
ence behavior and comparison with theoretical results were
erformed. Excellent agreement of the present results with pre-
iously theory demonstrates the convenience and exceptional
omputational performance of the proposed methodology. Numer-

cal results illustrate the dynamic response is dominated by mode

 through modal separation analysis. The deflection ratio increases
s the flow velocity increases, and decreases as the mass ratio
 Design 254 (2013) 237– 245

increases. Meanwhile, the natural angular frequency decreases
monotonically at first mode but increases monotonically at mode
2–5 when the mass ratio increases.
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