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As the critical level is approached,

oo (ilig
gic-—*U—i‘A, a—l—*O.

Therefore the wave group is effectively captured in this neigh-
borhood and constrained thereafter to propagate along the mean
flow.

(4.20ab)

5. Discussions and conclusions

The propagation of Alfvén waves has been studied in an isother-
mal atmosphere when the displacement current is included in
this analysis. It is shown that the governing wave equation is
singular at heights where the flow velocity U assumes special
values such that the Doppler shifted frequency w = 0, +-wa, -4
and 4-6. When the displacement current is neglected, the singu-
larities  correspond to w = 0 and --wa. Thus the effect of
displacement current is to increase the number of singularities
of the equation, and, in turn, is to reduce the gross attenuation
of the wave across the critical levels.

In the limit ¢ — oo, the critical values 4-4 and 46 coincide
with the critical values 4 w,.

Since the wave action flux, M is constant everywhere except
at the critical levels, we found it as an appropriate measure
of the magnitude of the waves. Using this wave action flux
as a measure of intensity of the wave, the attenuation of wa-
ves at the critical levels is examined.

It is shown that the attenuation that a wave suffers on passage
through the critical levels { = 0 (that is, away from all the above
seven critical levels) in an isothermal medium is less than the
attenuation that a wave suffers on passage through the critical
levels in a fluid in which the displacement current is neglected.
This result is confirmed using the group velocity approach.
Finally, it is confirmed that the effect of the displacement
current is to increase the number of critical layers and in turn,
is to reduce the gross attenuation of waves across the critical
levels.
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On the Matching Conditions for a Two-Deck Compressible
Turbulent Boundary Layer Model

I. Introduction

Over the past forty years the problem of compressible turbulent
boundary layers has been the subject of many theoretical and
experimental studies. The difficulty of treating both turbulence

and compressibility, and the success in describing incompressible
turbulent boundary layers, has motivated a number of authors
to look for features of the incompressible flow which are preserv-
ed in compressible flow. These identified common features,
together with the procedure for incompressible flow, and adequate
modifications, can then be used to try to develop a theory for
compressible flow.

Recently, some authors (MELLOR [12], YAJNIK [15] and others)
have developed formal asymptotic theories for incompressible
turbulent boundary layers, employing the method of matched
asymptotic expansions together with asymptotic hypotheses
describing the order of the various terms in the equations of
mean motion. The theories consider the entire fluid region and
avoid similarity, dimensional or eddy viscosity arguments. The
main idea underlying the theories is that there are two different
layers whose properties and thickness can be described by their
respectives length scales.

Using the same idea, AFzarn [2] attempted to extend the
asymptotic theories developed for incompressible flow to com-
pressible flow. He formulated a higher order theory for com-
pressible turbulent boundary layer flow of a perfect gas with
constant specific heats when (y — 1) M%, and molecular Prandtl
number are of order unity; he worked with an underdetermined
system of equations of mean motion and showed that the struc-
ture of the solution is the same as for incompressible flow,
i.e., two layers are required. However, several authors, MELNIK
and GrossmaN [13], ApamsoN and Fro [1], L1ov and ADAMSON
[10], pointed out that although A¥zar had presented the solu-
tion by limit-function expansions, he had worked with an under-
determined system of equations and had not showed that the wall
and the defect solutions did, in fact, match. Thus, according to
their analysis the fact that the density varied by order unity
from wall to free stream values across the boundary layer
caused difficulties which could not be solved by A¥zaL’s solution.
It is of interest to note that the derivation of this result strongly
depends on A¥zAL’s assumed form of the asymptotic expansions,
and that no systematic study about the domains of validity of
the solutions was made. Thus, those analyses cannot be seen as
conclusive proof that the defect and wall layers do not match.

The aim of this work is to carry out a study of the domains
of validity of the defect and wall layer solutions using the inter-
mediate variable technique. This technique was introduced by
KAaprLuN in the mid fifties and reviewed by LaeERsTROM and
CASTEN in the early seventies. The intermediate variable tech-
nique provides a more rigorous mathematical treatment to deal
with problems where perturbation techniques can be applied.
In this theory, heuristic ideas are used to develop a systematic
method of obtaining domains of validity of asymptotic expan-
sions by a study of the corresponding equations. The theory
emphasizes the idea of characterizing expansions by their do-
mains of validity, providing not only a more basic understanding
for the matching but also a deeper insight into the construction
of the expansions. This is illustrated in the work of LAGER-
stroM and CASTEN (8], which also shows how it can be applied
to different problems.

II. Equations of mean motion and asymptotic
hypotheses

In this section we introduce the two-dimensional Navier-Stokes
equations of mean motion for a compressible fluid using the
mass-weighted-averaging procedure and follow A¥zAL’s analysis
of KisTLER’s data to estimate the order of magnitude of the
turbulent fluctuations of velocity, pressure, temperature and
density.

The continuity, momentum, energy and state equations ob-
tained by mass-weighted averaging can be written in the follow-
ing non-dimensional form:

a) Continuity

2 @iy =0

oy (1)

b) Momentum

7

O oo Op O -7 2
E(Qutu)) = B -+ o (’—Quzu] + B77y5) (2)
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c¢) Energy the inner to the outer scale is
. N 18 = v[dur = £ . 10
. (otts) = Dujé—f1 + .Du'j—al)— / [ e A (10)
dx; dx; ox; Moreover, parameters ¢ and ¢ are related by the well known

+£#WWE_§@thmw%& (3)
1

d) State

= —_11_~

p=17—3w, 4)

where the stress tensor z;j and the heat flux tensor ¢ are given
respectively by

oy = Ay 2 g (28 5 O
Tiyj = Z(SL] 81'[ + 122 (axj + axi) ’ (5)
and
ot
g =—K i (8)

In these equations, , u, p, ¢, and ¢ have their classical mean-
ing, A is the bulk viscosity (= —2/3u), u the dynamic viscosity,
K the thermal viscosity, and d;; the Kronecker delta, having the
value 1 for ¢+ = j and O for ¢ = j. All lengths are non-dimensio-
nalized by a typical body dimension L, velocities by the charac-
teristic reference velocity Uco, pressure by gooU%, temperature
by T, density by goo and viscosity by pco. The quantity B =
= UcpooL/uco is the characteristic Reynolds number, M« is a
characteristic Mach number, D = (y — 1) M2, is the compressi-
hility factor, o is the molecular Prandtl number and p is the
ratio of specific heats. The superscript denotes turbulent flue-
tuations, the bar denotes conventional time averaging and the
tilde denotes mass-weighted averaging. A summation is under-
stood for repeated indices. For further details concerning
these equations the reader is referred to either CEBECI and
SmitH [4] or LiepMaNN and RoseEkoO [9].

Based on the measurements of KisTLER [6], AFzAL concluded
that the fluctuation %’ can be assumed to be of the order of the
friction velocity divided by the mean free stream velocity,
ie.,

rmof2y=0( L 1/)
" _O(Um) (UOO ew)—O(a).
For the static pressure, density and temperature fluctuations,
further measurements of KisTLER and CHEN [7] and of Mor-
KovIN [14] have shown that (a) %/, ¢’ and ¢’ have the same order
of magnitude and (b) the root-mean-squate value of p’ is pro-
portional to «’.

The notation for turbulent Reynolds terms employed here will
be the same as presented by A¥zaAL, i.e., second order correla-

tions of the type a’b” are denoted by 74, and third-order correla-
tions of the type a’b’c’ by t4p.. Thus a correlation of the type

—b’da’/dy is denoted by —ayb’. In view of the above remarks,
the scales of fluctuations can be written without loss of genera-
lity as

O(w’) = O(v') = 0(¢") = O(t') = O(e)
O(p) =&

(M)

®)
C)

III. Analysis of the domains of validity of the
asymptotic expansions

In this section we apply the intermediate variable technique to
the problem of compressible turbulent boundary layers. This
requires the knowledge of the concepts of domain of validity of
asymptotic expansions, overlap, formal validity of equations,
limit process, etc. Most of these concepts lie in ideas of the late
SavL Kapruw and his co-workers, and have been presented with
particular clarity in an article of LacersTROM and CASTEN [8].
Basic concepts such as those of asymptotic expansion, order
classes, uniform convergence on a function class and uniform
validity on a function class will not be introduced here since
they have been extensively treated in the literature. The order
to which a function 7(e) belongs will be denoted by ord 7.
Before we proceed, let us remember that the parameters o
and D are assumed to be order unity, and that the boundary
layer has three length scales [Arzar, 2]: an inviscid scale L,

an outer scale 0 = &L, and an inner scale 3 = v/u; = €5. The
ratio of the outer to the inviscid length scale is §/L = ¢ and of

turbulent skin friction equation which yields [MELLOR, 12]
e =0((In &)™), (11)

Our objective is to obtain an approximation for the system of
equations (1 —6) which is uniformly valid in a given domain. For
this reason, it is necessary to define the concept of uniform
domain of validity for such approximation. Here, our first
difficulty occurs, since, although we can formalize clearly the
concept of uniform validity on a function class, i.e., when solu-
tions are close, the basic difficulty of deciding when equations
are close still remains unanswered.

Therefore in order to introduce KArPLUN’s matching principle
it is firstly necessary to define #-limit and the domain of validity
of equations. The 7-limit of an equation E(x, y; ¢) is defined as
follows. Let the intermediate variable y, be

as ¢—>0.

nEyym =1y, (12)

where, as indicated, n is a function of e. Then, the 7-limit of
Bz, y; ¢) is

limy, E(z, y; &) = lim E(z, n(e) y4;¢) as £—>0 (13)

with yy fixed.

Note that 7(e), as defined by equation (12), is in fact a stretch-
ing function. If we substitute (12) into the motion equation and
arbitrarily vary the order of magnitude of 7(¢g), we can then use
the definition of #-lim to study the effect on the motion equa-
tions. This will reveal the importance of the various terms of the
equation of motion in the different flow regions. Now, if we
introduce (12) into the system (1—6), each term will have a for-
mal order in & depending on the assumptions in section II and
on expressions (10) and (11). The derivatives and y, are for-
mally considered to be of order unity. For example, we note
that the terms (07,,)y and uilyy, in equation (2), are formally of
order &%/ and &€/n respectively. Passing the #-limit in the
equations resulting from (2—3), we find the following formal
limits depending on different order of magnitude of #:
z-momentum equation:

ordn> 1: (o) Uz + (@) Uy + pxs =0, (14a)
ordng =1: (o) #r + (ov) 4y + P2 =0, (14b)
orde << ordn << 1: (o%) %g + (0%) Uy + Pz =0, (14¢)

ord 7 = ord &*: (o) uz + (v) ity + Pz = (@Two)y »

(144)
ord &3 << ord 9 << ord &%:  (0Tuw)y =0, (14¢)
ord€ < ordn << ord &®: (0Tus)y = O, (14%)
ord = ord &: (Hity)y + (@Tuo)y = 0, (14g)
ordn < ord &: (uity)y == 0; (14h)

energy equation:

ordy> 1: Qitty + odty — D(ips + Bpy) = 0,
B (152a)

ordn = 1: Qiity + vty — D(ips + opy) = 0,
~ (15b)

ord &2 < ord 5 < 1: Dty + @vt, — D(pz + 9py) = O,
(15¢)

ord = ord &?: Qiity 4 0ty — D(iips + Dpy) =

= (@?vt)y + D(?vp)y ’ (15 d)
ord 6 << ord 57 << ord &% (0Tpt)y + D(Top)y =0, (15€)
ord € < ordn < ord &3:  (9Tyt)y -+ D(Tup)y = 0, (15f)

ord = ord &: o~ (uty)y -+ (€Tur)y + D(Tup)y = 0,
~ (15g)
ordn < ord &: o~ Yuty)y + 0, (15h)

The two sets of equations, (14 a—h) and (15 a—h), are the
two important ones. Indeed, the continuity equation, y-momen-
tum equation and the state equation result in trivial sets of
equations. For instance, the y-momentum equation, whatever is
the order of 7, results in

Py=0. (16)

We also note that if lim, applied to equations (2—3) yields
(14e—15e), then the formal %-limit of (14d--15d) also yields
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(14e—15e). Thus according to LacERsTROM and CASTEN, equa-
tions (14d—15d) are ‘‘rich enough’ to contain (14e—15e). The
two definitions below are due to LAGERSTROM and CASTEN:

Definition I. If Z is an equation and lim,, £ = E,, lim,,
E = E,, and also limy, B, = E,, we say that E, contains I, (re-
lative to E).

Definition II. The formal domain of validity of an equa-
tion F, relative to the full equation ¥, is ord n such that lim, &
is either F' or an equation contained in F.

These definitions imply that the formal domain of validity
of (14d) and (15d) is given by

D, = {nford > ord &}, 17)
and that of (14g) and (15g) is given by
D; = {yford n << ord &%} . (18)

Equations d’s and g’s are called the principal equations. They
are, in fact, the important equations. One can observe that
equations d’s contain equations a’s, b’s, ¢’s, e’s and f’s; equa-
tions g’s contain equations e’s, f’s and h’s but neither of them is
contained in the other.

Principle. If f is a solution of an equation E, and E* is an
approximate equation, then there exists a solution f* of E*
whose actual domain of validity (as an approximation to f) in-
cludes the formal domain of validity of £* (as an approximation
to E). ’

In the LacersTrROM and CASTEN article, important modifica-
tions of this principle are discussed since it ceases to be valid
when small terms have large integrated effects. Fortunately,
terms such as ¢ In ¢, which appeared in the solution of LAGER-
sTroM and CASTEN’S second mode equation, are not expected to
occur here. These terms provoke an effect of larger magnitude
than the order formally indicated which cannot be compensated
by the lower order terms leading to the phenomenon of inte-
grated effects and resulting switchback. So, according to the
above remarks, it seems that KAPLUN’s principle can be applied
to the problem defined by equations (1-—6). These results yields,
together with results (17—18), that the domain of overlap is
given by

D = Dyn Di = {yford & < ord 5 < ord &} . (19)

Equations (14 a—h) illustrate the well known balance among
inertia, pressure, Reynolds stress and viscous stress in the flow.
In fact, equation (14h) shows that very close the wall the effects
due to the viscous shear stress are the dominating effects; as the
distance from the wall increases, equation (14g) shows that the
Reynolds shear stress becomes larger and balances the viscous
shear stress, both effects being of lower order than the pressure
gradient effects. Further away, the overlap region is reached,
and equations (14 e—f) show that the Reynolds stress effects
are the dominating effects. Above this region, equation (14d)
shows that the inertia, pressure and Reynolds stress are of
equal importance. Finally, in the outermost layer, comprising
most of the boundary layer, equations (14 a—c) show that the
inertia and pressure effects are the dominating effects.

Of course, a similar type of analysis applied to the energy
equation emphasizes, near the wall, the conduction terms and,
further away from the wall, the turbulent terms.

IV. Asymptotic analysis

In this section, we apply the matched asymptotic expansion
method to the problem of compressible, turbulent, boundary
layers to show how solutions for the defect and wall layers can
be obtained which do match in an overlap domain. Since most
of the analysis concerning the obtaining of the asymptotic
expansion is conventional, only a few comments about it will
be made here. The bars and tildes will be omitted in all subse-
quent expressions.

Defect layer

For this region we write

u(z, y; R) = u,(2, y) + eup(x, y) + eus(x, y) + .- 5 (20a)
v = evy(x, y) + (2, y) + (s y) + .o s (20b)
p = Py, y) + epa(; y) + E2ps(@, ) + e s (20¢)
o = oy, y) + egqlw, y) + e205(x, ¥) + s (204d)

t=ti(z, y) + eby(x, y) + e'y(2, y) + ...\ (20e)
Tap = %74 (@, y) + 74, (2, y) + e'7y (@, 9) + ..., (20f)
Tabe = 837abcl(x’ y) + 84‘L‘abcz(x, y)+ eﬁtabcs(x, y)+ ... (20g)

where y = Y/§(R) is the stretched defect layer variable.

Introduction of these expressions into the equations of mean
motion and collection of coefficients of various powers of ¢ give
the equations for the successive approximations. These equa-
tions are, except for a few differences arising from distinct averag-
ing procedures, the same as those obtained by Arzav. They show
that the pressure is constant across the outer layer to order ¢
and that viscous and heat-conduction terms do not occur in the
outer layer. From the matching between the inviscid and outer
expansions (see A¥zAL), it follows that

(2, y) = Uy(=, 0), 22, y) = Py(x, 0),
a(@, y) = Pi(=,0), bz, y) = Ty(=, 0), Yy > 00,5 (21)
Tab,(x’ y) = Tabl(x, 0), Tabc,(“” y) = T,ml(x, y).

Here, capital letters are used to denote terms valid in the
inviscid region and, in order to follow A¥zaL’s notation, the
quantities U,(z, 0), Py(z, 0), P,(z, 0) and T(z, 0) are denoted by
Usps Py, Pyy and T, respectively. The solution of the lowest
order equation which satisfies the matching conditions is

uy = Uy, 0= Py,
vy = [Q — (PyUs2)1/Pyo » (22)
P1= Py, 8= "Th.

where @ is a constant of integration to be determined a posteriori.

Wall layer

To describe the flow behavior near the wall we introduce the
inner variable

§=y3=yeRw,

where Ry = UcoL/yw, vw = local kinematic viscosity at the
wall. The appropriate asymptotic expansions for this region are

% = eiy(x, §) + 2ity(2, Y) + o s (23a)
? = e[vy(x, §) + ebpl, ) + ..., (23b)
f’ = ﬁ1(x, y) + 8%\)2(9!2, /?)) + s (23¢)
0= 0., Y) + e0a(z, ) + wuv s (23d)
="z, 9) + ez, 9) + e (23¢)
Ty =, (%, 9) + 8%, (=, 9) + ..., (23f)
%abc — 83?abc,(x’ /y\) + 84?abc,(x’ /3}) + e (238)

An asymptotic expansion for the viscosity is derived expand-
ing u in a Taylor series around #,, that is,

= plty) + et b + 0(e?)
g;i

at i,

The result of inserting (23) and (24) into (1—6) and collecting

terms of same order is:
to lowest order terms:

(24)

where, u; =

(@ikj)z; =0, (25a)
~A . M(t ) A~

(&17y)5 + —vW~1 Uy = 0, (25b)

§1ﬂ=0’ tll)!?:O, (250,25d)
~ y—11.9

By p Qb (25e)

to first order terms:

(01%4,)z5 + (@aWir)zs = 0, (26a)

~AA AN ~ l e B RIS
(91""“1,’)9 + (eruvl)g + Teuvlg + -~ Lulty) uzw + pe(ty) tz"hgg] =0,

(26b)
pzﬁ =0 ’ (260)
1 oo i
= 1 =0, 26d
P [ulty) tzyy] - (0T )y ( )
5=l —1 Lot oy (26¢)
y 2 y D \re aby
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Equations 25 (c—e) and the matching conditions show that
pressure, temperature and density are constant across the wall
layer up to the lowest order terms. Hence, we can write

{’1=P1(x’y)=Pm’ }
0L = Qw.

Furthermore, for an impermeable wall, the matching of the
pressure in the wall, outer and inviscid regions gives

Pol, §) = pa(2, y) = Pylw, ¥) = 0,

The velocity profiles for the defect and wall layers are given
by

u = Uy + elayIny + a;,) + e*ay, In?y +

@7

b = s

(28)

+ @y Iny + ay3) 4 O(ed) (29a)

and

U= e(@yIng + @) + 6@y 02§ + Gyy In G + Gyy) + O(e?)
(291b)

where the a’s represent arbitrary functions of y.

The presence of first order logarithmic terms in the above
expressions is justified by equation (25b) and the matching
conditions for the defect and wall layers [ArzaL, 2]. The se-
cond-order bilogarithmic terms occur due to expression (26b).
Indeed, equations (26d) and (26e) yield that the first-order
density term is logarithmic; substitution of this term and the
solution of (25b) into (26b) results in a solution which contains
bilogarithmic terms. Thus bilogarithmic terms occur only in
compressible flow.

An analysis similar to that for the velocity profiles carried
out for the temperature profiles, suggests that

=ty + &by Iny 4 by,) +

+ €Xbyy In2 y 4 by In y -+ b,,) - O(e3), (30a)
and
t=tw+ ey Ing + byy) +

+ &by In2 5 + byyIn§ +- byy) + O(e%) (30b)

where the b’s are arbitrary functions of y.

On substituting the above profiles into the equation of state
and taking into account the conditions imposed by equations
(27) and (28), it follows that the density profiles are given by
P,

T*;o (byyIny + by,) +

o=Py—¢

+ e¥cayIn®y + cppln y -+ c,,) + O(e3),
and

(31a)

@ = 0w ““6% (gn 11117 =+ 312) + 82(321 1112@ + 322 ln’y\ -+ Eza) T
+ O(e%) . (31b)

where the ¢’s are arbitrary functions of y.

Table 1. Matching conditions

Now, whatever techniques are used, matching is always
carried out by comparing the outer expansion for small y with
the inner expansion for large i/ ; the limit of the outer expansions
ag y — 0, and the limit of the inner expansion as § — oo, are
shown in Table 1.

In this Table, each row defines a set of three equations to be
satisfied, the tangential velocity, the temperature and the den-
sity matching condition equations. It is interesting to note
that as ¥ — oo, the logarithmic terms give contributions of
lower order of magnitude than the order formally indicated ; this
fact is fundamental for a successful match. Indeed, if the biloga-
rithmic terms are dropped, the matching condition between the
velocity profiles yields

S i
Uyp=¢en€ a,y | sa,, — ca,,

80 that eIn & = O(1) as ¢ — 0.

Equation (32) is the classical skin-friction equation obtained
by MELLOR [12]. Thus the temperature and density matching
conditions become

(32a)

tw -+ & In 8byy + ehyy = Ty + by (33a)
and

~ o 2 P
Qw+51n5%vb11+8%b1z=P1o+8T—1:bm- (34a)

The matching difficulties can now be clearly seen from equa-

tions (33a) and (34a), that is, as ¢ — 0 parameter b, alone is
not capable of satisfying both equations. Hence, in order to
make the matching feasible, one must consider the second-order
bilogarithmic terms. Then the matching conditions given by
equations (32a—34a) become

N ~
Uy = e In eay, + eay, — ea,, +

+ 62In% £dy, + €2 In £y, + 6%y — 620y, , (32b)
tw — Ty = —eIn8by, — ebyy + £byy —
— €2 In? &b,y — &2 In by, — e%hyy + e%byy , (33b)

~AQW D N P ~
P,y — ow =elna%':bn+ s%b,z~eﬁblz+ezln28021+

+ e 1nEcyy — 2055 + £20y, - (34Db)

The system of equations defined above has now a solution
since its number of parameters is greater than the number of
equations. The trick is obviously done by the second order bilo-
garithmic terms which become order unity in the overlap region.

In A¥zAvr’s analysis, it was not clear that solutions of the form
(29a) to (31b) could satisfy the matching conditions since the
density profiles were omitted. Furthermore, in that analysis the
bilogarithmic terms were obtained by assuming that the Rey-
nolds stress terms could be expanded in a particular form,
whereas here these bilogarithmic terms arise from the solution
of the equations of motion.

As shown by the equations of motion of second order, the
assumption that second-order bilogarithmic terms occur for
compressible flow is reasonable and this is a direct consequence
of the fact that the first order approximation solution contains

zeroth order first order

second order

tangential outer U = Uy +eayylny +eay, +e2a,, Int y +ea,,1n y +eta,,
velocity exp (y —» 0)
inner % = +eln ;«;,, +e;,,1n y + €y
A -~ -~ ~ -~ -~ - - -~
exp (y —+ oo) +z&2ln% ea,, +2etInsd,Iny +etlnzea,, +&2a,,Int y +&%a,,Iny +e%a,,
temperature outer t = Tye +ebyyIny &by, +&2b,y 1% y +e2b.,Iny + &%,y
exp (¥ — 0)
inner t= tw
exp (¥ - o) + eln by, +ebylny_ +abyy R R R
+ £21n? e by, +2e*In ebyeln y +&tlncby, +&2b,;In? y +e2 by, lny +&%b,s
density outer Py ~ P,y ~ ~ ~ %,
exp (y - 0) e= Py —& va_o by Iny —& T—m 2 +efey In? y +efcnIny &2,
10 10
innerA :z = ow
exp (¥ ~ <) +ens 225, —e 2 h,ny ~s 25
t“’ lw tw

-+¢&? In? ;a:l + 22 ln;‘(;,,‘lny

+e*In ;g,, +93E,,1n'y +e’3,21n Y +¢* c‘;,
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logarithmic terms. Higher order asymptotic theories should
then include such terms.

V. Conclusion

In this work we have shown that application to compressible
turbulent boundary layers of the intermediate variable technique
and of the matched asymptotic expansion method indicates
that the defect and the wall layer solutions have an overlap
domain.

The arguments of other authors based purely on considera-
tions of the velocity profiles are not enough to settle the match-
ing question. Indeed, if no further comments about the nature
of the density expressions were necessary the following simple
analysis would apply. In essence, what one has to show is that
the difference between the outer and the inner approximations
converges uniformly to zero in an overlap domain. In other
words, one has to show that for each 6> O there exists an
g5>> 0, such that if ¢ << g5 and u(e) < x < (), u(e) and v(e) two
class function defined in Doverlap, then |w(x, &) = |%inner —
— Uouter| << 0. N

Now assuming that for the incompressible case there exists
an overlap domain, it follows that

Vé'>0, Heg>0,e<es Aple) 2=~
-+ luiinner - uiouter' <.

This result and the fact that sine is a Lipschitz function, that
is there exists a K > 0 (the constant of Lipschitz) such that, for
each z,y €R, we have [sin x — sin y| << K|x — y| (for example,
take K = 1), imply that if for the compressible case we take
es = €5 and & = 0’K, then for ¢ < ¢5 and u(e) < a < v(¢e), u and
» the same class of function above, we have

|#inner — %outer| = |8in Yiinner — sin uiouterl <<
& .
< Kty ner — Yige] < K& < .

This would complete the proof that for the compressible case
the inner and the outer expansion have an overlap domain
which contains the overlap domain of the incompressible case.
Indeed, this is also indicated by the analysis using the inter-
mediate variable technique.
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A Variational Principle for an Isothermal Chemical Reaction

1. Introduction

Let A be a substance contained in-a gas that flows through a cy-
lindrical pore of a catalyst. On the walls of the pore the sub-
stance A transforms into another substance, say B. We assume
that the transformation of 4 into B is an isothermal chemical
reaction of the first order [1]. Then, after several changes of
variables, the equation describing the dimensionless concentra-
tion of the substance 4 along the (dimensionless) length ¢ of the
catalyst pore can be written as [2]

l1—g¢
SN L. S )
1491 —gq)

where (.)* = d/dt(.), ¢ is the dimensionless concentration,
a(t) > 0 is the dimensionless diffusion coefficient and 4 = 0
and » > 0 are coefficients depending on temperature and initial
concentration, respectively.

The boundary conditions corresponding to (1) are

9(0) = ¢(1) = 0. 2

The boundary value problem (1), (2) has been treated numeri-
cally in [2]. Also in [2] it is shown that (1), (2) has for any
A = 0 a unique C?[0, 1] solution and that the following bounds
hold [2 p. 53]:

0 <qt)y<<l for te(0,1),
gty =0 for A=0.

G L), )

A>0,
= 3)

Our intention in this note is to treat the boundary value pro-
blem (1), (2) by a variational method developed in [3]. First, we
shall show that the functional constructed by the procedure
described in [3] attains a global minimum on the solution of (1),
(2). Then, we shall use the Ritz method to determine approxi-
mate solutions to (1), (2) for several values of the parameters A
and ». Finally, we shall present error estimates for the approxi-
mate solutions. The error estimates will be based on the values
of the functional calculated on approximate solutions.

2. Variational principle and error estimate

To escort the procedure from [3] we first note that (1), (2) is
equivalent to the stationarity condition (6I; = 0) for the func-
tional I, given by

! . A
IL=/fLat, L:%qz—%—q—~;_,—ln[l + (1 —q)]. (4)
0

By using L, given by (4),, we can follow the procedure of [3] to
obtain the following functional

e f{aéz — Ao Jmuen—an+

o 2 A +A+<1+w)(d@+a@)}dt_

0 + o) v

(5)
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