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1. INTRODUCTION 

THE INJECTION or suction of fluid into the turbulent boundary 
layer through a porous surface is an effective means of pro- 
moting the thermal protection of walls [l, 21. The transpired 
fluid convects thermal energy away from the wall, improving 
the ability of surfaces to withstand a high-temperature 
environment. Despite this classical application, transpired 
turbulent boundary layers have also been extensively studied 
in connection with a variety of other applications. For ex- 
ample, injection or suction of fluid can be effectively used to 
reduce the drag offlows around bodies [3-S]. Also, variations 
of the transpiration problem are found when the injected 
fluid is a chemical reagent or when either evaporation or 
sublimation occurs. 

For low speed flows, a good account of the transpiration 
phenomenon is given in the literature by a number of analyses 
of the problem [3-141. Studies of the velocity boundary layer 
have established solid expressions for the law of the wall and 
for the law of the wake [3, 51. These expressions have been 
derived for a range of flow conditions, yielding a bilog- 
arithmic expression for the skin friction. This skin friction 
equation is much less sensitive than the momentum-integral 
equation to small changes in the flow parameters and so gives 
much more reliable results [8]. Unfortunately, for the thermal 
turbulent boundary layer with transpiration, no equivalent 
equation has been derived for predictions of the friction 
temperature. Most of the work has been conducted at Stan- 
ford University [l, 2, 6, 71 to the study of universal cor- 
relations for the temperature profile and for the prediction 
of Stanton number. These studies, together with the analyses 
of refs. [9-l I], show that close to the wall the temperature 
profile has, as predicted by simple theoretical mixing-length 
based approaches, a logarithmic behaviour. In this case, the 
similarity parameters and the constants in the expressions 
must be such that their dependence on the Prandtl number 
is adequately taken into account [ 111. 

This paper derives two new expressions for the law of the 
wall and shows how they can be extended to the defect layer 
simply by using Coles’ function. The resulting temperature 
defect expressions yield bilogarithmic expressions for Stan- 
ton number similar to the skin friction equation which differ 
markedly from the previously proposed expressions and are 
hence presented here for the first time. The Stanton number 
has normally been evaluated by applying a correction factor 
to the unblown Stanton number, St,, according to an 
expression derived by Spalding [ 121 in the sixties. The present 
formulation advances this formulation since it incorporates 
all the advantages of the skin friction equation [8], besides 
dispensing the previous knowledge of St,. The expression 
for Stanton, however, is sensitive to the flow hydrodynamics 
through u, as well as to the transfer of heat through t, [2]. 
This means that inaccuracies in the prediction of a, and t, 
are immediately propagated into Sr in a cumulative manner. 
To avoid this difficulty we then propose an alternative 
approach where Sf can be evaluated independently from the 
knowledge of a,. 

The analysis is carried out for two-dimensional, steady 
flows over aerodynamically smooth surfaces with no external 
pressure gradients. Extension of the present results to more 
complex flows will be published shortly. 

2. THE THERMAL TURBULENT BOUNDARY 
LAYER ON A POROUS SURFACE 

To study the effects of the transpiration on the boundary 
layer we divide the flow region into distinct parts where 
certain dominant effects can be used to derive simplified 
equations. The formulation of the transpiration problem 
basically differs from the solid surface problem in the sense 
that the inertia effects near the wall can no longer be neglected 
[l, 5, 81. Therefore, for the near-wall dominated part of the 
flow, the approximate energy equation becomes 

This equation, together with the velocity solution [6], the 
mixing-length hypothesis 

and the boundary condition 

P(O) = e:: = pc,u,r, 

yields 

where v: denotes V,,/u, and the pair (yz, ul) is a constant 
of integration which must be determined experimentally. 
Parameters k, and k,, characteristic of the turbulence mod- 
elling, must also be determined experimentally. The above 
equation is the so-called law of the wall ; it is here cast for 
the first time in this form. 

An analysis of the data of refs. [S, 61 shows that the value 
oft+ where the laminar-conductive and the turbulent solu- 
tions meet is nearly independent of the injection rate. Calling 
this value tz, it can be determined by patching the laminar 
and the fully turbulent layer solutions for unblown flows. 
This results in 

2: = 10. (5) 

Parameter yz, obtained through the laminar-conductive 
layer solution 
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NOMENCLATURE 

A, B, B’ parameter in laws of the wall 

Cf skin friction coefficient 

CP specific heat at constant pressure 

k, von Karman’s constant in velocity profile 
k,, k; von Karman’s constants in temperature 

profiles 
Pr Prandtl number 

@ heat flux 
Re Reynolds number 
St Stanton number 
T temperature 
t dimensionless temperature, 

(T- T,)/V, -T,,) 
1, friction temperature 
1+ > t* inner layer similarity temperatures, 

(T- T,, )Irz, &/(Sr) 
I/, V velocity components 

a, friction velocity 

I’,, v,, I( c: I 
Ui , (.I:, I$ c::u,. I’,, /Ll,. v, I U ( \!(St) 
IV Coles’ function 

y+,y* inner layer similarity coordinates, ru,jv. 
JL;, j(.sf)iL’. 

Greek symbols 
c( thermal diffusivity 
6,, 6, velocity boundary layer thickness, 

temperature boundary layer thickness 
A enthalpy thickness 
0 momentum thickness 
Y kinetic viscosity 
II,, II; temperature wake profiles 

P density 
f shear stress. 

Subscripts 

a, b constants of integration 
m velocity 
t temperature 
w conditions at wall 
cc external flow conditions. 

is given by 

Of course, in the limit as a, + 0, equation (4) reduces to 
the solid surface solution. Results provided by equation (4) 
are compared with the experimental data of ref. [6] in Fig. 
1. As can be seen, the agreement is good for the blowing 
data. The discrepancies found for the suction data were 
expected since in the experiments suction was applied over a 
long stretch of porous surface and, under this condition, the 
turbulent fluctuations in the boundary layer were partially 
or even completely removed, resulting in a not very well 
established turbulent boundary layer. Please note the very 

low values of Re for the suction data. It is worth stressing 
here that the temperature data agree much better with the 
present theory (equation (4)) than the corresponding velocity 
data agree with the equation derived by Simpson [5] if classi- 
cal values of k,,, (0.41) and A (5.0) are used to correlate the 
data. 

Equation (4) can more generally be written as 

F,(V,,,(T-T,,),u,,t,) =.f;(Y+>Pr). (8) 

An extension of this expression to the defect layer can be 
obtained if we follow Stevenson [4] and make 

~(~,,,(T-T,,),~,,G) 

-F,,,(V,,,(T, -T,,),u,,t,) =g, (9) 

-‘O_* 
I I I I I I I 

-I 0 I 2 3 4 5 

In fy+ Pf/y: Pr) 

FIG. I. Temperature law of the wall for transpired flow. Data from Whitten ef ul. [6]. 
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Combination of equations (8) and (9) yields obtained by adding Coles’ function to its right-hand side. 
Solutions with tire alternative approach are shown in Figs. 
3 and 4 together with the data of ref. [6]. 

For transpired flow, the Stanton equation can be written 
as 

-J(l +u,‘u.‘) 1 1 y+Pr fI, 
= kin- -i-FW f . 0 .~b* I+ m f 

(10) 1 s,u,J(st)Pr 2n; * u: 
m 1 = J(Sl) FIrI 

L vy$Pr +k’ ,+JN) 
,> 

Results obtained with the above formulation are shown in 
Fig. 2. x 

An equation for the prediction of the friction temperature 
(14) 

is readily obtained if we substitute (v, YF) = (a,, T,) into 
equation (10) and obtain 

The problem can be given an alternative solution if we 
consider now the similarity variables defined by 

T-T, ______ y* = YUmJW) 
‘* = (Tm- T,)J(St)'- ” 

These similarity parameters were first suggested by 
Blackwell et al. 17). They present the advantage of not includ- 
ing aI in their definitions so that St can be immediately 
evaluated, by the Stanton equation, from the main flow 
conditions. Then assuming that the velocity ~u~tuations, 
z//U,, are proportional to the temperature fiuctuations, 
t//AT, so that the mixing-length equation can be written as 

5,, = k;2y= ” 
2 

0 8Y 
(12) 

it follows that the law of the wall, equation (4) becomes 

$[j(l+t*o:)-J(l+fh*li:)] = $lng 03) 
I h 

clearly a much simpler equation. Here we have v,* = u,J 

u, JGf). 
Extension of equation (13) to the defect region is again 

We also observed that the temperature wake profile varies 
with the flow conditions, as does the velocity wake profile. 
Indeed, we know that ff,,, varies with RQ, its value departing 
from 0.0 and asymptotically approaching 0.55. Here we note 
that fT, and II; have the same qualitative behaviour of IT, (see 
Figs. 5 and 6) varying asymptotically with Re, (A = enthalpy 
thickness of the boundary layer). Both curves for f’f, and II; 
suggest the asymptotic values to which these two parameters 
should tend. An insufficient number of experimental data, 
however, does not allow us to make a definitive assertion 
about these values. 

Finally, predictions of Stanton number for several injec- 
tion rates are tested against the data of Whitten et al. [6] in 
Table 1. This table also presents predictions obtained 
through the Spalding formulation [12], which yields 

Sf =( ), 
In I+-$ 

St, a,, 
St 

+++ 0.002 5540 
xxx 0.004 8170 
l ** o.cXX lleoo 

-2s I I I 
-7 -6 -5 -4 -3 -2 -I 0 I 

in i y/Bt ) 

FIG. 2. Temperature law of the wake for transpired flow. Data from Whitten et al. [6]. 

(15) 
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FIG. 3. Temperature law of the wall for transpired flow. Alternative approach. Rata from Whitten et al. 
161. 
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Of course application of equation (15) requires previous 
knowledge of St,. Here we took values of St, from equation 
(IV-9) of ref. [6]. The present results are within 5% accuracy 
for the very high injection rates, improving the previous 
results which are 15% accurate. If experimental correlations 
for yl are used instead of equation (7) the results can be 
further improved. 

3. CONCLUSION 

of the temperature profile behaviour and which can be used 
to derive Stanton number equations. The overall agreement 
of the theory with the experimental data is good for both 
the temperature and the Stanton number predictions. This 
agreement is not better because we have opted for using 
analytic expressions for the determination of yz and yb 
instead of considering any sort of experimental correlations. 
We have used expression (7) since this keeps our procedure 
self-contained. Of particular note is the good accuracy in the 
predictions of St for high injection rates. 

In the present work, an analysis of the heat transfer prob- Although comparisons are made just for air flow, we 
lem for a transpired turbulent boundary layer has been per- expect the present fo~ulation to hold for any type of fluid. 
formed. We have proposed new expressions for the iaw of In fact, as suggested by the solid surface results of refs. [lo, 
the wall and for the law of the wake that give a good account 111, we expect equation (4) to hold for other types of fluid 
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Table 1. 

995 

% RCA S&p iI41 St, equation (11) St, equation (14) 

-2.5x 1o-3 9.6x 10’ 3.46x10-' 3.730 x 10-j 3.683 x lo-’ 
-2.2 1.4x lo3 3.14 3.303 3.296 
-1.1 1.7 x lo3 2.63 2.791 2.744 

0.0 3.5 x lo3 1.95 1.955 1.903 
0.0 4.7 x 10’ 1.82 1.831 1.783 
0.9 5.7 x lo3 1.43 1.472 1.398 
1.0 4.5 x lo3 1.52 1.565 1.475 
1.8 7.1 x lo3 1.12 1.167 1.072 
1.9 5.5 x 10’ 1.23 1.238 1.124 
3.7 1.1 x lo4 0.66 0.658 0.560 
3.9 8.2 x lo3 0.69 0.720 0.604 
4.8 1.2x lo4 0.50 0.476 0.380 
5.0 9.4 x 10’ 0.53 0.518 0.412 

St, equation (15) 

3.559 x 10-l 
3.221 
2.762 

1.455 
1.546 
1.129 
1.179 
0.596 
0.640 
0.399 
0.441 

c/* 
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FIG. 5. Variation of H, with Re,. Data from Whitten et al. 
[6] and Blackwell et al. [7]. 

**c* Experimental points 
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FIG. 6. Variation of II; with Re,. Data of Whitten et al. [6] 
and Blackwell et al. [7]. 

only if the level of the logarithmic curve is made to vary 
appropriately with Pr. Since far away from the wall the 
convective effects are dominant, we expect to obtain an exten- 
sion of equation (4) to the defect layer by adding Coles’ 
function to its right-hand side. 
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