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Abstract The present work investigates the role of different treatments of the lower
boundary condition on the numerical prediction of flows over two-dimensional,
smooth, steep hills. Four different law of the wall formulations are tested when a
large recirculating region is formed on the lee side of the hill. Numerical implementa-
tion of the near-wall functions was made through a finite elements code. The standard
k—e model was used to close the averaged Navier—Stokes equations. Results are vali-
dated through original data obtained in a water tank. Measurements resorted to laser
Doppler anemometry. The experiment provide detailed data for the characterization
of the reverse flow in the region between the separation and the reattachment points,
with emphasis on the near wall region. The experimental wall shear stress distribution
is compared with the results provided by the different laws of the wall showing good
agreement. The numerical predictions are shown to vary markedly between different
formulations.
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1 Introduction

Non-uniformities resulting from changes in the surface are ubiquitous in micromete-
orology, particularly surface roughness and hills. Unfortunately, from a mathematical
point of view, both conditions are difficult to treat analytically. This fact is much aggra-
vated by the plain realization that the two conditions often occur simultaneously in
nature.

In this work we discuss the second condition, flow over hills. By considering the
flow over a homogeneous surface, we aim at analysing changes in surface properties
provoked by changes in surface elevation alone. In particular, we discuss the role of
different treatments of the lower boundary condition on the numerical prediction of
flow properties. This is an aspect of the numerical modelling of flow over a hill that has
always been known to be deficient. Here, four different law-of-the-wall formulations
are applied to the steep hill problem: the classical logarithmic expression, and the
formulations of Mellor (1966), of Nakayama and Koyama (1984) and of Cruz and
Silva Freire (1998, 2002). As presented, these formulations were specially introduced
for the prediction of flows subject to strong adverse pressure gradients; additionally,
in their original form, they were developed to describe flows over an aerodynami-
cally smooth surface. Thus, they resort to the canonical two-layered boundary-layer
structure to describe the far upstream undisturbed flow so that the existence of a
viscous layer scaled by v/u, is considered (v = fluid kinematic viscosity, u, = friction
velocity).

New data from a water-channel experiment of separated, aerodynamically smooth,
turbulent flow over a steep hill are presented herein with the particular purpose of
validating the numerically simulated data. The experiments include local measure-
ments of the mean and turbulent quantities of the flow, and were made using laser
Doppler anemometry. The two-dimensional hill was constructed with a Witch of
Agnesi shape having a maximum 18.6°slope. A flow visualization study, not presented
here, was also performed.

The occurrence of flow separation downstream of steep hills adds much complexity
to the problem. In fact, when hills become steep enough to form large downstream
recirculation regions, not only the flow in the separated region changes, but significant
changes occur in the whole flow field over the hill. Under such conditions, many of
the classical theories based on perturbation techniques break down. Quantifying the
onset and extent of separation is hence a necessary and fundamental step for the
characterization of the velocity field.

Therefore, the prediction of turbulent flow over a steep hill naturally lends itself
to the use of non-linear models. That has, indeed, been the general trend over the
last 10 years. The natural increase in computer power, together with the development
of a host of turbulence models, has witnessed a large increase on the number of
non-linear numerical simulations of atmospheric flows. Typical numerical simulations
have included two-equation eddy-viscosity turbulence models, algebraic Reynolds
stress models, second-order closure models and large-eddy simulation. All simula-
tions, however, irrespective of the type of closure scheme chosen, suffer with the
specification of the boundary conditions at the wall.

A common approach, then, is to use the logarithmic law-of-the-wall formulation.
Unfortunately, the mechanisms present in flow separation are poorly understood
so that the classical logarithmic expressions normally used to describe the flow in
the near-wall region do not find their counterpart near the separation point and in
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the reverse flow region. This fact clearly poses severe difficulties for a numerical
simulation of the flow field, since any selected turbulence model should be capable of
well representing all turbulence features down to the wall.

The present work studies the effects that a two-dimensional, steep, smooth hill has
on the properties of a neutrally stable boundary layer. The analysis makes a compari-
son between numerical and experimental results, having its focus on two main points:
(i) to assess the applicability of the four previously mentioned wall functions for the
description of the near-wall flow, and, (ii) to provide detailed experimental data for
the characterization of the recirculating flow in the region between the separation and
the reattachment points, with emphasis on the near-wall region.

2 Law-of-the-wall formulations

We introduce the different law-of-the-wall formulations that will be used in the imple-
mentation of the numerical simulations.

Since the main concern of this work is to carry out a numerical simulation of the
flow over a steep hill, just the main parts of the original derivations will be presented
here. We must warn the reader that some of the derivations are quite detailed, a
recurring feature that has really prevented us from going into too much detail. Still,
to ensure legibility of the paper, the most relevant equations will be presented here in
full. For a complete account of the formulations, the reader is referred to the original
references.

2.1 The logarithmic law-of-wall formulation for a smooth wall

For turbulent flows over a smooth wall, Prandtl (1925) considered the existence of a
region adjacent to the wall in which the total shear stress is nearly constant. Bearing in
mind that viscosity must play a role in finding local solutions, a simple scaling analysis
furnishes u, and v/u, as the two relevant scaling parameters.

The analysis may follow either from dimensional arguments or by mixing-length
theory. Here, the second route is taken. Then, for the turbulent part of the wall region

we may write
IEASE E—— N AP F A
9 _ % = 2 + (2%
bzt = 3zt Wrw) = azt (% ©\ezr) ) M

where the notation is standard. The dash denotes a quantity fluctuation, u™ = u/u,,
Tt = rt/(puﬁ), = —puw,utwt = u/w’/ui and zT = z/(v/uy).
Upon two successive integrations, we have

ut =x"linzt + A, (2)

the classical law of the wall for a smooth surface (» = 0.4, A = 5.0) and zero-pressure
gradient flows.

The action of an arbitrary pressure rise in the inner layer will distort the velocity
profile until the pressure gradient is solely balanced by the gradient of shear stress.
Near a separation point, Eq. (2) presents clear difficulties as u,, — 0.
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2.2 The law-of-the-wall formulation of Mellor (1966)

The effect of pressure gradients on the behaviour of turbulent boundary layers with-
out restriction to equilibrium was investigated by Mellor (1966) through dimensional
arguments. When a large external pressure gradient is applied to a boundary layer,
no portion of the defect profile overlaps the logarithmic law. In fact, as previously
suggested by Coles (1956) and by Stratford (1959), very near a separation point the
logarithmic part of the velocity profile ceases to exist. However, if Millikan’s (1939)
arguments are recast and a new pressure gradient parameter is included in the analy-
sis, an equation can be derived that satisfies the required limiting form as a separation
point is approached.

Making the approximation that in the viscous sublayer the stress terms should be
balanced only by the pressure term in the motion equations, Mellor (1966) found

ut =zt + %p*z*z, (3)

for the inner region of the boundary layer, whereas for the outer layer he wrote

2 1 4zt
ut =&+ =(J/14+ptzt —1)+—In , 4
v h’( d ) x \2+ptzt +2/1+ptzt @

where 2 = zup, /v, u™ = ufupy, up, = [(v/p)(dp/d0)]'/? and p* = [(v/p)(dp/dx)]
/u3. Equation (4) follows different asymptotic behaviours in the limiting cases p* —
0 or oo, tending respectively to the classical logarithmic law or to Stratford’s equation.
Function &,+ is a known parameter having been determined numerically for a range
of p™ values (Table 1).

Equations (3) and (4) were specified for the viscous and logarithmic regions, respec-
tively. For numerical purposes, these regions were considered to intersect at z+ =11.64,
which was considered to be the point of mathematical intersection of the viscous and
logarithmic regions for the classical law of the wall. Regarding the law-of-the-wall
formulations that take into account the effects of adverse pressure gradients, the
mathematical intersection of the inner and logarithmic functions depends on the
value of the dimensionless pressure p™.

2.3 The law-of-the-wall formulation of Nakayama and Koyama (1984)

Nakayama and Koyama (1984) obtained a law of the wall for boundary layers subject
to adverse pressure gradients by conducting a one-dimensional analysis on the tur-
bulent kinetic energy equation with assumptions of local similarity. Considering the
two possible limiting cases of a constant stress layer and of a zero wall-stress layer,
the authors propose a turbulent kinetic energy equation that upon integration yields,

+_ L B (Cs+1§—1)
W= g Pe-wrn| )| ®)

Table 1 Integration function (Mellor, 1966), p™

pt —0.01 0.00 0.02 0.05 0.1 0.2 0.5 1 2 10
Ept 4.92 4.90 4.94 5.06 5.26 5.63 6.44 7.34 8.49 12.13
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where

_ (1 +321:+)1/2.

The above formulation introduces a von Karman modified constant, »*, and the
slip value, ¢;. For a boundary layer subject to an adverse pressure gradient,

(6)

tt=1+ptzt, (7a)
p* = vpP(dr/d2) /7)), (7b)
zt = (w/p)'P2/v. (7¢)
The von Karman modified constant was estimated to be
.

The slip value ¢; was determined from the condition that in the limiting case p* — 0
the above formulation reduces to the classical law of the wall, Eq. (2). It follows that

t(pt) = (1+ (2/3)epH)2 ~ (140.074p™)!/2. (9)

Nakayama and Koyama (1984) considered their analysis general in the sense that
velocity was related to the local shear stress instead of to the distance from the wall.
Additionally, the analysis does not have to be restricted to a linear velocity—stress
relation but can be applied for any monotonically increasing shear stress layer.

2.4 The law-of-the-wall formulation of Cruz and Silva Freire (1998, 2002)

Introducing a new scaling procedure, Cruz and Silva Freire (2002) proposed the law
of the wall for a separating flow to be written as

_ w2 ldﬁﬁfiwﬁln(i), (10)
ltwl 2\ o p dx || L,
where
7\ 2 vdPW Ty
\/(7) T2 a R
LC = dPW 9 (11)

x = 0.4, u, is the friction velocity, and ug (=,/7p/p, 7, =total shear stress) is a
reference velocity.
The total shear stress, 7, can be evaluated from

(12)

u
1, = C\/? + ‘7 ,
P w Plp I azlp
where the subscript p denotes an adequately chosen location, normally the first grid
point in the computational domain, C,, (= 0.09) is a constant of the k— model and «
is the turbulent kinetic energy.
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Equation (12) was obtained from a momentum balance in the near-wall region;
it is similar to a relation usually employed by other authors to relate the wall shear
stress to the turbulent kinetic energy in a k— formulation (see, e.g., Launder and Spal-
ding (1974), the only difference here is the inclusion of the viscous term to improve
calculations when z/L, < 30).

To find a first estimate for the wall shear stress, 7,,, Egs. (2) and (12) can be
combined to give

B upC;lj,/4Tp1/2p1/2%

Two = —— 17> (13)
n(Ez @27
with E = ¥4,
The pressure gradient at the wall can be obtained through Egs. (12) and (13),

dPy T —Two

) 14
&= (14)

which results directly from the inner layer approximated equations, and represents
the balance of forces in that layer.
Next, the characteristic length can be calculated from

Two 2 de Two
\/(7) 2GR
Le= 1de, ) (s)
b dx

Finally, the wall shear stress is calculated from Eq. (10) according to

172 12
uprp/p/x

2./ % +ln(2—':)

Using some production—dissipation equilibrium assumptions and Eq. (10) the
kinetic energy dissipation and the production terms can be written respectively as
follows:

(16)

Ty =

1/2 1dPy
Dissipation = C,L%/cp Gp/0) L& ) 17)
xz | x(ny/p)2
1 1 1
C,? 2 2 2
Production = —“—2” ( (p/p)? + [ Gwo/P) 12 In (Z)) (18)
z x x L.

Equation (10) is a generalization of the classical law of the wall and replaces the
three expressions advanced in Cruz and Silva Freire (1998 —their Egs. (25), (26), (27)).
Equation (11) is an expression for the near-wall region characteristic length, which is
assumed to be valid in the attached and in the reverse flow regions.

Far away from the separation point, where the wall shear stress is positive and
z(dPy,/dx) << 1y, Eq. (10) reduces to the classical law of the wall, Eq. (2),

2 *
U= —u+ Y (i) , (19a)
% % L,
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Le = v/u,. (19b)

Near to the separation point where 7, = 0, Eq. (10) leads to

2 [zdPy,
_2 ]z 20
= o dx’ (20)

which is indeed Stratford’s equation (see Stratford 1959).
In the reverse flow region where the wall shear stress is negative and z(dP,, /dx) <<
7w, Eq. (10) reads

u= —%u* ~ % (i) , (21a)
% % L,
Tw
L.=2 . 21b
¢ .de/dx (21b)

The generalization provided by Eq.(10) implies that the friction velocity, u,, used
in the definition of L. has to be replaced by the reference velocity ug. Note that the
characteristic length in the reverse flow region is different from the classical charac-
teristic length given by the classical law of the wall. Equation (21) is in agreement
with Simpson et al. (1981), who suggested that a characteristic length for the backflow
region should be directly proportional to the absolute value of the wall shear stress.

3 Experiments
3.1 Description of the water channel and instrumentation

All experiments were carried out in a water channel sited at the Hydraulics Lab-
oratory of the Civil Engineering Department, University of Oporto, Portugal. This
water channel is an open-circuit, 17 m long channel with a cross-section of 0.4 m width
and 0.6 m height. The water recirculation system consists of two underground tanks,
four pumps with a maximum capacity of 1501s~! and one upper stabilizing tank.
The working section was 3 m long, and was situated 7.3 m downstream of the channel
entrance. The side walls were made of glass, so as to make it convenient to perform
any visual inspection of the flow, as well as to permit an appropriate use of the laser
Doppler anemometer (LDA). The model of the hill was located 8 m from the channel
entrance.

During a typical experiment, two pumps sufficed to keep the system running in a
steady state, with a maximum flow rate variation of +0.8%. At the entrance of the
channel, the water was made to pass through a series of screens and filters so as to
stabilize, make uniform and suppress any excessive level of turbulence. Screens and
filters were also used to control the grain size of the particles in suspension in the
water. To guarantee an accurate flow rate control, a magnetic flowmeter was installed
in the supply line. The water depth along the channel was controlled by a vertical steel
gate. The traversing system was 3D, very sturdy, independent of the water channel,
and had a positioning precision of 10um.

A one component, fibre optic, Dantec laser Doppler anemometry system was used
in the forward scatter mode to measure the mean and the fluctuating velocity fields.
The laser was a2 W Ar-ion source operating in multi-mode. A Bragg cell unit was used
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to introduce an electronic shift of 0.6 MHz. This procedure allowed for the resolution
of the direction of the flow field and the correct measurement of near-zero mean
velocities. Front lenses of 310 mm focal length were mounted on the probe in order to
accurately position the measurement volume on the centreline of the channel. Before
being collected by the photomultiplier, the scattered light passed through an inter-
ference filter of 514.5 nm, so that only green light was acquired. The signal from the
photomultiplier was band-pass filtered and processed by a TSI 1990C counter, oper-
ating in single measurement per burst mode. A series of LDA biases were avoided by
adjusting the strictest parameters on the data processor. For each point measured, a
sample size of 10,000 values has been considered. Mean and root-mean-square (rms)
values of fluctuating quantities have been defined over this sample size according to
the Reynolds decomposition, which states that the instantaneous velocity equals the
sum of a time-average component with a fluctuating component. The 10,000 sample
size was observed to be sufficient to ensure independent velocity results at each point
measured. Table 2 lists the main characteristics of the laser Doppler system used.
This system was used to measure both the longitudinal and the vertical velocity
components. This was easily made by simply turning the probe around its axis, so that,
for both conditions, the fringe distribution was perpendicular to the measured velocity
component. As for the Reynolds shear stresses, measurements were made by turning
the probe to the positions +45°. For the undisturbed flow region, the uncertainties
in the mean velocity components u and w are lower than 0.2% of the free stream
velocity, us. Further downstream of the hilltop, in high level turbulence regions, these
maximum uncertainties increase to about 0.3% of the free stream velocity. As for the

fluctuating quantities, \/L?z , \/ﬁ, and «/w’, the estimated uncertainties in the undis-
turbed flow region are of 2.3%, 1.8%, 4.2% of the friction velocity in the undisturbed
flow (for the Reynolds shear stress the uncertainty is given as a percentage of the
square of the friction velocity of the undisturbed flow), respectively, increasing to
3.8%,3.5% and 6.9% in regions of high turbulence.

3.2 Model hill characteristics

The model used in the present work was two-dimensional, axisymmetric and aero-
dynamically smooth. Based on the works of Britter et al. (1981) and of Arya et al.
(1987), the shape of the hill followed a modified “Witch of Agnesi” profile, according
to the equation zy = Hi[1 + (x/Lm)*1~! — H,. Thus, it follows that H (= H| — Hy)
(= 60mm) is the hill height and Ly (= 150 mm) is the characteristic length of the hill
representing the distance from the crest to the half-height point. Co-ordinates x and
z represent the longitudinal and the vertical axes, respectively.

Table 2 Main characteristics of the laser Doppler system

Wavelength 514.5nm
Half-angle between beams 3.415°
Fringe spacing 4.3183 um
Frequency shift 0.60 MHz
Dimensions of the measurement volume

Major axis 1.53 mm
Minor axis 162.0 um
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Table 3 Hill features

Characteristic height Hq 75 mm
Characteristic height Hy 15mm
Hill height H 60 mm
Hill length L 600 mm
Distance from the crest to the
half-height point Ly 150 mm
Aspect ratio 2Ly /H 5
Maximum slope Omax 18.6°
5_||||||||||||||||||||||||||||||||||_
4 = \"4 —]
o Separation Reattachment 3
s WH=05) \ . =66
C » ° .
zZH [ e s s % ° ° ° N
- e o © 3 : : : -1
2 t s 2 H H s
L e e © ® ° o -
° e ° [ 03 03
- e o © ° ° ° T
- e e © [ ° ° -1
I=e H H H s
oF .
-15 -10 -5 0 5 10 15 20 25
x/H

Fig. 1 Position of measuring stations and co-ordinate system

The geometry of the model was chosen so as to simulate a steep hill with a large
recirculation region, and the model was made of a single sheet of polished plexiglass.
The characteristic parameters of hill are presented in Table 3.

When the hill was not in place, mean velocity results obtained in the x—z planes
(see Fig. 1) located 50 mm away from the channel centreline to the right and to the left
showed a variation of 2% in relation to measurements taken at the channel centreline.
When the hill was in place, this value showed a variation of about 3%.

3.3 Experimental results

Results will be presented for the 13 stations indicated in Fig. 1 with the main purpose
of serving as validation data for the numerical calculations to be introduced next. To
that end, we will strive in furnishing mean velocity data. However, and since a detailed
investigation of the turbulent properties was performed, some turbulent results will
also be presented. Please note the position of the co-ordinate system origin. Presen-
tation of the data are split into three blocks: data for the flow field upstream of the
separation point (first three stations), data for the re-circulation region (next seven
stations) and data for the returning to equilibrium region (last three stations).

Results are mainly presented as plots with linear axes, as is normally the case.
However, since in the comments below some mention will be made of the logarithmic
behaviour of the velocity field, four representative profiles are shown in log-linear
coordinates (Fig. 2d) so as to illustrate the referred behaviour.
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Fig.2 Mean velocity profiles, x-component (a—c). Four representative logarithmic profiles are shown
in (d)

Figures 2 and 3 show the mean velocity profiles. The flow acceleration region on
the upstream side of hill is illustrated in Fig. 2a, and at stations x/H = —12.5, -5 and
—2.5 the well-known law of the wall is very well discriminated. Figure 2d illustrates
the logarithmic velocity profile measured at x/H = —12.5. In all three profiles, at least
11 points could be identified as belonging to the logarithmic region, yielding straight
lines with coefficients of determination R? higher than 0.99. In addition, seven extra
points were observed to be located in the viscous region; von Kdrman’s constant was
found to be 0.39.

The local properties of the boundary layer in the undisturbed flow are shown in
Table 4. The longitudinal and vertical fluctuations obtained in this experiments are
representative of atmospheric values. This fact can be inferred from a comparison
with typical values of near-surface fluctuations in neutrally stratified flows. For exam-

ple, the following data are taken from the literature: \/72 Juy, = 2.3 and \/ﬁ JUy =
1.1 (Grant 1992), Vu2/u, = 2.12 (Britter et al. 1981), vV Ju, = 2.5 and Vw2 /u, =
1.2 (Khurshudyan et al. 1981), \/ﬁ/u* =2.2 and \/ﬁ/u* = 1.0 (Gong and Ibbetson
1986) and \/ﬁ/u* =2.19 and \/ﬁ/u* = 1.12 (Athanassiadou and Castro 2001).
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Fig. 3 Mean velocity profiles, z-component
Table 4 Properties of undisturbed profile
Boundary layer thickness 8 100 mm
External velocity us 0.0482ms~!
Friction velocity Us 0.0035ms™!
Roughness length 20 0.27 mm
Longitudinal velocity fluctuations (z/§ = 0.05) LTZ/M* 2.50
Transversal velocity fluctuations (z/8 = 0.08) W/ U 0.83

The reverse mean flow region is shown in Fig. 2b. In this flow region, no clear
logarithmic region, as expected from the classical law of the wall, could be identified
(stations x/H = 0 and x/H = 3.75 are illustrated in Fig. 2d). However, the viscous
region could be discriminated for each profile from, at least, eight near-wall points.
The separation region was observed to have a total length of about 370 mm (= 6.17 H),
as characterized by the curve defined by the points where the mean flow velocity is
zero (Fig. 4). An outline of the region of trapped recirculating flow, here called the
border of the recirculation region, is also shown in Fig. 4.
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Fig. 4 Locus of zero longitudinal velocity in the re-circulation region

The mean longitudinal velocity profiles downstream of the hill are presented in
Fig. 2c. Although much disturbed by the separation region, all four quoted profiles
presented well-discriminated logarithmic regions. In fact, at least 12 points were used
to determine the logarithmic region through straight lines with coefficients of deter-
mination, R?, higher than 0.99 (station x/H = 20 is shown in Fig. 2d).

The mean z-velocity profiles, w, show a large increase as the fluid flows uphill (Fig.
3a), followed by negative values of velocity on the downside of the hill (Fig. 3b). In
fact, due to the extension of the separation bubble that is formed, the mean z-velocity
profile only becomes negative past station x/H = 2.5. As station x/H = 10 is reached
(Fig. 3c), w returns to a near-zero value.

The changes in Reynolds stresses are shown in Figs. 5-7, where measurements
indicate a decrease in «’2 on the upstream side of the hill, possibly due to the accel-
erated mean flow (Fig. 5a). In particular, on the hill top, a slight decrease in u? is
observed. In the separated flow region (Fig. 5b), a substantial enhancement in 2,
of the order of four times, occurs. The large increase in u results from the large
turbulence production provoked by Py, = —2u/w’(du/dz). The peak value for u2 was
found for x/H = 3.75 and z/H = 0.8, near the centre of the recirculation bubble. In
the flow separated region, the turbulence profiles are characterized by a maximum
peak progressively moving away from the wall with increasing distance from the hill.
Far away from the hill, at stations x/H = 15 and 20, the two w2 profiles are still
easily distinguished from each other and different from the undisturbed profile at
x/H = —125.

For w? an increase of about 50% is observed at the hilltop as compared to the
undisturbed values. This increase is followed by a further, and much more substantial,
increase of about twentyfold in the separated flow region. Indeed, we had seen previ-
ously that a large increase in w was observed uphill. The role of this increase is, in its
turn, to increase the production of w’2 through Py, = —2u/'w’(d3w/dx).

The distributions of /2 and of w'2 are somewhat similar across the separated region,
although w2 is about 65% of wu?. Indeed, the turbulence production
Py, = —2u/w'(du/dz) is expected to exceed the term Py, = —2u'w’(dw/dx), since in
this region (3u/dz) > (dw/dx). Also, we note that the maximum value of w’ is found
atx/H = 3.75, z/H = 0.8, just as before. Far away from the hill, at stations x/H = 15
and 20, the two w’2 profiles are still very different from each other.

The Reynolds stress profile, —u/w’, is relatively small upwind of the hill and varies
slowly with height. At the hill crest, values of —u/w’ are enhanced. In the shear layer

@ Springer



Boundary-Layer Meteorol (2007) 122:343-365 355

z/IH

2 — @ YH=20 —
z/H _
1 p—
(o) |
0'e o | | 1 11|11
0 0.02 0.04 0.06 0.08
u?/ug?

Fig. 5 Normalized Reynolds stress profiles, ﬁ/ u%

that is formed at the top of the flow separated region, a large increase in —u/w’ is
observed, of the order of 17 times. This is due to the enhanced shear effects through
the production term P,,,=—2w'2(3u/9z). The highest value of —u/w’ is achieved at
location x/H = 3.75, z/H = 0.6, differently from the positions of the points of maxi-
mum for 2 and for w2. Between the locations of detachment and of re-attachment,
an inner region of constant —u’w’ was not detected. Far downstream of the hill, at
stations x/H = 15 and 20, —u/w’ becomes nearly constant.

To find the wall shear stress in regions where the flow is attached chart methods
based on the logarithmic law may be used under some conditions. Additionally, the
identification of an existing constant shear-stress wall layer can also be used. In a
reverse flow region, however, some alternative technique has to be used to find the
wall shear stress.

Consider that in a turbulent boundary layer the very near-wall region is dominated
by viscous effects. Then, under adverse pressure gradient conditions, the momentum
equation in the viscous sublayer has approximate balance of the viscous and pressure
terms. A double integration of this equation furnishes a second-degree polynomial
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Fig. 6 Normalized Reynolds stress profiles, ﬁ/ u%

relationship between the velocity and the distance from the wall, as shown previously
in non-dimensional form by Eq. (3). In dimensional form, Eq. (3) reads

190 T
=P v,

_ by
YT o0 ox " (22)

The correct application of the above equation to the experimental data requires
the specification of an adequate coordinate system. For flows over a flat wall, the
x-coordinate can be aligned with the mean flow direction, resulting in a rectangular
Cartesian system where the momentum balance in the x-direction contains most of
the dynamical information regarding the flow. For flows over curved surfaces, Finn-
igan (1983) suggests the use of physical streamlined coordinates. These coordinates
are, however, difficult to use in separated flow regions.

Here, at least eight measurement points were located in the first 3 mm away from
the wall. In our worst case scenario, the wall tangent corresponds to an angle of
about 14° (station x/H = 1.25). Since sin(14°) = 0.24, the corresponding streamwise
velocity displacement along the normal direction will occur over a maximum distance
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Fig. 7 Normalized Reynolds stress profiles, —u'w’ /u(%.

of 0.7mm. This fact, allied to the fact that u >> w, means that close to the surface
the wall shear stress can be calculated directly from Eq. (22) with the rectangular
Cartesian system shown in Fig. 1.

4 Numerical simulation
4.1 Computational details

The numerical simulations were performed with the code Turbo-2D (Fontoura
Rodrigues 1990), which is a two-dimensional code based on the finite element method.
The application of standard Galerkin discretization to problems that are dominated by
convection, frequently leads to non-physical oscillations and convergence difficulties.
To alleviate this tendency, code Turbo-2D resorts to the balance dissipation method
proposed by Hughes and Brooks (1979) and Kelly et al. (1980) and implemented
by Brun (1988). The structure of code Turbo-2D was based on the work of Brison
et al. (1985), which uses finite elements of type P1-isoP2 for space discretization and
a semi-implicit time discretization.
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The governing equations are the Reynolds averaged equations for an incompress-
ible flow. Using the repeated indices convention, these equations can be written in
non-dimensional form as

u;

Ui _ g 23
i, ©3)
ou; il op 1 0 (ou; Ou; 0 ([~

i 9y = 0P L O (0w 0wy 9 24
o T aw M = Ton TR \aw T ox) T o (ue) 4)

where u; represents the normalized velocity components, p the normalized pressure
and R. the Reynolds number.
The Reynolds equations are complemented by the eddy viscosity formulation

— ou;  Ou; 2
— Lt;u]/ =V (ax]l + 87)61) — gK(Sl‘]‘, (25)

where v; denotes the eddy viscosity and §;; is the Kronecker delta.
In Eq. (25), « is the turbulent kinetic energy,

K = %W (26)
In the k—e model, the eddy viscosity is taken to be
2
y=C=, 27)

&

where, C, (= 0.09) is a constant of the k—e model, and ¢ is the dissipation rate of «.

Equations for « and for ¢ can be obtained directly from the Reynolds equations
through some algebraic manipulations. With further modelling, the resulting equa-
tions can be cast as

oK oK a 1 1 oK
T = (= A+ Py, — 28
at + i Bx,- 8x,- |:(Re + (RtUK)) 8x,-] * ity & ( )

de de a 1 1 de € &2
ge 08 _ (L 2 Py — C 29
ar TH ox;  0x; I:(Re + (Rtas)) 8xi:| + et Pu 20 (29)

where R; is the turbulent Reynolds number defined with the help of Eq. (27).
Constants C,,, C.1, Ce2, 0k and oy, as given in the literature, take values: 0.09, 1.44,
1.92, 1.0, 1.3. The production term, Pu,-uj, is given by

—— 0u;
Py = —uéu]’.a—xi. (30)

The governing equations are discretized in space through triangular finite elements,
defined by linear interpolation functions. The compatibility conditions between pres-
sure and velocity fields are preserved by using two calculation meshes. The pressure
field is calculated with a mesh with P1-type elements. Velocity and all other variables
are calculated using a P1-isoP2 mesh, constructed from the P1 mesh by dividing one
segment into two. This procedure generates four P1-isoP2 elements from one P1 ele-
ment. Figure 8 shows the velocity and pressure meshes used to evaluate the flow field
studied in this work.
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Fig. 8 Typical mesh distribution around the hill for pressure and velocity fields evaluation. (a) P1
mesh with 1875 nodes and 3472 elements. (b) Iso/P2 mesh with 7221 nodes and 13888 elements

Table 5 Comparative computational times required to achieve numerical convergence for each of
the law of the wall formulation considered

Formulation LogLaw M (1966) NK (1984) CSF (1998)
Time 1 20 25 25

Temporal discretization of the governing equations is made through a sequential
semi-implicit finite difference algorithm of Brison et al. (1985). The time iteration pro-
cess was used to remove the influence of the initial conditions on the final calculations,
so that simulation finishes only when statistically steady results have been reached. In
fact, to keep a low sensitivity of the results to the time intervals, very fine timesteps
would have to be used. Here, in order to optimize the convergence process, a temporal
integration procedure that progressively increased the timesteps was used. In a typical
simulation, initial timesteps were about 10~° s. This value was then increased steadily
to 5 x 1072 s by the end of the simulation. These values were observed to ensure inde-
pendence of results. For the velocity and pressure fields, and for the velocity boundary
conditions, the convergence criteria were set respectively to 108 and 10-°. Because
computational (cpu) times vary with local parameters (processor features, memory
capacity, grid refinement, convergence criteria), just comparative computational flow
times are shown here (Table 5).

For code verification, Turbo-2D was tested against a number of data including the
numerical solution of Mansour et al. (1989) and the experimental data for flows over a
backward facing step and in an asymmetric plane diffuser (Carlson et al. 1967; Reneau
et al. 1967; Kim et al. 1980; Trupp et al. 1986; Buice and Eaton 1995).

A successful simulation of the flow under scrutiny depends, of course, on the correct
specification of the boundary conditions. Here, the inflow values of the mean velocity,
of the turbulence kinetic energy and of the dissipation rate were taken directly from
the experimental data. In the region adjacent to the surface, wall functions were used
as explained next. At the top, a free surface condition was used. For the outflow,
symmetry (zero normal gradient) conditions were applied.
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Since the standard «—¢ turbulence model does not hold for low values of the turbu-
lent Reynolds number, a common practice is to use wall functions to express the flow
behaviour in the near-wall region, much as described in Sect. 3. In finite elements, the
mesh does not reach the wall. Thus, the velocity tangent to the solid wall has to be
specified as a function of the distance from the wall, d.

Clearly, the chosen value of d where the boundary conditions are to be applied
must be selected so that d™ (= du,/v) lies within the range of validity of the law of
the wall. Thus, a posteriori computations of d* have to be performed. In many cases,
computational decisions and meshing procedures do have an impact on the accuracy
of numerical predictions. For most finite element codes, acceptable values of d* obey
the relation d* < 100 in order to prevent numerical instabilities. For attached flows,
the best results are normally found for 30 < d™ < 50. In the present algorithm, d
is given as an initial value, and computations are usually started with small values
of d. This value is then progressively increased until a maximum converged value
is obtained. Ideally, the selected value of d should satisfy 30 < d. This condition,
however, normally can only be satisfied for attached flows. The ideal d is, in any case,
always determined by trial-and-error.

During calculations, u and u, at a given iteration are found through a system of
non-linear equations. The explicit treatment of this non-linearity causes heavy numer-
ical instabilities, independently of the type of law of the wall that is adopted. Thus,
the introduction of a stabilization scheme for the calculation of u, by a sub-relaxation
method is in order. Turbo-2D uses an iterative minimum residual algorithm to find
u, that preserves code stability. The minimization algorithm was particularly devel-
oped so as to implement law-of-the-wall formulations that are appropriate to the
description of flows subject to an adverse pressure gradient. This very sophisticated
procedure will be described in detail elsewhere.

The computations were performed with a very fine mesh with 13888 nodes (P1-
isoP2), and we should point out to the reader that a mesh with 13888 nodes is con-
sidered to be extremely fine for finite element standards. The computational grid is
shown in Fig. 8.

4.2 Numerical results

The predicted general flow patterns are shown in Fig. 9b—d together with the experi-
mental data (Fig. 9a).

The location of flow detachment was best predicted by the model of Nakayama
and Koyama (1984). Unfortunately, this same model overpredicted the position of
flow re-attachment by 34%, as illustrated in Fig. 9d. The formulation of Cruz and
Silva Freire (1998, 2002) overpredicts detachment and underpredicts reattachment,
resulting in a separated region 13.5% shorter than the experimentally determined
length (Fig. 9b). The results obtained through Mellor’s formulation overpredicted
both the detachment and the reattachment points, as shown in Fig. 9c. This yielded
a separation region with length x/H = 6.00, a value very close to the experimental
value, x/H = 6.17.

Under the present mesh conditions, the classical law-of-the-wall was shown to be
incapable of promoting flow separation. Table 6 summarizes the main findings.

Mean velocity profiles obtained by the different law-of-the-wall formulations are
presented in Fig. 10 for the reverse flow region.
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2

Fig. 9 Extension of bubble recirculation region according to (a) Experiments, (b) Cruz and Silva
Freire (1998), (¢) Mellor (1966) and (d) Nakayama and Koyama (1984)

The different mean velocity predictions for the different law-of-the-wall formula-
tions are marked. The results provided by the classical law of the wall that completely
failed in predicting the separation region are also shown in Fig. 10 for the sake of
comparison. On the hilltop (Fig. 10a) all near-wall formulations underpredict the
speed-up factor by an order of about 20%. The model of Cruz and Silva Freire (1998,
2002) furnishes slightly better results, but overall the agreement is not good. Close
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Fig. 10 Mean velocity profiles
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Table 6 Length of separation bubbles according to different formulations

Formulation Detachment (x/H) Reattachment (x/H) Length (L/H)
LogLaw Not predicted Not predicted Not predicted
M (1966) 0.90 7.00 6.00
NK (1984) 0.60 8.90 8.30
CSF (1998) 0.80 6.10 5.30
Experiment 0.50 6.67 6.17
Fig. 11 Wall shear stress 0.012 . I . I . I . I
predictions, rw/(pug) o ——+—— Experiments 1
0.009 |~ —o—— CSF (1998) _
— % NK (1984)
o o I —4—— M (1966) -
= 0.006 | —
N L _
& 0.003 —
0
-0.003 i 1 | 1 | 1 | 1 | ]
-5 0 5 10 15
x/H

to the separation point, at station x/H = 0.5, the differences between predicted and
measured profiles are still large. In the reverse flow region (Fig. 10c-f), the very near-
wall (d/H < 0.2,d =distance from the wall) velocity behaviour appears to be cap-
tured only partially by the near-wall formulations. In fact, the agreement shown by all
formulations at stations x/H = 1.25 and 5.0 is reasonable. However, at stations x/H =
2.5 and 3.75 the large peaks in reverse flow are not well predicted. Farther away from
the wall (d/H > 0.2), across the remaining reverse flow region, the formulations of
Mellor (1966) and of Nakayama and Koyama (1984) predict much lower velocities
(Fig. 10d—f). However, the overall agreement provided by the formulation of Cruz
and Silva Freire (1998, 2002) at station x/H = 2.5, 3.75 and 5.0 is very good.

To further investigate the near-wall behaviour of the proposed formulations, let us
consider the wall shear-stress distribution. Here, we emphasize, predictions of wall
shear stress were made directly from the near-wall formulations of Mellor (1966), of
Nakayama and Koyama (1984) and of Cruz and Silva Freire (1998, 2002) as presented
in Sect. 3. The results are shown in Fig. 11. On the hilltop, the inability of the formu-
lations to resolve the near-wall layer furnishes an overestimation of t,,. In the reverse
flow region, however, the formulation of Nakayama and Koyama (1984) shows great
fragility; the discrepancy from the experimental data is large. The predictions given
by Mellor (1966) fail at stations x/H = 1.25 and 2.5, and at the other stations, agree-
ment is poor. The formulation of Cruz and Silva Freire (1998, 2002) was observed to
provide very good predictions of 7,,. The agreement at stations x/H = 3.75 and 5.0
was particularly good.

5 Final remarks

The present work reports new experimental data on the flow over a two-dimensional
smooth steep hill. Mean and fluctuating quantities were measured through LDA for 13
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different stations. In particular, the large separated region that was formed on the lee
of the hill was characterized through seven different stations. The work characterized
the mean velocity behaviour for both mean velocity components, showing in detail
the near-wall reverse flow region. The data showed how turbulence production is
largely enhanced in the separation region, yielding values of /2, w2 and —u'w’ that
are much higher than the values in the upstream undisturbed profile. Complementary
plots illustrating other properties of turbulence, including the local turbulent kinetic
energy, the production terms, the local mixing length and the local eddy viscosity will
be presented elsewhere.

In addition, we have performed a numerical simulation of the flow via a finite
elements code, Turbo-2D. The code models turbulence through a k— model and uses
wall functions to specify the boundary conditions. In the present numerical simulation,
we have shown that predictions were very sensitive to the various types of near-wall
formulations that were used. All three law-of-the-wall expressions that were spe-
cially devised to deal with adverse pressure gradients were capable of predicting the
reverse flow region. However, the formulations of Mellor (1966) and of Nakayama and
Koyama (1984) much underpredicted the flow velocity. The results of Mellor (1966)
and of Nakayama and Koyama (1984) also gave poor predictions for the wall shear
stress. Overall, the best mean velocity results in the reverse flow region (X/H =
1.25,2.5,3.75 and 5.0) were given by the formulation of Cruz and Silva Freire (1998,
2002). This fact has been specially corroborated by the very good wall shear-stress
predictions.
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