
Computational Thermal Sciences, 6 (6): 507–524 (2014)

THE UNIFIED INTEGRAL TRANSFORMS (UNIT)
ALGORITHM WITH TOTAL AND PARTIAL
TRANSFORMATION
Renato M. Cotta,1,2,∗ Diego C. Knupp,3 Carolina P. Naveira-Cotta,2

Leandro A. Sphaier,4 & João N. N. Quaresma5

1Laboratory of Transmission and Technology of Heat, LTTC, Department of Mechanical Engi-
neering, Universidade Federal do Rio de Janeiro, POLI&COPPE/UFRJ, Cidade Universitária,
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The theory and algorithm behind the open-source mixed symbolic-numerical computational code named UNIT (uni-
fied integral transforms) are described. The UNIT code provides a computational environment for finding solutions of
linear and nonlinear partial differential systems via integral transforms. The algorithm is based on the well-established
analytical-numerical methodology known as the generalized integral transform technique (GITT), together with the
mixed symbolic-numerical computational environment provided by the Mathematica system (version 7.0 and up). This
paper is aimed at presenting a partial transformation scheme option in the solution of transient convective-diffusive
problems, which allows the user to choose a space variable not to be integral transformed. This approach is shown to
be useful in situations when one chooses to perform the integral transformation on those coordinates with predominant
diffusion effects only, whereas the direction with predominant convection effects is handled numerically, together with
the time variable, in the resulting transformed system of one-dimensional partial differential equations. Test cases are
selected based on the nonlinear three-dimensional Burgers’ equation, with the establishment of reference results for spe-
cific numerical values of the governing parameters. Then the algorithm is illustrated in the solution of conjugated heat
transfer in microchannels.
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NOMENCLATURE

Dh hydraulic diameter in the conjugated heat w transient operator coefficient in general
transfer problem problem; heat capacity in the conjugated

d dissipation operator coefficient heat transfer problem, Eqs. (11)
g nonlinear source term x position vector in the general problem
K diffusion operator coefficient formulation
Le distance from the channel centerline to the x longitudinal coordinate in problem (9)

external face of the channel wall in the Y dimensionless transversal coordinate in the
conjugated heat transfer problem conjugated heat transfer problem

Lf channel height in the conjugated heat transfery transversal coordinate in problems
problem (9) and (11)

Lw channel width in the conjugated heat transferZ dimensionless longitudinal coordinate in the
problem conjugated heat transfer problem

M number of subregions in semianalytical and z transversal coordinate in problem (9);
Gaussian integration longitudinal coordinate in problem (11)

N truncation order in eigenfunction expansion
n number of coupled potentials in the general Greek Symbols

problem formulation α boundary condition coefficient
Pe Ṕeclet number in the conjugated heat transferβ boundary condition coefficient

problem θ dimensionless temperature field in the
T dimensionless potential in the general conjugated heat transfer problem

problem formulation; potential in Burgers’ µ eigenvalues
equations (9) and (10); temperature field ν diffusion coefficient in Burgers’ equation
in the conjugated ϕk source term in boundary condition

t dimensionless time variable ψ eigenfunctions
heat transfer problem, Eqs. (11)

U dimensionless fully developed velocity profileSubscripts & Superscripts
in the conjugated heat transfer problem i order of eigenquantities

u nonlinear function in convection term in k quantity corresponding to the equation of the
Burgers’ equation (9); fully developed kth potential in general problem
velocity profile in the conjugated heat - position vector excluding the space variable
transfer problem, Eqs. (11) not to be integral transformed

u0 linear parameter in nonlinear convection term – integral transform
in Burgers’ equation, Eqs. (9) ∼ normalized eigenfunction

1. INTRODUCTION

Integral transforms have been successfully used in
different branches of the physical, mathematical, and
engineering sciences for about 200 years. Its introduction
can be attributed to Fourier, after the publication of his
treatise on the analytical theory of heat (Fourier, 1822).
In essence, Fourier at that time advanced the idea of sepa-
ration of variables, so as to handle and interpret the solu-

tions of the newly derived heat conduction equation, after
proposing the constitutive equation known nowadays as
Fourier’s law. He gave a series of examples before stat-
ing that an arbitrary function defined on a finite interval
can be expanded in terms of a trigonometric series that
is now known as the Fourier series. In an attempt to ex-
tend his new ideas to functions defined on an infinite in-
terval, Fourier discovered an integral transform and its in-
version formula which are now commonly known as the
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Fourier transform and the inverse Fourier transform, re-
spectively. His work provided the modern mathematical
theory of heat conduction, but also introduced Fourier se-
ries, Fourier integrals, and stated an important result that
is known as the Fourier integral theorem, later rephrased
by Dirichlet (Debnath and Bhatta, 2007).

The method of integral transforms was then widely
used in solving linear partial differential equations
(PDEs) of mathematical physics along the following
years, and the classical treatise of Carslaw and Jaeger
(1947) provides a wide collection of solutions obtained
in heat conduction theory by this and the competing an-
alytical approaches then available. According to Luikov
(1980), father of modern analytical heat diffusion the-
ory, as detailed in his most classical work (Luikov, 1968),
it was not until the work of Koshlyakov (1936) that an
idea was provided in handling nonhomogeneous diffusion
equations and boundary conditions by the method of finite
integral transformations, and the theory of such integral
transforms was developed in detail by Grinberg (1948),
who also extended this approach to multilayer prob-
lems, considering step variations of the material proper-
ties along the transformation coordinate. A very active pe-
riod of research on exact analytical solutions of nonhomo-
geneous heat and mass transfer problems then followed,
when besides the continuous contribution of Luikov and
coworkers, one should certainly include the contributions
of other very prominent researchers, such as Olçer (1964,
1967), Ozisik (1968), and Mikhailov (1967, 1972). This
period was so fruitful for analytical heat and mass trans-
fer that Luikov himself, in 1974, contacted both Ozisik
and Mikhailov regarding the joint publication of books
on heat conduction and convection. However, Luikov
passed away even before the startup of these projects,
but Mikhailov and Ozisik finally met each other in 1976
and started a new project inspired by Luikov’s sugges-
tions, work that would be completed and published only
in 1984, when most of the available exact solutions of
heat and mass diffusion through integral transforms were
unified in seven different classes of problems and sys-
tematically presented in a reference book (Mikhailov and
Ozisik, 1984). This book was very much influenced by the
previous publications of Mikhailov along a very produc-
tive period of more than one decade (including Mikhailov,
1967, 1972, 1973a,b, 1975, 1977a,b; Mikhailov and
Shishedjiev, 1976; Mikhailov and Ozisik, 1980, 1981;
Mikhailov et al., 1982; Mikhailov and Vulchanov, 1983),
when he challenged the integral transform method to han-
dle different classes of unified formulations in heat and
mass diffusion. Ozisik also pursued the rewriting of his

1968 textbook during this period (Ozisik, 1968) and pre-
pared a fairly complete new work on heat conduction,
compiling different analytical, approximate, and numer-
ical approaches (Ozisik, 1980).

Within this same period, Ozisik and Mikhailov, inde-
pendently, also perceived the limitations of the integral
transforms method, as it was known at that time, when
they tried to solve problems with time-dependent bound-
ary condition coefficients (Ozisik and Murray, 1974;
Yener and Ozisik, 1974) or time-dependent equation co-
efficients (Mikhailov, 1975). In these early works, the in-
tegral transformation process, due to the time dependence
of the transformation kernel represented by the eigen-
values, eigenfunctions, and norms, was not successful
in fully transforming the original PDE and resulted in a
coupled infinite ordinary differential system for the trans-
formed temperature fields. Nevertheless, the authors were
still able to propose analytical approximations by taking
only a limited number of terms in the coupling terms and
then forcing the simplification to a decoupled system. In
the work of Ozisik and Murray (1974), the expression
generalized integral transform technique was employed
for the first time. This same concept of approximate an-
alytical solution was later on employed by Ozisik and
Guçeri (1977) in the solution of phase change problems,
by Bayazitoglu and Ozisik (1980) in the analysis of inter-
nal forced convection with axial diffusion effects, by Bo-
gado Leite et al. (1980, 1982) in solving moving bound-
ary diffusion problems related to the erosion of fusion re-
actor walls, and by Cotta and Ozisik (1985) in the solu-
tion of transient internal convective heat transfer due to
wall temperature variations. Such approximate solutions,
though elegant and easy to compute, had limitations in
terms of accuracy, within certain ranges of the involved
parameters and independent variables, and would also re-
quire some sort of numerical solution for verification pur-
poses. However, in Cotta (1986a) the complete solution of
the coupled transformed system was achieved, based on
the numerical solution of a truncated version of the trans-
formed ordinary differential equation (ODE’ system, as
obtained for a diffusion problem with a prescribed mov-
ing boundary, associated with oxidation of nuclear fuel
rods cladding. The resulting transformed system typical
of such integral transformations is likely to present sig-
nificant stiffness, especially for larger truncation orders,
but at that time reliable solvers for stiff initial value prob-
lems were already available, allowing for error-controlled
solutions of the transformed potentials. Only then would
the GITT (generalized integral transform technique) be
proposed as a full hybrid numerical-analytical solution of
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nontransformable diffusion or convection–diffusion prob-
lems. The GITT was later advanced to offer analytical
solutions of the complete transformed system for lin-
ear problems, such as in the transient internal convec-
tion problem in the complex domain solved in Cotta and
Ozisik (1986). In a natural sequence, the previous so-
lutions of diffusion problems with variable equation or
boundary coefficients were formalized soon afterward,
under the new concept of obtaining the solution of the
complete transformed systems (Cotta, 1986b; Cotta and
Ozisik, 1987). Clearly, the generalized approach was then
interpreted as the closest in nature to the exact solutions
obtainable by integral transforms in the case of trans-
formable problems, although somehow still approximate
due to the truncation of the infinite transformed system.
Once the transformed system is numerically solved by
controlling the relative error in the initial value prob-
lem algorithm, one is left with the task of controlling the
global error of the solution by adequately choosing the
system size and thus the eigenfunction expansion trunca-
tion order.

An avenue of opportunities was then opened and the
successive challenges for the GITT extension would form
the basis of a series of theses and papers. Just to name a
few contributions within this fruitful period, the analysis
of diffusion within irregular domains was soon proposed
(Aparecido and Cotta, 1987; Aparecido et al., 1989), and
followed by the analysis of nonlinear diffusion problems
(Cotta, 1990; Serfaty and Cotta, 1990, 1992), conjugated
convection-conduction problems (Guedes et al., 1989;
Guedes and Cotta, 1991), ablation moving boundary
problems (Diniz et al., 1990), boundary layer equations
(Cotta and Carvalho, 1991; Carvalho et al., 1993), Navier-
Stokes equations (Perez Guerrero and Cotta, 1992), dry-
ing problems (Ribeiro et al., 1993), and natural convec-
tion in porous media (Baohua and Cotta, 1993). Based
on the above works and a few others, the first reference
and textbook on the GITT was prepared and published
in 1993 (Cotta, 1993), including some formal aspects of
the approach that were not previously dealt with in the
available publications. This effort made the hybrid ap-
proach more visible and the positive response of the heat
transfer community was soon provided, as demonstrated
in the keynote lecture at the 10th IHTC, UK, in 1994
(Cotta, 1994a) and the invited review paper in theIn-
ternational Journal of Heat and Mass Transferin that
same year (Cotta, 1994b), celebrating the contribution
of Prof. James P. Hartnett to the heat and mass trans-
fer field. Two years later a book on heat conduction was
published (Cotta and Mikhailov, 1997) that would com-

bine the knowledge on improved lumped system analy-
sis, GITT, and symbolic computation. Also within this
phase, a compilation of advanced contributions was or-
ganized (Cotta, 1998) in order to complement the 1993
book, which remains an important source of advanced ref-
erence work on the generalized integral transform tech-
nique.

The next phase then initiated in the development of
integral transforms in heat and fluid flow was character-
ized by the optimization of the numerical tasks, proposi-
tion of more challenging problems among those classes
already handled, and the more ample application of this
knowledge basis in different areas. For instance, one
may recall the analysis of fluid flow and mass transfer
within petroleum reservoirs (Almeida and Cotta, 1995),
three-dimensional Navier-Stokes equations (Quaresma
and Cotta, 1997), Navier-Stokes equations in irregular ge-
ometries (Perez Guerrero et al., 2000), forced and natural
convection with variable fluid properties (Machado and
Cotta, 1999; Leal et al., 2000), compressible flow and
heat transfer in ultracentrifuges (Pereira et al., 2002), sta-
bility analysis in natural convection (Alves et al., 2002),
three-dimensional natural convection in porous enclo-
sures (Luz Neto et al., 2002), eigenvalue and diffusion
problems in multidimensional irregular domains (Sphaier
and Cotta, 2000; Sphaier and Cotta, 2002), and contami-
nant dispersion in fractured media (Cotta et al., 2003), to
name a few. The maturity of the approach was then con-
solidated in the edited book (Santos et al., 2001), in the
invited editorial of theHeat Transfer Engineeringjournal
(Cotta and Orlande, 2003), and finally in the invited chap-
ter for theHandbook of Numerical Heat Transfer(Cotta
and Mikhailov, 2006).

In recent years, besides the continuous search for more
challenging problems and different application areas, em-
phasis has been placed in unifying and simplifying the
use of the GITT, to reach a larger number of users and
offer an alternative hybrid solution to their problems. Hy-
brid methods become even more powerful and applicable
when symbolic manipulation systems, which were also
widely disseminated along the last two to three decades,
are employed. The effort in integrating the knowledge on
the GITT into a symbolic-numerical algorithm resulted in
the so-called UNIT code (unified integral transforms), ini-
tially proposed as a project in 2007 and intended to bridge
the gap between simple problems that allow for a straight-
forward analytical solution, and more complex and in-
volved situations that almost unavoidably require special-
ized software systems. The open-source UNIT code is
thus an implementation and development platform for re-
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searchers and engineers interested in integral transform
solutions of diffusion and convection–diffusion problems
(Sphaier et al., 2011; Knupp et al., 2010, Cotta et al.,
2010, 2013).

This work is thus aimed at reviewing the current ver-
sion of the multidimensional UNIT code in the Math-
ematica platform and introduces its partial transforma-
tion scheme option. In this alternative partial transforma-
tion mode, the user is allowed to choose one of the di-
mensional variables not to be integral transformed. This
strategy can be very useful for the solution of transient
convective–diffusive problems in which one chooses to
perform the integral transformation only on the direc-
tions with predominant diffusion effects, whereas along
the direction with predominant convection effects the
problem is solved numerically, together with the time
variable, in the resulting transformed system of one-
dimensional PDEs. In order to illustrate the present im-
plementation, we show some results regarding a non-
linear three-dimensional formulation of Burgers’ equa-
tion, which are critically compared to the default total
transformation UNIT code solutions. Also, we illustrate
the partial transformation approach for the analysis of
conjugated heat transfer in microheat spreaders made of
microchannels molded in a polymeric matrix (Ayres et
al., 2011), employing a recently advanced single-domain
strategy for conjugated heat transfer problems developed
by Knupp et al. (2012, 2013a,b, 2014a,b).

2. PROBLEM FORMULATION

A general transient convection–diffusion problem ofn
coupled potentials is considered, defined in the regionV
with boundary surfaceS:

wk(x)Lk,tTk(x, t) = Gk(x, t,T), x ∈ V, t > 0,

k = 1, 2, ..., n (1a)

where thet operatorLk,t for a parabolic or parabolic–
hyperbolic formulation is given by

Lk,t ≡
∂

∂t
(1b)

and

Gk(x, t,T) = ∇ · (Kk(x)∇Tk(x, t))− dk(x)Tk(x, t)

+ gk(x, t,T) (1c)

with initial and boundary conditions given, respectively,
by

Tk(x, 0) = fk(x), x ∈ V (1d)

[
αk(x) + βk(x)Kk(x)

∂

∂n

]
Tk(x, t) = φk(x, t,T),

x ∈ S, t > 0 (1e)

wheren denotes the outward-drawn normal to the surface
S, and where the potentials vector is given by

T = {T1, T2, ..., Tk, ..., Tn} (1f)

As mentioned before, Eqs. (1a)–(1f) are quite general,
since nonlinear and convection terms may be grouped
into the equations and boundary conditions source terms.
It may be highlighted that in the case of decoupled lin-
ear source terms, i.e.,g ≡ g(x, t), andφ ≡ φ(x, t),
this example is reduced to a class I linear diffusion prob-
lem for each potential, according to the classification in
Mikhailov and Ozisik (1984), and exact analytical solu-
tions are readily available via the classical integral trans-
form technique. Otherwise, this problem shall not bea
priori transformable, except for a few linear coupled sit-
uations also illustrated in Mikhailov and Ozisik (1984).
However, the formal solution procedure provided by the
GITT (Cotta, 1993) may be invoked in order to provide
hybrid numerical-analytical solutions for the nontrans-
formable problems.

The formal solution regarding the standard procedure
of the UNIT code is known as the total transformation
scheme, described in Cotta et al. (2013), in which all spa-
tial variables are integral transformed. Here we focus on
the partial integral transformation scheme option of the
UNIT code, as an alternative solution path to problems
with a strong convective direction, which is not elimi-
nated through integral transformation but kept within the
transformed system.

3. SOLUTION METHODOLOGY

3.1 Total Transformation

Following the formal solution procedure for nonlinear
convection–diffusion problems through integral trans-
forms, the proposition of eigenfunction expansions for
the associated potentials are first required. The preferred
eigenvalue problem choice appears from the direct appli-
cation of the separation of variables methodology to the
linear homogeneous purely diffusive version of the pro-
posed problem. Thus the recommended set of decoupled
auxiliary problems is here given by

∇ · [Kk(x)∇ψki(x)] + [µ2kiwk(x)− dk(x)]ψki(x) = 0,

x ∈ V (2a)
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[
αk(x)+βk(x)Kk(x)

∂

∂n

]
ψki(x)=0, x∈S (2b)

where the eigenvaluesµki and associated eigenfunctions
ψki(x) are assumed to be known from exact analytical ex-
pressions, for instance, obtained through symbolic com-
putation (Wolfram, 2005) or application of the GITT it-
self (Naveira-Cotta et al., 2009). One should notice that
Eqs. (1a)–(1f) are presented in a form that already reflects
this choice of eigenvalue problems, given by Eqs. (2a)
and (2b), with the adoption of linear coefficients in both
the equations and boundary conditions, and incorporating
the remaining terms (coupling, nonlinear, and convective
terms) into the general nonlinear source terms, without
loss of generality.

By making use of the orthogonality properties of the
eigenfunctions, it is then possible to define the following
integral transform pairs:

T̄ki(t)=

∫
V

wk(x)ψ̃ki(x)Tk(x, t)dV transforms (3a)

Tk(x, t) =
∞∑
i=1

ψ̃ki(x)T̄k,i(t) inverses (3b)

where the symmetric kernels̃ψki(x) are given by

ψ̃ki(x)=
ψki(x)√

Nki

; Nki=

∫
V

wk(x)ψ
2
ki(x)dV (3c,d)

with Nki being the normalization integral.
The integral transformation of Eq. (1a) is accom-

plished by applying the operator
∫
V
ψ̃ki(x) (·) dV and

making use of the boundary conditions given by Eqs. (1e)
and (2b), yielding

dT̄ki(t)

dt
+ µ2kiT̄ki(t) = ḡki(t,T) + b̄ki(t,T),

i = 1, 2, ..., t > 0, k = 1, 2, ..., n (4a)

where the first transformed source termḡki(t,T) is due to
the integral transformation of the equation source terms,
and the second one,b̄ki(t,T), is due to the contribution
of the boundary source terms:

ḡki(t,T) =

∫
V

ψ̃ki(x)gk(x, t,T)dV (4b)

b̄ki(t,T) =

∫
S

Kk(x)

[
ψ̃ki(x)

∂Tk(x, t)

∂n
− Tk(x, t)

× ∂ψ̃ki(x)

∂n

]
dS (4c)

The boundary conditions contribution may also be ex-
pressed in terms of the boundary source terms, after ma-
nipulating Eqs. (1e) and (2b), to yield

b̄ki(t,T)=

∫
S

φk(x,t,T)

[
ψ̃ki(x)−Kk(x)

∂ψ̃ki(x)
∂n

αk(x) + βk(x)

]
dS (4d)

The initial conditions given by Eq. (1d) are transformed
through the operator

∫
V
wk(x)ψ̃ki(x) (·) dV to provide

T̄ki(0) = f̄ki ≡
∫
V

wk(x)ψ̃ki(x)fk(x)dV (4e)

For the solution of the infinite coupled system of non-
linear ordinary differential equations given by Eqs. (4a)–
(4e), one must make use of numerical algorithms, after the
truncation of the system to a sufficiently large finite or-
der. For instance, in the present work, the built-in routine
of the Mathematica system (Wolfram, 2005) is employed,
NDSolve, which is able to provide reliable solutions un-
der automatic absolute and relative error control. After the
transformed potentials have been numerically computed,
the Mathematica routine automatically provides an inter-
polating function object that approximates thet variable
behavior of the solution in a continuous form. Then the
inversion formula can be recalled to yield the potential
field representation at any desired positionx and timet.

The solution procedure described above provides the
basic straightforward working expressions for the integral
transform method. Nevertheless, for an improved compu-
tational performance, it is always recommended to reduce
the importance of the equation and boundary source terms
so as to enhance the eigenfunction expansion’s conver-
gence behavior (Cotta and Mikhailov, 1997). The UNIT
code for multidimensional applications allows for user-
provided filters, but an automatic progressive linear fil-
tering option is also implemented. The interested reader
is encouraged to refer to Cotta et al. (2013), where this
filtering strategy is described in detail.

The constructed multidimensional UNIT code in the
Mathematica platform (Cotta et al., 2010, 2013) encom-
passes all of the symbolic derivations that are required in
the above GITT formal solution, besides the numerical
computations that are required in the solutions of the cho-
sen eigenvalue problem and the transformed differential
system. The user essentially needs to specify the problem
formulation together with the required problem parame-
ters, solve the problem using the provided UNIT algo-
rithm, and then choose how to present the results accord-
ing to the specific needs. Besides the parameters regard-
ing the problem formulation, the user is also asked to set
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the truncation order of the eigenfunction expansionsN
and to choose the coefficients integration methodology,
which can be analytical, through the Integrate routine in
the Mathematica system or user-provided, semianalytical,
or by an automatic Gaussian quadrature scheme that ac-
counts for the information regarding the eigenfunctions’
oscillatory behavior. The Gaussian quadratures and the
alternative semianalytical integration procedure are par-
ticularly convenient in nonlinear formulations that might
require costly numerical integration, once analytical inte-
gration is not feasible.

The UNIT code is here illustrated through its version
2.2.3, in Mathematica 7.0 or up, and has the following
main features:

1. A system of linear or nonlinear equations (parabolic
problems, parabolic–hyperbolic problems, or elliptic
problems in pseudo-transient formulation);

2. Multidimensional transient formulations, automati-
cally defined by one single parameter with the num-
ber of space dimensions;

3. Eigenvalue problem analytically solved via the
DSolve routine (Sturm-Liouville problem);

4. Transformed coefficients determined by semianalyt-
ical integration (zeroth order), numerical integration
(Gaussian quadrature or NIntegrate routine), or an-
alytical integration (Integrate routine or user sup-
plied);

5. User-defined or automatic progressive linear filter-
ing;

6. Reordering by squared eigenvalues criterion or com-
bination of transformed initial conditions, trans-
formed source term, and squared eigenvalues crite-
ria;

7. Nonhomogeneous term via Green’s second formula;

8. Error estimator with adjustable residue order.

3.2 Partial Transformation

An alternative hybrid solution strategy to the above-
described full integral transformation is of particular in-
terest in the treatment of transient convection–diffusion
problems with a preferential convective direction. In such
cases, the partial integral transformation in all but one
space coordinate may offer an interesting combination of
relative advantages between the eigenfunction expansion

approach and the selected numerical method for handling
the coupled system of one-dimensional PDEs that results
from the transformation procedure. To illustrate this par-
tial integral transformation procedure, again a transient
convection–diffusion problem ofn coupled potentials is
considered, but this time separating the preferential di-
rection that is not to be integral transformed. The po-
sition vectorx now includes the space coordinates that
will be eliminated through integral transformation, here
denoted byx∗, as well as the space variable to be re-
tained in the transformed partial differential system. Thus
consider a general three-dimensional problem withx =
{x1, x2, x3}, where only the coordinatesx∗ = {x1, x2}
are intended to be eliminated by the integral transforma-
tion process, while the remaining space variablex3 shall
be retained in the transformed system to be numerically
solved. The problem to be solved is now written in the
following form:

wk(x
∗)
∂Tk(x, t)

∂t
= Gk(x, t,T), x ∈ V, t > 0,

k = 1, 2, ..., n (5a)

with

Gk(x, t,T) = ∇∗ · [Kk(x
∗)∇∗Tk(x, t)]− dk(x

∗)

× Tk(x, t) + gk(x, t,T) (5b)

where the operator∇∗ refers only to the coordinates to
be integral transformedx∗, and with initial and boundary
conditions given, respectively, by

Tk(x, 0) = fk(x), x ∈ V (5c)

[
λk(x3) + γk(x3)

∂

∂x3

]
Tk(x, t) = ϕk(x, t,T),

x3 ∈ S3, t > 0 (5d)

[
αk(x

∗) + βk(x
∗)Kk(x

∗)
∂

∂n∗

]
Tk(x, t)=φk(x, t,T),

x∗ ∈ S∗, t > 0 (5e)

wheren∗ denotes the outward-drawn normal to the sur-
faceS∗ formed by the coordinatesx∗ andS3 refers to the
boundary values of the coordinatex3.

The coefficientswk(x
∗), dk(x

∗), Kk(x
∗), αk(x

∗),
andβk(x

∗) in Eqs. (5a)–(5e) inherently carry the infor-
mation on the auxiliary problem that will be considered in
the eigenfunction expansion, and all the remaining terms
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from this rearrangement are collected into the source
terms,gk(x, t,T) andφk(x, t,T), including the exist-
ing nonlinear terms and diffusion and/or convection terms
with respect to the independent variablex3. Also, the co-
efficientsλk(x3) and γk(x3) provide any combination
of first to third kind boundary conditions in the untrans-
formed coordinate, while thex3 boundary source terms,
ϕk(x, t,T), collect the rearranged information that is not
contained in the right-hand side of Eq. (5d).

Following the solution path previously established, the
formal integral transform solution of the posed problem
requires the proposition of eigenfunction expansions for
the associated potentials. The recommended set of uncou-
pled auxiliary problems is given by

∇ · [Kk(x
∗)∇ψki(x

∗)] +
[
µ2kiwk(x

∗)− dk(x
∗)
]

×ψki(x
∗) = 0, x∗ ∈ V ∗ (6a)[

αk(x
∗) + βk(x

∗)Kk(x
∗)

∂

∂n∗

]
ψki(x

∗) = 0,

x∗ ∈ S∗ (6b)

The problem indicated by Eqs. (6a) and (6b) allows,
through the associated orthogonality property of the
eigenfunctions, the definition of the following integral
transform pairs:

T̄ki(x3, t) =

∫
V ∗

wk(x
∗)ψ̃ki(x

∗)Tk(x, t)dV
∗,

transforms (7a)

Tk(x, t) =
∞∑
i=1

ψ̃ki(x
∗)T̄ki(x3, t), inverses (7b)

where the symmetric kernels̃ψki(x
∗) are given by

ψ̃ki(x
∗) =

ψki(x
∗)√

Nki

;

Nki =

∫
V ∗

wk(x
∗)ψ2

ki(x
∗)dV ∗ (7c,d)

with Nki being the normalization integral.
The integral transformation of Eq. (5a) is accom-

plished by applying the operator
∫
V ∗ ψ̃ki(x

∗) (·) dV ∗ and
making use of the boundary conditions given by Eqs. (5e)
and (6b), yielding

∂T̄ki(x3, t)

∂t
+ µ2kiT̄ki(x3, t) = ḡki(x3, t,T)

+ b̄ki(x3, t,T), i = 1, 2, ..., k = 1, 2, ..., n,

x3 ∈ V3, t > 0, (8a)

where the transformed source termḡki(x3, t,T) is due to
the integral transformation of the equation source term,
and the other,̄bki(x3, t,T), is due to the contribution of
the boundary source term at the directions being trans-
formed:

ḡki(x3, t,T) =

∫
V ∗
ψ̃ki(x

∗)gk(x, t,T)dV ∗ (8b)

b̄ki(x3, t,T) =

∫
S∗

Kk(x
∗)

[
ψ̃ki(x

∗)
∂Tk(x, t)

∂n∗

− Tk(x, t)
∂ψ̃ki(x

∗)

∂n∗

]
dS∗ (8c)

The contribution of the boundary conditions at the direc-
tions being transformed may also be expressed in terms
of the boundary source terms:

b̄ki(x3, t,T) =

∫
S∗
φk(x, t,T)

×

[
ψ̃ki(x

∗)−Kk(x
∗)∂ψ̃ki(x

∗)
∂n∗

αk (x∗) + βk (x∗)

]
dS∗ (8d)

The initial conditions given by Eq. (5c) are transformed
through the operator

∫
V ∗ wk(x

∗)ψ̃ki(x
∗) (·) dV ∗ to pro-

vide

T̄ki(x3, 0) = f̄1,ki(x3) ≡
∫
V ∗

wk(x
∗)ψ̃ki(x

∗)

× fk(x)dV
∗ (8e)

Finally, the boundary conditions with respect to the direc-
tion x3 are also transformed through the same operator,
yielding[
λk(x3)+γk(x3)

∂

∂x3

]
T̄ki(x3, t)=ϕkı̈(x3, t,T), (8f)

with

ϕki(x3, t,T) ≡
∫
v∗

wk(x
∗)ψ̃ki(x

∗)ϕk(x, t,T)dV ∗,

x3 ∈ S3, t > 0 (8g)

Equations (8a)–(8g) form an infinite coupled system
of nonlinear one-dimensional PDEs for the transformed
potentials T̄ki(x3, t), which is unlikely to be analyti-
cally solvable. Nonetheless, reliable algorithms are read-
ily available to numerically handle this PDE system, af-
ter truncation to a sufficiently large finite order. For in-
stance, the Mathematica system provides the built-in rou-
tine NDSolve, which can handle this system under auto-
matic absolute and relative error control. Once the trans-
formed potentials have been numerically computed, the
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Mathematica routine automatically provides an interpo-
lating function object that approximates thex3 andt vari-
ables behavior of the solution in a continuous form. Then
the inversion formula in Eq. (7b) can be recalled to yield
the potential field representation at any desired positionx
and timet.

A major aspect in the practical implementation of this
methodology is the eventual need for improving the con-
vergence behavior of the resulting eigenfunction expan-
sions, as pointed out in Cotta and Mikhailov (1997). The
overall simplest and most effective alternative for conver-
gence improvement appears to be the proposition of an-
alytical filtering solutions, which present both space and
time dependence within specified ranges of the numerical
integration path. For instance, an appropriate quasi-steady
filter for the above formulations could be written in gen-
eral as

Tk(x, t) = θk(x, t) + Tf,k(x; t) (9a)

Tk(x
∗, x3, t) = θk(x

∗, x3, t) + Tf,k(x
∗;x3, t) (9b)

where the second term in the right-hand sides represents
the quasi-steady filter solution, which is generally sought
in analytic form. The first term on the right-hand side rep-
resents the filtered potentials which are obtained through
integral transformation. Once the filtering problem for-
mulation is chosen, Eqs. (9a) and (9b) are substituted back
into Eqs. (1) or (5), respectively, to obtain the resulting
formulation for the filtered potential. It is desirable that
the filtering solution contains as much information on the
operators of the original problem as possible. This infor-
mation may include, for instance, linearized versions of
the source terms, so as to reduce their influence on con-
vergence of the final eigenfunction expansions.

The analytical nature of the inversion formula allows
for a direct error testing procedure at each specified posi-
tion within the medium, and the truncation orderN can
also be controlled to fit the user global error requirements
over the entire solution domain (Cotta, 1993). The tol-
erance testing formulas employed in the total and partial
transformation are, respectively,

ε = max
x∈V

∣∣∣∣∣∣∣∣∣
N∑

i=N∗
ψ̃ki(x)T̄k,i(t)

Tf,k(x; t) +
N∑
i=1

ψ̃ki(x)T̄k,i(t)

∣∣∣∣∣∣∣∣∣ (10a)

ε=max
x∗∈V ∗

∣∣∣∣∣∣∣∣∣
N∑

i=N∗
ψ̃ki(x

∗)T̄k,i(x3, t)

Tf,k(x∗;x3, t)+
N∑
i=1

ψ̃ki(x∗)T̄k,i(x3, t)

∣∣∣∣∣∣∣∣∣(10b)

The numerator in Eqs. (10a) and (10b) represents those
terms (from ordersN∗ to N ) that in principle might be
abandoned in the evaluation of the inverse formula, with-
out disturbing the final result to within the user-requested
accuracy target, once convergence has been achieved.

4. APPLICATIONS

The UNIT partial transformation algorithm is here illus-
trated first with a test case based on the nonlinear three-
dimensional formulation of Burgers’ equation, with ho-
mogeneous and nonhomogeneous boundary conditions,
previously considered by employing the total transforma-
tion procedure (Cotta et al., 2013). Then we examine the
behavior of the UNIT PT algorithm for an application in-
volving conjugated heat transfer in microchannels, as re-
cently proposed via a single-domain formulation that en-
compasses both the fluid and solid regions (Knupp et al.,
2012).

4.1 Nonlinear Burgers’ Equation

The mathematical formulation of the three-dimensional
nonlinear Burgers’ equation with homogeneous boundary
conditions here considered is given by

∂T (x, y, z, t)

∂t
+u(T )

∂T (x, y, z, t)

∂x
=ν

[
∂2T (x, y, z, t)

∂x2

+
∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, z, t)

∂z2

]
,

0 < x < 1, 0 < y < 1, 0 < z < 1, t > 0 (11a)

with initial and homogeneous boundary conditions given
by

T (x, y, z, 0) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1 (11b)

T (0, y, z, t) = 0; T (1, y, z, t) = 0, t > 0 (11c,d)

∂T (x, 0, z, t)

∂y
= 0; T (x, 1, z, t) = 0, t > 0 (11e,f)

∂T (x, y, 0, t)

∂z
=0; T (x, y, 1, t) = 0, t > 0 (11g,h)

and, for the present application, the nonlinear function
u(T ) is taken as

u(T ) = u0 + cT (11i)
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Results are also presented for the case with nonhomoge-
neous boundary conditions, in which the boundary condi-
tion given by Eq. (11c) is replaced by

T (0, y, z, t) = 1. (12)

4.2 Conjugated Heat Transfer in Microchannels

There has been a marked research interest in improving
the prediction and design tools for transport phenomena
driven microsystems. In this context, Knupp et al. (2012,
2013a,b) have recently introduced an approach for the
treatment of conjugated convection-conduction problems,
based on the reformulation of the coupled problem into a
single-domain model, which accounts for the heat trans-
fer at both the fluid flow and the channel wall regions. By
making use of coefficients represented as space variable
functions, with abrupt transitions occurring at the fluid–
wall interface, the mathematical model is fed with infor-
mation concerning the two original domains of the prob-
lem. Then the GITT is employed with the integral trans-
formation being constructed based upon an eigenvalue
problem with space variable coefficients (Naveira-Cotta
et al., 2009), thus incorporating all the information re-
garding the transition between the two original domains.

The problem here chosen for illustration, schemati-
cally represented in Fig. 1, involves a laminar incompress-
ible internal flow of a Newtonian fluid between paral-
lel plates, in steady state and undergoing convective heat
transfer due to a prescribed temperatureTw, at the ex-
ternal face of the microchannel wall. The channel wall
is considered to participate on the heat transfer problem
through both transversal and axial heat conduction. The
fluid flows with a known fully developed velocity profile
uf (y), and with a uniform inlet temperatureTin. The flow
is assumed to be hydrodynamically developed but ther-

FIG. 1: Schematic representation of the conjugated heat
transfer problem in a microchannel

mally developing, with negligible viscous dissipation and
temperature-independent physical properties.

We choose to formulate this problem using the single-
domain formulation approach by making use of coeffi-
cients represented as space variable functions, with abrupt
transitions occurring at the fluid–wall interface. Recalling
the problem symmetry aty = 0, the formulation of the
conjugated problem as a single region model is written as
(Knupp et al., 2012)

u(y)wf
∂T (y, z)

∂z
= k(y)

∂2T

∂z2
+

∂

∂y

(
k(y)

∂T

∂y

)
,

0 < y < Le, 0 < z < z∞ (13a)

∂T

∂y

∣∣∣∣
y=0

= 0, T (Le, z) = Tw, 0 < z < z∞ (13b,c)

T (y, 0) = Tin,
∂T (y, z)

∂z

∣∣∣∣
z=z∞

= 0,

0 < y < Le (13d,e)

with

u(y) =

{
uf (y), if 0 < y < Lf/2
0, if Lf/2 < y < Le

,

k(y) =

{
kf , if 0 < y < Lf/2
ks, if Lf/2 < y < Le

(13f,g)

wherewf is the fluid heat capacity,ks is the channel wall
thermal conductivity,kf is the fluid thermal conductiv-
ity, anduf (y) is the fully developed velocity profile. The
following dimensionless groups are defined:

Z =
z/Dh

Re Pr
=

z

DhPe
; Y =

y

Le
; U =

u

uav
;

θ =
T − Tin

Tw − Tin
; K =

k

kf
; Re=

uavDh

ν
;

Pr=
ν

α
; Pe= Re Pr=

uavDh

α
; α =

kf
wf

;

σ =
Le

Lf
; Yi =

Lf

2Le
(14a–k)

where the hydraulic diameter is given byDh = 2Lf .
After making use of the groups given by Eqs. (14a)–

(14k), one obtains the dimensionless formulation which
is here rewritten already accounting for a pseudo-transient
term in the formulation:

∂θ(Y, Z, t)

∂t
= −U(Y )

∂θ

∂Z
+

K(Y )

Pe2
∂2θ

∂Z2
+

4

σ2
∂

∂Y

×
(
K(Y )

∂θ

∂Y

)
, 0<Y <1, 0 < Z<Z∞, t>0 (15a)
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θ(Y, Z, 0) = θt=0, 0 < Y < 1, 0 < Z < Z∞ (15b)

∂θ

∂Y

∣∣∣∣
Y=0

= 0, θ(1, Z, t) = 1,

0 < Z < Z∞, t > 0 (15c,d)

θ(Y, 0, t) = θZ=0 = 0,
∂θ

∂Z

∣∣∣∣
Z=Z∞

= 0,

0 < Y < 1, t > 0 (15e,f)

with

U(Y ) =

{
Uf (Y ), if 0 < Y < Yi

0, if Yi < Y < 1
,

K(Y ) =

{
1, if 0 < Y < Yi

ks/kf , if Yi < Y < 1
(15g,h)

where the initial conditionθt=0 is preferably an estimate
of the steady-state solution to accelerate convergence, or
just any reasonable function, since we are only interested
in the steady-state results. Figures 2(a) and 2(b) show the
space variable coefficients with abrupt transition at the
fluid–solid interface,U(Y ) andK(Y ), respectively.

5. RESULTS AND DISCUSSION

5.1 Nonlinear Burgers’ Equation

In the analysis of the three-dimensional Burgers’ equa-
tion, Eqs. (11) and (12), the following governing pa-
rameters values have been adopted (Cotta et al., 2013):
u0 = 1, c = 5, andν = 1. The Burgers’ equation for-
mulation with homogenous boundary conditions is in-
vestigated first. In order to offer a benchmark solution,
the UNIT code with total transformation was first em-
ployed with user-provided analytical integration of the
transformed initial condition and nonlinear source term,
and double checked against a dedicated GITT solution of
the same problem (Cotta et al., 2013). Then, high trunca-
tion orders could be achieved with reduced computational
cost so as to offer a reliable hybrid solution with four fully
converged significant digits, as presented in (Cotta et al.,
2013), where convergence is reached at truncation orders
aroundN = 300 with the traditional squared eigenvalues
reordering criterion. Table 1 illustrates the convergence
behavior of the UNIT code with the partial transformation
scheme, hereinafter called UNIT PT, in which the direc-
tionx has been chosen not to be integral transformed. The
results are presented for a different number of terms in

(a)

(b)

FIG. 2: Representation of the space variable coefficients
as functions with abrupt transitions occurring at the fluid–
solid wall interface:(a)U(Y ) and(b) K(Y )

the eigenfunction expansion,N = 30, 35, 40, and 45, and
fixed number of points in the Gaussian quadrature integra-
tion,M = {19,19}. In Table 1 the standard total transfor-
mation UNIT solution (as obtained from the last column
in Table 1a of Cotta et al., 2013) is also presented, here
called UNIT TT, obtained with user-provided analytical
integration. The fully discrete solution is also presented,
obtained by the method of lines from the NDSolve rou-
tine of the Mathematica system, under the same precision
control with mesh refinement, as in the options employed
in the UNIT PT solution. One should notice that, at the
selected positions, the UNIT PT results are converged to
the third significant digit fort = 0.02 and to all four digits
shown fort = 0.1, with the expected improved conver-
gence for larger values oft. It is also observed that the
UNIT PT results agree with the NDSolve numerical re-
sults in three significant digits fort = 0.02 andt = 0.1.
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TABLE 1: Convergence of UNIT code solution with the partial transformation
scheme for a three-dimensional Burgers’ equation with homogeneous boundary
conditions (GITT withN = 30, 35, 40, or 45 terms andM = {19,19} in the
Gaussian quadrature integration)

T = 0.02,y = 0.5,z = 0.5

x N = 30 N = 35 N = 40 N = 45 UNIT TTa NDSolveb

0.1 0.2780 0.2803 0.2807 0.2808 0.2798 0.2807

0.3 0.7354 0.7401 0.7407 0.7409 0.7396 0.7406

0.5 0.9291 0.9333 0.9336 0.9337 0.9331 0.9336

0.7 0.9127 0.9155 0.9153 0.9152 0.9156 0.9155

0.9 0.4898 0.4898 0.4892 0.4891 0.4905 0.4896

T = 0.1,y = 0.5,z = 0.5

x N = 30 N = 35 N = 40 N = 45 UNIT TTa NDSolveb

0.1 0.04943 0.04945 0.04946 0.04946 0.04922 0.04947

0.3 0.1494 0.1494 0.1494 0.1494 0.1492 0.1494

0.5 0.2232 0.2232 0.2232 0.2232 0.2231 0.2233

0.7 0.2236 0.2236 0.2236 0.2236 0.2235 0.2236

0.9 0.1031 0.1031 0.1031 0.1031 0.1031 0.1031
aN = 300 terms and analytical integration and total transformation, from Table 1(a) of
(Cotta et al., 2013);
bMathematica 7.

These results, in comparison with those obtained by the
UNIT TT, indicate a faster convergence rate of the UNIT
PT solution, as expected, since three eigenfunction ex-
pansions are represented in the UNIT TT solution, while
only two are represented in the UNIT PT solution. Nev-
ertheless, it should be remembered that the UNIT PT so-
lution demands additional numerical efforts per equation,
since a system of one-dimensional PDEs is being solved,
while for the UNIT TT scheme the total integral transfor-
mation process leads to a transformed ODE system. This
may also help explaining the fact that the UNIT PT results
are closer to the fully discrete ones than to the benchmark
UNIT TT solution. In the UNIT PT, even considerably
reducing the numerical effort when transforming from
a three-dimensional partial differential system to a one-
dimensional one, the numerical solution of the coupled
PDE’s transformed system still yields a considerable ef-
fect on the final computed results. Apparently, only under
a priori imposed variable meshing or adaptive meshing
refinement, the UNIT PT and the fully discrete approach
would be able to provide final results of closer accuracy to
the hybrid numerical–analytical solution with total trans-
formation, here adopted as a benchmark. Figure 3 depicts

FIG. 3: Comparison between the UNIT PT and TT so-
lutions and the NDSolve routine solution for the three-
dimensional Burgers’ equation problem with homoge-
neous boundary conditions
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the graphical comparison of the UNIT PT and UNIT TT
solutions, at different times, against those obtained with
the NDSolve routine, where it is observed to be in excel-
lent agreement between the three solutions throughout, to
the graph scale.

Proceeding to the Burgers’ equation problem with non-
homogeneous boundary conditions, Table 2 illustrates the
convergence behavior of the UNIT solution with partial
transformation, by varying the truncation order,N = 55,
60, 65, and 70, with a fixed number of points in the Gaus-
sian quadrature integration,M = {19,19}. We point out
that no filtering procedure was performed in this solution,
since the direction with nonhomogeneous boundary con-
ditionsx is the one chosen not to be integral transformed.
In these results, an excellent convergence behavior is ob-
served at the selected positions, the results being con-
verged to the fourth significant digit throughout. It should
be stressed that, based on the truncation order selected by
the user, the UNIT code is able to automatically provide a

safe number of points in the Gaussian numerical integra-
tion procedure, in case the user does not wish to manually
set this option.

Figure 4 brings the comparison between the solutions
obtained with the UNIT PT and the UNIT TT with the
user-provided filtering option, against the fully discrete
NDSolve routine solution, along thex coordinate. In
these results one may again confirm the excellent adher-
ence between the UNIT solutions as well as with the ND-
Solve solution curves throughout thex variable domain.

5.2 Conjugated Heat Transfer in Microchannels

The dimensionless thermal conductivity has been calcu-
lated, motivated by an application with a microchannel
etched on a polyester resin substrate (ks = 0.16 W/m◦C)
and water as the working fluid (kf = 0.64 W/m◦C), so
that ks/kf = 0.25 (Ayres et al., 2011; Knupp et al.,
2013b). The single-domain approach combined with inte-

TABLE 2: Convergence of UNIT code solution with the partial transformation
scheme for three-dimensional Burgers’ equation with nonhomogeneous boundary
conditions (GITT withN = 55, 60, 65, or 70 terms andM = {19,19} in the Gaus-
sian quadrature integration)

t = 0.04

(x, y, z) N = 55 N = 60 N = 65 N = 70 UNIT TTa NDSolveb

(0.2,0.5,0.5) 0.9407 0.9409 0.9408 0.9408 0.9433 0.9408

(0.5,0.5,0.5) 0.8523 0.8523 0.8523 0.8523 0.8493 0.8523

(0.8,0.5,0.5) 0.5945 0.5945 0.5945 0.5945 0.5904 0.5948

(0.5,0.2,0.5) 0.9119 0.9119 0.9119 0.9119 0.9089 0.9119

(0.5,0.8,0.5) 0.4897 0.4896 0.4896 0.4897 0.4912 0.4896

(0.5,0.5,0.2) 0.9119 0.9119 0.9119 0.9119 0.9089 0.9119

(0.5,0.5,0.8) 0.4897 0.4897 0.4897 0.4897 0.4912 0.4896

t = 0.1

(x, y, z) N = 55 N = 60 N = 65 N = 70 UNIT TTa NDSolveb

(0.2,0.5,0.5) 0.8798 0.8801 0.8799 0.8799 0.8805 0.8798

(0.5,0.5,0.5) 0.6400 0.6400 0.6400 0.6400 0.6340 0.6398

(0.8,0.5,0.5) 0.3365 0.3365 0.3365 0.3365 0.3307 0.3364

(0.5,0.2,0.5) 0.7457 0.7457 0.7457 0.7457 0.7402 0.7456

(0.5,0.8,0.5) 0.3282 0.3282 0.3282 0.3282 0.3279 0.3281

(0.5,0.5,0.2) 0.7457 0.7457 0.7457 0.7457 0.7402 0.7456

(0.5,0.5,0.8) 0.3282 0.3282 0.3282 0.3282 0.3279 0.3281
aUNIT code solution with total transformation and user-provided polynomial filter (N = 60,
M = {8,8,10});
bMathematica 7.
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FIG. 4: Comparison between the UNIT PT and UNIT TT
solutions vs the NDSolve routine solution for the Burgers’
equation problem with nonhomogeneous boundary condi-
tions, alongx

gral transforms for the solution of conjugated heat transfer
problems has been introduced, verified, and validated in
Knupp et al. (2012), while the same problem considered
here was previously tackled in Knupp et al. (2013a) with
two alternative approaches, thus offering some bench-
mark results for the comparison of the UNIT solutions
here presented. For the solution via the UNIT PT scheme,
the simplest possible auxiliary eigenvalue problem was
adopted, with constant coefficients, so as to lead to an
auxiliary problem with analytical solution readily ob-
tained from the DSolve routine of the Mathematica sys-

tem, the automatic option of the UNIT code. In this least
informative choice, the terms with abrupt spatial transi-
tion that are responsible for the information on the tran-
sition of the two regions (fluid stream and channel walls)
are grouped into the source term. In the results below, we
illustrate the solution obtained for the case with Pe = 0.5.

Table 3 presents the convergence behavior of the UNIT
PT scheme with respect to the number of terms in the
eigenfunction expansion,N = 10, 15, 20, 25, or 30, with
fixed M = 96 points in the Gaussian quadrature integra-
tion. One may observe that the results are converged to
the third or even up to the fourth significant digit with
respect to the truncation order, at the selected positions.
The comparison with the reference GITT values (Knupp
et al., 2013a), which is fully converged to all digits shown,
indicates a three-significant-digits agreement with the au-
tomatic UNIT PT solution at the selected positions.

Figure 5 depicts the comparison of the UNIT PT so-
lution with the reference curves for the transversal tem-
perature profiles for some different longitudinal positions
along the flow,Z = 0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5,
and 4.5, for both the fluid and the channel wall regions.
Despite the adoption of the simplest possible auxiliary
eigenvalue problem, a very good graphical agreement be-
tween the automatic UNIT PT solution and the dedicated
GITT solution is observed throughout. In fact, in order
to investigate the behavior of the solution of the above
single-domain formulation by a purely numerical method,
we have attempted to solve the original partial differential
problem through the NDSolve routine of the Mathemat-
ica package under automatic accuracy control. However,
under default specifications, it was not able to accurately
solve the problem with the intrinsic maximum refinement
options. We have also tried to impose limits of refinement

TABLE 3: Convergence behavior of the conjugated problem solution with
Pe = 0.5 obtained with the UNIT code via partial transformation withN =
10, 15, 20, 25, or 30 terms andM = 96 points in the Gaussian quadrature
integration

N
Z = 0.1 Z = 0.2

Y = 0.3 Y = 0.6 Y = 0.9 Y = 0.3 Y = 0.6 Y = 0.9
10 0.06511 0.1247 0.4899 0.1328 0.2321 0.6920
15 0.06672 0.1236 0.4928 0.1330 0.2333 0.6921
20 0.06667 0.1233 0.4935 0.1328 0.2333 0.6920
25 0.06670 0.1231 0.4934 0.1330 0.2329 0.6920
30 0.06634 0.1230 0.4932 0.1329 0.2329 0.6920

GITTa 0.06626 0.1241 0.4935 0.1321 0.2348 0.6923
a GITT solution with analytical integration (Knupp et al., 2013a).
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FIG. 5: Transversal temperature profiles in conjugated
problem, calculated using the single-domain formulation
via the UNIT PT scheme, in comparison with benchmark
GITT results.a(Knupp et al., 2013a) for Pe = 0.5

higher than the default options, up to the maximum avail-
able computation capability, and satisfactory results were
still not obtained, reconfirming the relative merits of the
hybrid solution approach.

6. CONCLUSIONS

This work compared the total and partial transformation
schemes featured into the unified integral transform al-
gorithm, implemented in the so-called UNIT code, as
part of the ongoing project related to the progressive con-
struction of an open-source symbolic-numerical compu-
tational code for finding solutions of partial differential
systems based on the generalized integral transform tech-
nique (GITT). The implementations have been compared
for nonlinear three-dimensional formulations of Burgers’
equation, where it has been illustrated that the partial
transformation scheme can be straightforward and accu-
rate, leading to a hybrid solution path that may offer ad-
vantages inherent to the analytical development in com-
bination with the powerful numerical solution procedure
available. As an application illustration, the solution of
a conjugated conduction–convection heat transfer prob-
lem of laminar flow inside parallel plate microchannels
has been demonstrated. This problem has been reformu-
lated by means of a single-domain approach, recently in-
troduced with the main objective of simplifying the con-

jugated heat transfer analysis, without requiring any sort
of iterative procedure. Again, the UNIT code under the
partial transformation scheme was capable of recovering
with accuracy and mild computational cost, the bench-
mark results obtained with a dedicated GITT solution
with analytical integration.
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