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The theory and algorithm behind the open-source mixed symbolic-numerical computational code named UNIT (uni-
fied integral transforms) are described. The UNIT code provides a computational environment for finding solutions of
linear and nonlinear partial differential systems via integral transforms. The algorithm is based on the well-established
analytical-numerical methodology known as the generalized integral transform technique (GITT), together with the
mixed symbolic-numerical computational environment provided by the Mathematica system (version 7.0 and up). This
paper is aimed at presenting a partial transformation scheme option in the solution of transient convective-diffusive
problems, which allows the user to choose a space variable not to be integral transformed. This approach is shown to
be useful in situations when one chooses to perform the integral transformation on those coordinates with predominant
diffusion effects only, whereas the direction with predominant convection effects is handled numerically, together with
the time variable, in the resulting transformed system of one-dimensional partial differential equations. Test cases are
selected based on the nonlinear three-dimensional Burgers” equation, with the establishment of reference results for spe-
cific numerical values of the governing parameters. Then the algorithm is illustrated in the solution of conjugated heat
transfer in microchannels.
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NOMENCLATURE

Dy, hydraulic diameter in the conjugated heat w  transient operator coefficient in general

transfer problem problem; heat capacity in the conjugated

d dissipation operator coefficient heat transfer problem, Egs. (11)

g nonlinear source term X position vector in the general problem

K  diffusion operator coefficient formulation

L. distance from the channel centerline to the =« longitudinal coordinate in problem (9)
external face of the channel wall in the Y  dimensionless transversal coordinate in the
conjugated heat transfer problem conjugated heat transfer problem

Ly channel height in the conjugated heat transfey transversal coordinate in problems
problem (9) and (11)

L,, channel width in the conjugated heat transferZ  dimensionless longitudinal coordinate in the
problem conjugated heat transfer problem

M  number of subregions in semianalytical and = transversal coordinate in problem (9);
Gaussian integration longitudinal coordinate in problem (11)

N  truncation order in eigenfunction expansion

n number of coupled potentials in the general Greek Symbols

problem formulation «  boundary condition coefficient
Pe  Feclet number in the conjugated heat transfef3 boundary condition coefficient
problem 0 dimensionless temperature field in the
T  dimensionless potential in the general conjugated heat transfer problem

problem formulation; potential in Burgers’ p  eigenvalues
equations (9) and (10); temperature field v diffusion coefficient in Burgers’ equation
in the conjugated ¢, source term in boundary condition
t dimensionless time variable VP  eigenfunctions
heat transfer problem, Egs. (11)
U  dimensionless fully developed velocity profileSubscripts & Superscripts

in the conjugated heat transfer problem i order of eigenquantities

U nonlinear function in convection term in k quantity corresponding to the equation of the
Burgers’ equation (9); fully developed kth potential in general problem
velocity profile in the conjugated heat - position vector excluding the space variable
transfer problem, Egs. (11) not to be integral transformed

ug linear parameter in nonlinear convectionterm  — integral transform
in Burgers’ equation, Egs. (9) ~  normalized eigenfunction

tions of the newly derived heat conduction equation, after
proposing the constitutive equation known nowadays as
Integral transforms have been successfully used Fourier's law. He gave a series of examples before stat-
different branches of the physical, mathematical, aim that an arbitrary function defined on a finite interval

engineering sciences for about 200 years. Its introducticen be expanded in terms of a trigonometric series that
can be attributed to Fourier, after the publication of his now known as the Fourier series. In an attempt to ex-
treatise on the analytical theory of heat (Fourier, 1822¢nd his new ideas to functions defined on an infinite in-
In essence, Fourier at that time advanced the idea of sepaval, Fourier discovered an integral transform and its in-
ration of variables, so as to handle and interpret the solersion formula which are now commonly known as the

1. INTRODUCTION
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Fourier transform and the inverse Fourier transform, r£968 textbook during this period (Ozisik, 1968) and pre-
spectively. His work provided the modern mathematicphred a fairly complete new work on heat conduction,
theory of heat conduction, but also introduced Fourier ssampiling different analytical, approximate, and numer-
ries, Fourier integrals, and stated an important result theal approaches (Ozisik, 1980).
is known as the Fourier integral theorem, later rephrasedWithin this same period, Ozisik and Mikhailov, inde-
by Dirichlet (Debnath and Bhatta, 2007). pendently, also perceived the limitations of the integral
The method of integral transforms was then widelyansforms method, as it was known at that time, when
used in solving linear partial differential equationthey tried to solve problems with time-dependent bound-
(PDEs) of mathematical physics along the followingry condition coefficients (Ozisik and Murray, 1974;
years, and the classical treatise of Carslaw and Jaegemer and Ozisik, 1974) or time-dependent equation co-
(1947) provides a wide collection of solutions obtainegfficients (Mikhailov, 1975). In these early works, the in-
in heat conduction theory by this and the competing ategral transformation process, due to the time dependence
alytical approaches then available. According to Luikasf the transformation kernel represented by the eigen-
(1980), father of modern analytical heat diffusion theralues, eigenfunctions, and norms, was not successful
ory, as detailed in his most classical work (Luikov, 1968 fully transforming the original PDE and resulted in a
it was not until the work of Koshlyakov (1936) that aroupled infinite ordinary differential system for the trans-
idea was provided in handling nonhomogeneous diffusiarmed temperature fields. Nevertheless, the authors were
equations and boundary conditions by the method of finggll able to propose analytical approximations by taking
integral transformations, and the theory of such integi@hly a limited number of terms in the coupling terms and
transforms was developed in detail by Grinberg (1948hen forcing the simplification to a decoupled system. In
who also extended this approach to multilayer probthe work of Ozisik and Murray (1974), the expression
lems, considering step variations of the material propgeneralized integral transform technique was employed
ties along the transformation coordinate. A very active pfr the first time. This same concept of approximate an-
riod of research on exact analytical solutions of nonhomalytical solution was later on employed by Ozisik and
geneous heat and mass transfer problems then follow@dgeri (1977) in the solution of phase change problems,
when besides the continuous contribution of Luikov ary Bayazitoglu and Ozisik (1980) in the analysis of inter-
coworkers, one should certainly include the contributiomsil forced convection with axial diffusion effects, by Bo-
of other very prominent researchers, such as Olcer (1964do Leite et al. (1980, 1982) in solving moving bound-
1967), Ozisik (1968), and Mikhailov (1967, 1972). Thiary diffusion problems related to the erosion of fusion re-
period was so fruitful for analytical heat and mass tranaetor walls, and by Cotta and Ozisik (1985) in the solu-
fer that Luikov himself, in 1974, contacted both Ozisikon of transient internal convective heat transfer due to
and Mikhailov regarding the joint publication of booksvall temperature variations. Such approximate solutions,
on heat conduction and convection. However, Luikdthough elegant and easy to compute, had limitations in
passed away even before the startup of these projetgans of accuracy, within certain ranges of the involved
but Mikhailov and Ozisik finally met each other in 197®arameters and independent variables, and would also re-
and started a new project inspired by Luikov's suggegtire some sort of numerical solution for verification pur-
tions, work that would be completed and published onposes. However, in Cotta (1986a) the complete solution of
in 1984, when most of the available exact solutions tife coupled transformed system was achieved, based on
heat and mass diffusion through integral transforms wehe numerical solution of a truncated version of the trans-
unified in seven different classes of problems and syermed ordinary differential equation (ODE’ system, as
tematically presented in a reference book (Mikhailov ardbtained for a diffusion problem with a prescribed mov-
Ozisik, 1984). This book was very much influenced by thieg boundary, associated with oxidation of nuclear fuel
previous publications of Mikhailov along a very producrods cladding. The resulting transformed system typical
tive period of more than one decade (including Mikhailoaf such integral transformations is likely to present sig-
1967, 1972, 1973a,b, 1975, 1977a,b; Mikhailov amidficant stiffness, especially for larger truncation orders,
Shishedjiev, 1976; Mikhailov and Ozisik, 1980, 1981ut at that time reliable solvers for stiff initial value prob-
Mikhailov et al., 1982; Mikhailov and Vulchanov, 1983)|ems were already available, allowing for error-controlled
when he challenged the integral transform method to hawolutions of the transformed potentials. Only then would
dle different classes of unified formulations in heat arttie GITT (generalized integral transform technique) be
mass diffusion. Ozisik also pursued the rewriting of higroposed as a full hybrid numerical-analytical solution of
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nontransformable diffusion or convection—diffusion protbine the knowledge on improved lumped system analy-
lems. The GITT was later advanced to offer analyticais, GITT, and symbolic computation. Also within this
solutions of the complete transformed system for liphase, a compilation of advanced contributions was or-
ear problems, such as in the transient internal convgenized (Cotta, 1998) in order to complement the 1993
tion problem in the complex domain solved in Cotta arfibok, which remains an important source of advanced ref-
Ozisik (1986). In a natural sequence, the previous srence work on the generalized integral transform tech-
lutions of diffusion problems with variable equation onique.
boundary coefficients were formalized soon afterward, The next phase then initiated in the development of
under the new concept of obtaining the solution of thetegral transforms in heat and fluid flow was character-
complete transformed systems (Cotta, 1986b; Cotta dreld by the optimization of the numerical tasks, proposi-
Ozisik, 1987). Clearly, the generalized approach was thism of more challenging problems among those classes
interpreted as the closest in nature to the exact soluti@heady handled, and the more ample application of this
obtainable by integral transforms in the case of trarlsaowledge basis in different areas. For instance, one
formable problems, although somehow still approximateay recall the analysis of fluid flow and mass transfer
due to the truncation of the infinite transformed systemithin petroleum reservoirs (Almeida and Cotta, 1995),
Once the transformed system is numerically solved byee-dimensional Navier-Stokes equations (Quaresma
controlling the relative error in the initial value proband Cotta, 1997), Navier-Stokes equations in irregular ge-
lem algorithm, one is left with the task of controlling th@metries (Perez Guerrero et al., 2000), forced and natural
global error of the solution by adequately choosing tlenvection with variable fluid properties (Machado and
system size and thus the eigenfunction expansion trun€Catta, 1999; Leal et al., 2000), compressible flow and
tion order. heat transfer in ultracentrifuges (Pereira et al., 2002), sta-
An avenue of opportunities was then opened and thidity analysis in natural convection (Alves et al., 2002),
successive challenges for the GITT extension would fotitiree-dimensional natural convection in porous enclo-
the basis of a series of theses and papers. Just to narseras (Luz Neto et al., 2002), eigenvalue and diffusion
few contributions within this fruitful period, the analysigproblems in multidimensional irregular domains (Sphaier
of diffusion within irregular domains was soon proposeshd Cotta, 2000; Sphaier and Cotta, 2002), and contami-
(Aparecido and Cotta, 1987; Aparecido et al., 1989), andnt dispersion in fractured media (Cotta et al., 2003), to
followed by the analysis of nonlinear diffusion problemsame a few. The maturity of the approach was then con-
(Cotta, 1990; Serfaty and Cotta, 1990, 1992), conjugatedlidated in the edited book (Santos et al., 2001), in the
convection-conduction problems (Guedes et al., 198fvited editorial of theHeat Transfer Engineeringurnal
Guedes and Cotta, 1991), ablation moving boundd@otta and Orlande, 2003), and finally in the invited chap-
problems (Diniz et al., 1990), boundary layer equatiotsr for theHandbook of Numerical Heat TransféCotta
(Cotta and Carvalho, 1991; Carvalho et al., 1993), Naviend Mikhailov, 2006).
Stokes equations (Perez Guerrero and Cotta, 1992), dryin recent years, besides the continuous search for more
ing problems (Ribeiro et al., 1993), and natural convechallenging problems and different application areas, em-
tion in porous media (Baohua and Cotta, 1993). Basplasis has been placed in unifying and simplifying the
on the above works and a few others, the first referenege of the GITT, to reach a larger number of users and
and textbook on the GITT was prepared and publishefler an alternative hybrid solution to their problems. Hy-
in 1993 (Cotta, 1993), including some formal aspects bfid methods become even more powerful and applicable
the approach that were not previously dealt with in thvehen symbolic manipulation systems, which were also
available publications. This effort made the hybrid apvidely disseminated along the last two to three decades,
proach more visible and the positive response of the haa¢ employed. The effort in integrating the knowledge on
transfer community was soon provided, as demonstrated GITT into a symbolic-numerical algorithm resulted in
in the keynote lecture at the 10th IHTC, UK, in 1994he so-called UNIT code (unified integral transforms), ini-
(Cotta, 1994a) and the invited review paper in the tially proposed as a project in 2007 and intended to bridge
ternational Journal of Heat and Mass Transfar that the gap between simple problems that allow for a straight-
same year (Cotta, 1994b), celebrating the contributiforward analytical solution, and more complex and in-
of Prof. James P. Hartnett to the heat and mass tramshved situations that almost unavoidably require special-
fer field. Two years later a book on heat conduction wased software systems. The open-source UNIT code is
published (Cotta and Mikhailov, 1997) that would conthus an implementation and development platform for re-
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searchers and engineers interested in integral transfor 9
solutions of diffusign and convection—diffusign problemsT(xk(x) i Bk(X)K’“(X)% Telx, 1) = @r(x, 1, T),
(Sphaier et al., 2011; Knupp et al., 2010, Cotta et al.x ¢ 5, + >0 (le)
2010, 2013).

This work is thus aimed at reviewing the current vewheren denotes the outward-drawn normal to the surface
sion of the multidimensional UNIT code in the MathS, and where the potentials vector is given by
ematica platform and introduces its partial transforma-
tion scheme option. In this alternative partial transforma- T={T\,13,... Ty, ... Tn} (1f)

tion mode, the user is allowed to choose one of the di-AS mentioned before, Egs. (1a)—(1f) are quite general
mensional variables not to be integral transformed. This !  EOS. — quiteg '

strategy can be very useful for the solution of transie?;'#ocfhgc;nIL”;%nzligzg\ﬁg;n (t:ce)zg;stigzysgfrc%r?gfrﬁg
convective—diffusive problems in which one chooses [0 q y '

perform the integral transformation only on the dire éarpzﬁubreceh't%?x]gshtiez thit n thte Cgiz of iecoum?d lin-
tions with predominant diffusion effects, whereas aloq . s, 1.6 = 9(x,1), e = (‘0(?(’ ),
is example is reduced to a class | linear diffusion prob-

he direction with predominan nvection eff ) . e
the directio th predominant convection effects tr]em for each potential, according to the classification in

problem is solved numerically, together with the timg. " " - .
variable, in the resulting transformed system of Ong/l_lkhanov and Ozisik (1984), and exact analytical solu-

dimensional PDEs. In order to illustrate the present | ons are readily available via the classical integral trans-
plementation, we show some results regarding a n rm technique. Otherwise, this problem shall notebe

. . . . iori transformable, except for a few linear coupled sit-
linear three-dimensional formulation of Burgers’ equa. o . TP o
9 q ations also illustrated in Mikhailov and Ozisik (1984).

tion, which are critically compared to the default totaf . .
transformation UNIT code solutions. Also, we iIIustra'f}_| O.I\f\.ll? vgr, tf[he {gggalrsolugor}n?/rolf eg Lijr:e %O\r”?ed rbi//i;he
the partial transformation approach for the analysis H i d( nﬂn‘?érical zznala)?caelz solatigns f(;)r tﬁe (r)]opntc;anse
conjugated heat transfer in microheat spreaders mad )61? yt

rmable problems.

microchannels molded in a polymeric matrix (Ayres The formal solution regarding the standard procedure
[., 2011), employin recentl van ingle-domai . .
al,, 2011), employing a recently advanced single-do aop he UNIT code is known as the total transformation

strategy for conjugated heat transfer problems develope X . . .
by Knupp et al. (2012, 2013a,b, 2014a,b). scheme, described in Cotta et al. (2013), in which all spa-

tial variables are integral transformed. Here we focus on
the partial integral transformation scheme option of the
2. PROBLEM FORMULATION UNIT code, as an alternative solution path to problems

A general transient convection—diffusion problemsof With @ strong convective direction, which is not elimi-
coupled potentials is considered, defined in the reg{on”ated through integral transformation but kept within the

with boundary surface”: transformed system.

wr(X) Le Th(x,t) = Gr(x,t,T), x€V, t>0, 3 gOLUTION METHODOLOGY

k=1,2,...n (1a) .
3.1 Total Transformation

where thet operatorLy, , for a parabolic or parabolic—

hyperbolic formulation is given by Following the formal solution procedure for nonlinear

convection—diffusion problems through integral trans-
I, = 9 1b forms, the proposition of eigenfunction expansions for
kit = ot (1b) the associated potentials are first required. The preferred
eigenvalue problem choice appears from the direct appli-
cation of the separation of variables methodology to the
Gr(x,t, T) =V - (K (x)VTr(x,t)) — dp(x)Ti(x,t)  linear homogeneous purely diffusive version of the pro-
+ gn(x,1,T) (1c) pos_e_d problem. Th_us the re_commended set of decoupled
auxiliary problems is here given by
with initial and boundary conditions given, respectively,
by V- [Kk(x) Vb (%)] + 17w (%) — di ()i (x) = 0,
Ti(x,0) = fr(x), x €V (1d) xeV (2a)

and
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K o) The boundary conditions contribution may also be ex-
%k (%) + Bi (%) K (x) on brilx) =0, x€5 (2b) pressed in terms of the boundary source terms, after ma-
where the eigenvaluas,; and associated eigenfunctiongipulating Egs. (1e) and (2b), to yield
P;(x) are assumed to be known from exact analytical ex-
press_ions, for instance, obtainedn thrpugh symbolic CIOEE{(t,T):/@k(x,t,T)
putation (Wolfram, 2005) or application of the GITT it-
self (Naveira-Cotta et al., 2009). One should notice that
Egs. (1a)—(1f) are presented in a form that already refle&ie initial conditions given by Eq. (1d) are transformed
this choice of eigenvalue problems, given by Eqs. (2&yough the operatof,, wy (x)x;(x) (-) dV to provide
and (2b), with the adoption of linear coefficients in both _ _
the equations and boundary conditions, and incorporating 7ki(0) = fri = / wi (xX)gi (x) fr(x)dV (4e)
the remaining terms (coupling, nonlinear, and convective v
terms) into the general nonlinear source terms, without For the solution of the infinite coupled system of non-
loss of generality. linear ordinary differential equations given by Eqgs. (4a)—
By making use of the orthogonality properties of thé#e), one must make use of numerical algorithms, after the
eigenfunctions, it is then possible to define the followiriguncation of the system to a sufficiently large finite or-
integral transform pairs: der. For instance, in the present work, the built-in routine
of the Mathematica system (Wolfram, 2005) is employed,
Tki(t):/ wi(x) Vs (x)Th(x, £)dV transforms (3a) NDSolve which is able to provide reliable solutions un-
v der automatic absolute and relative error control. After the
transformed potentials have been numerically computed,
the Mathematica routine automatically provides an inter-
polating function object that approximates theariable
behavior of the solution in a continuous form. Then the

i (x) — K, (%) 78‘1’5;(")
o+ Bl | 49

Tr(x,t) = id)ki(x)ffm(t) inverses  (3b)
=1

where the symmetric kernels;; (x) are given by inversion formula can be recalled to yield the potential
field representation at any desired positioand timet.
II,M(X):M; Nk-i:/ wk(X)ll’ii(X)dV (3c,d) The solution procedure described above provides the
VNki v basic straightforward working expressions for the integral
with N;,; being the normalization integral. transform method. Nevertheless, for an improved compu-

The integral transformation of Eq. (la) is accontational performance, itis always recommended to reduce
plished by applying the operatofi, Pri(x) (-)dV and the importance of the equation and boundary source terms
making use of the boundary conditions given by Egs. (189 as to enhance the eigenfunction expansion’s conver-

and (2b), yielding gence behavior (Cotta and Mikhailov, 1997). The UNIT
_ code for multidimensional applications allows for user-
T3 (t) + 13, Thi () = Grs(t, T) + brs (¢, T), prqvided filter_s, but an automatic progr_essive linear fil-
_ dt tering option is also implemented. The interested reader
i=1,2.., t>0, k=12..n (4a) is encouraged to refer to Cotta et al. (2013), where this

filtering strategy is described in detail.
The constructed multidimensional UNIT code in the
athematica platform (Cotta et al., 2010, 2013) encom-
passes all of the symbolic derivations that are required in
the above GITT formal solution, besides the numerical
computations that are required in the solutions of the cho-
sen eigenvalue problem and the transformed differential
system. The user essentially needs to specify the problem
_ _ - T (x. 1 formulation together with the required problem parame-
bei(t,T) = / K (x) {¢ki(x)a%(n’) —Tk(x,t)  ters, solve the problem using the provided UNIT algo-
o rithm, and then choose how to present the results accord-
> 8‘1””’(")} ds (4c) ing to the specific needs. Besides the parameters regard-
On ing the problem formulation, the user is also asked to set

where the first transformed source tejp(t, T) is due to
the integral transformation of the equation source temﬁ
and the second oné,;(t, T), is due to the contribution
of the boundary source terms:

(1, T) = /V Dri(x)ge(x £ TV (4b)
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the truncation order of the eigenfunction expansiohs approach and the selected numerical method for handling
and to choose the coefficients integration methodologlye coupled system of one-dimensional PDEs that results
which can be analytical, through the Integrate routine from the transformation procedure. To illustrate this par-
the Mathematica system or user-provided, semianalytidéd) integral transformation procedure, again a transient
or by an automatic Gaussian quadrature scheme that@mvection—diffusion problem of coupled potentials is
counts for the information regarding the eigenfunctionsbnsidered, but this time separating the preferential di-
oscillatory behavior. The Gaussian quadratures and tketion that is not to be integral transformed. The po-
alternative semianalytical integration procedure are paition vectorx now includes the space coordinates that
ticularly convenient in nonlinear formulations that mighwill be eliminated through integral transformation, here
require costly numerical integration, once analytical intdenoted byx*, as well as the space variable to be re-
gration is not feasible. tained in the transformed partial differential system. Thus

The UNIT code is here illustrated through its versioconsider a general three-dimensional problem with-
2.2.3, in Mathematica 7.0 or up, and has the followinge;, 2, z3}, where only the coordinates” = {x1, 22}
main features: are intended to be eliminated by the integral transforma-

tion process, while the remaining space variabjeshall
1. A system of linear or nonlinear equations (parabolige retained in the transformed system to be numerically

problems, parabolic-hyperbolic problems, or elliptigolved. The problem to be solved is now written in the
problems in pseudo-transient formulation); following form:

2. Multidimensional transient formulations, automati- 9T (x, 1)
cally defined by one single parameter with the num- wi(x")—>—— = Gx(x,1,T), x eV, >0,
ber of space dimensions; k=12 ..n (5a)

3. Eigenvalue problem analytically solved via the,h
DSolve routine (Sturm-Liouville problem); wit

4. Transformed coefficients determined by semianalyt- Gx(x, £, T) = V* - [K(x*) V' T, (x, t)] — dp(x")
ical integration (zeroth order), numerical integration X T (x,t) + gr(x,t,T) (5b)
(Gaussian quadrature or Nintegrate routine), or an-

alytical integration (Integrate routine or user supvhere the operatov* refers only to the coordinates to
plied); be integral transformes*, and with initial and boundary
conditions given, respectively, by
5. User-defined or automatic progressive linear filter-
ing; Tx(x,0) = fr(x), x€V (5¢)

6. Reordering by squared eigenvalues criterion or com-
bination of transformed initial conditions, trans- 0

. ! . }\ A T 7t = ata T )

formed source term, and squared eigenvalues crite- [ k(@) +Yk(x3)81'3:| k(1) = brlx )

na, x3 €83, t>0 (5d)
7. Nonhomogeneous term via Green’s second formula;

8. Error estimator with adjustable residue order. {ock (x*) 4 Br(x*) Ky (X*)ai*} T(x,t) =@r(x,t,T),

3.2 Partial Transformation x*€8* t>0 (5e)

An alternative hybrid solution strategy to the abovevheren* denotes the outward-drawn normal to the sur-
described full integral transformation is of particular infaceS™ formed by the coordinates* and.Ss refers to the
terest in the treatment of transient convection—diffusidmoundary values of the coordinate.

problems with a preferential convective direction. In such The coefficientswy, (x*), di(x*), Ki(x*), ox(x*),
cases, the partial integral transformation in all but ored 5 (x*) in Egs. (5a)—(5e) inherently carry the infor-
space coordinate may offer an interesting combinationragtion on the auxiliary problem that will be considered in
relative advantages between the eigenfunction expandiom eigenfunction expansion, and all the remaining terms
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from this rearrangement are collected into the souraere the transformed source tegig(z3,¢, T) is due to
terms, gx.(x,t,T) and @k (x, ¢, T), including the exist- the integral transformation of the equation source term,
ing nonlinear terms and diffusion and/or convection ternasid the otherZ),ﬂ-(xg, t,T), is due to the contribution of
with respect to the independent variablg Also, the co- the boundary source term at the directions being trans-
efficients A, (z3) and yi(z3) provide any combination formed:

of first to third kind boundary conditions in the untrans- _ ~ _

formed coordinate, while the; boundary source terms, gri(z3,t,T) = ) Vi (x7)gr(x, ¢, T)dV*  (8D)

ok (x,t, T), collect the rearranged information that is not v

contained in the right-hand side of Eq. (5d). i _ NE L OTw(x,1)
Following the solution path previously established, the ~ri(zs,t,T) = | Ki(x") {ﬂ’ki(x ) onr
formal integral transform solution of the posed problem - S*
requires the proposition of eigenfunction expansions for _ T (x, 1) Ny (x )} dS* (8¢)
the associated potentials. The recommended set of uncou- on*
pled auxiliary problems is given by The contribution of the boundary conditions at the direc-
V- [K (X)) Vg (x7)] + [Hilwk(x*) _ dk.(x*)] tions being transformed may also be expressed in terms
’ of the boundary source terms:
X Pgi(x*) =0, x"eV” (6a)
, bus(oa,tT) = [ oulxtT)
o (x7) + Br(x™) K (x )% Pri(x™) =0, C ) — K (o) 20 )
> wkl(x ) k(X ) on* dS* (8d)
x* e §* (6b) o (x*) + B (x*)

The problem indicated by Egs. (6a) and (6b) allowgne initial conditions given by Eq. (5c) are transformed
through the associated orthogonality property of ﬂﬂﬁrough the operatof,,. wi (x* Vs (x*) () dV* to pro-
eigenfunctions, the definition of the following integraige

transform pairs:

Tri(23,0) = fiki(z3) = / w (X" ) Wgi (x*)

X fr(x)dV* (8e)
Finally, the boundary conditions with respect to the direc-
00 tion x3 are also transformed through the same operator,
Ti(x,t) = Y Wki(x*)Tki(ws, t), inverses  (7b) Yielding

=1

Tri(x3,t) = / wg (Vs (x*) T (x, £)dV ™,

transforms (7a)

9 1. _ _
) A N i (3, ) =Py (3,1, T), (8
where the symmetric kernels;; (x*) are given by { k(x3)+y’g(x3)3x3} ki3, 1) = bua(@s ) (8D
- i(x* with
ll’ki(X*):ll)kz(V '); - - ~
Vi Bualeat D) = [ wn 6 Pbas(x o G, TV
Nii = NP2 (x*)dV* 7c,d v
= [ o) Ted) o,y 69
with Vy; being the normalization integral. Equations (8a)—(8g) form an infinite coupled system

‘The integral transformation of Eq. (5a) is acconyf nonlinear one-dimensional PDEs for the transformed
plished by applying the operatdy;. bi(x*) (1) dV* and potentials Ty, (x3, ¢), which is unlikely to be analyti-
making use of the boundary conditions given by Egs. (3@ily solvable. Nonetheless, reliable algorithms are read-

and (6b), yielding ily available to numerically handle this PDE system, af-
i (w3, 1) ) - B _ ter truncation to a sufficiently large finite order. For in-
o + ki Thi(z3,t) = gri(zs, t, T) stance, the Mathematica system provides the built-in rou-

tine NDSolve, which can handle this system under auto-
matic absolute and relative error control. Once the trans-
x3 € V3, >0, (83) formed potentials have been numerically computed, the

+bpi(z3,t,T), i=1,2,...., k=1,2,....n,
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Mathematica routine automatically provides an interpdhe numerator in Egs. (10a) and (10b) represents those
lating function object that approximates thgandt vari- terms (from ordersV* to N) that in principle might be
ables behavior of the solution in a continuous form. Thatandoned in the evaluation of the inverse formula, with-
the inversion formula in Eq. (7b) can be recalled to yielout disturbing the final result to within the user-requested
the potential field representation at any desired pos#ioraccuracy target, once convergence has been achieved.
and timet.

A major aspect in the practical implementation of thi
methodology is the eventual need for improving the con- APPLICATIONS

vergence behavior of the resulting eigenfunction expafhe UNIT partial transformation algorithm is here illus-
sions, as pointed out in Cotta and Mikhailov (1997). Theated first with a test case based on the nonlinear three-
overall simplest and most effective alternative for convedimensional formulation of Burgers’ equation, with ho-
gence improvement appears to be the proposition of @lggeneous and nonhomogeneous boundary conditions,
alytical filtering solutions, which present both space angleviously considered by employing the total transforma-
time dependence within specified ranges of the numeriggh procedure (Cotta et al., 2013). Then we examine the
integration path. For instance, an appropriate quasi-steg@yavior of the UNIT PT algorithm for an application in-
filter for the above formulations could be written in genyolyving conjugated heat transfer in microchannels, as re-
eral as cently proposed via a single-domain formulation that en-

Ti(x,t) = Or(x,t) + Trr(x;t) (92) compasses both the fluid and solid regions (Knupp et al.,

Ti(x*, w3,t) = Ok (X", 23,t) + Ty i(x";23,¢)  (9b) 2012).

where the second term in the right-hand sides represents
the quasi-steady filter solution, which is generally soughtl Nonlinear Burgers’ Equation

in analytic form. The first term on the right-hand side rep- . . . .
% e mathematical formulation of the three-dimensional

onlinear Burgers’ equation with homogeneous boundary
gdeitions here considered is given by

resents the filtered potentials which are obtained throu
integral transformation. Once the filtering problem fo
mulation is chosen, Eqgs. (9a) and (9b) are substituted b
into Egs. (1) or (5), respectively, to obtain the resultin 9
formugtio(n )for tﬁe) fiIterzd pote>r/1tial. It is desirable tha? oT(z,y,2) oT(z,y,2) :v[a I, g’ %)
the filtering solution contains as much information on the ot Oz Oz
operators of the original problem as possible. This infor-, 9°T(z,y,2,t) N PT(x,y, 2, t)}
mation may include, for instance, linearized versions of oy? 072 ’
the source terms, so as to reduce their influenceoncoy < » <1, 0<y<1, 0<z<1, t>0 (11a)
vergence of the final eigenfunction expansions.

The analytical nature of the inversion formula allowgith initial and homogeneous boundary conditions given
for a direct error testing procedure at each specified pagyj-
tion within the medium, and the truncation ord€rcan
also be controlled to fit the user global error requirements  T'(z,y,2,0) =1, 0<z<1, 0<y<1,

+u(T)

over the entire solution domain (C_otta, 1993). The to_l- 0<z<1 (11b)
erance testing formulas employed in the total and partial
transformation are, respectively, T(0,y,2,8) =0; T(l,y,2t) =0, ¢t>0 (llc,d)
N
b ()T s T
2 W) Tka(?) OT@ 0.2 _ o p(r1.24) =0, >0 (11ef)
e =maz = ~ (10a) dy
Trr(xt) + 3 Wi (%) T (1) oT 0.t
i=1 %:o; T(x,y,1,t) =0, t>0 (11g,h)
N
> ui(x*)Th,i(ws, t) and, for the present application, the nonlinear function
e— ma i=N* ' (10b) w(T)istakenas
x*EV* N _ _
Tf,k(X*§l'?nt)+i;1bki(X*)Tk,i($3,t) w(T) = up + T (11i)
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Results are also presented for the case with nonhomogedly developing, with negligible viscous dissipation and
neous boundary conditions, in which the boundary condiémperature-independent physical properties.

tion given by Eq. (11c) is replaced by We choose to formulate this problem using the single-
domain formulation approach by making use of coeffi-
7(0,y,2,t) = 1. (12) cients represented as space variable functions, with abrupt

transitions occurring at the fluid—wall interface. Recalling
the problem symmetry af = 0, the formulation of the

4.2 Conjugated Heat Transfer in Microchannels conjugated problem as a single region model is written as
There has been a marked research interest in improvifguPp etal., 2012)

the prediction and design tools for transport phenomena T (y, z) 92T 0 oT

driven microsystems. In this context, Knupp et al. (2012, “\Y)Ws—5— = ( )@ oy k(y)a—y )

2013a,b) have recently introduced an approach for the
treatment of conjugated convection-conduction problems,
based on the reformulation of the coupled problem into agT
single-domain model, which accounts for the heat trans-g, | _
fer at both the fluid flow and the channel wall regions. By =

0<y< Le, 0<2z< 2z (13a)

=0, T(Ley2z) =Ty, 0<2< 25 (13b,c)

making use of coefficients represented as space variable T (y, z)
functions, with abrupt transitions occurring at the fluid— T(y,0) = Tin, Oz T 0,
wall interface, the mathematical model is fed with infor- TR
0<y<Le (13d,e)

mation concerning the two original domains of the prob-
lem. Then the GITT is employed with the integral transyith

formation being constructed based upon an eigenvalue .
9 P 9 u(y)—{ ur(y), if 0<y<Ly/2

problem with space variable coefficients (Naveira-Cotta 0, if L;j2<y< L. ,

et al., 2009), thus incorporating all the information re- )
garding the transition between the two original domains. 1, — { kg, i 0<y<Ly/2 (13f,9)
The problem here chosen for illustration, schemati- ks, if Lp/2<y<L,

cally represented in Fig. 1, involves a laminar incompresgherew is the fluid heat capacity:, is the channel wall
ible internal flow of a Newtonian fluid between parakhermal conductivity; is the fluid thermal conductiv-
lel plates, in steady state and undergoing convective h@ﬁtanduf(y) is the fully developed velocity profile. The

transfer due to a prescribed temperatilfg at the ex- following dimensionless groups are defined:
ternal face of the microchannel wall. The channel wall

is considered to participate on the heat transfer problem 7 —
through both transversal and axial heat conduction. The R

fluid flows with a known fully developed velocity profile g _ T =T . .k o UawDn,
u(y), and with a uniform inlet temperatuf@,, . The flow Tw— T’ kg’ v

z/Dp, z Y U
= vy =2. U= )
ePr  D,Pe L.’ Ugy

is assumed to be hydrodynamically developed but ther-
y M y p :X’ Pe— Re Pr— uath; “:ﬁ;
04 04 wy
13 L. Ly
=——; Y= l4a—k
o= o (14a-k)
7 where the hydraulic diameter is given BY, = 2L;.
(1)L, i After making use of the groups given by Egs. (14a)—
}_)1_’_ ____________________ ;. (14Kk), one obtains the dimensionless formulation which
z " is here rewritten already accounting for a pseudo-transient

term in the formulation:
WVZ0) _ 120 K1) 0% 4 0
ot N 0Z P& 072  o20Y

FIG. 1. Schematic representation of the conjugated heat (K(Y)gie/> , 0<Y <1, 0<Z<Zs, t>0 (153)

transfer problem in a microchannel
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0(Y,Z,0)=0;,—0, 0<Y <1, 0<Z<Zy (15b) U

2
Y |y_g
0<Z < Zy, t>0 (15c,d)

=0, 0(1,Z¢)=1, 12|

tluid

L solid
86 06 SO
0(Y,0,t) = 04— = — = [
( 707 ) Z=0 07 EYA vz 07 04
0<Y <1, t>0 (15e,f) o2t
with T2 oa 08 08 T

a

Uy) = UrY), if 0<Y <Y, K @
10 if YVi<Y<l1 ’ 10

k)= { ks/kp, i Yi<Y <1 (159,h) oz

where the initial conditio®,— is preferably an estimate 06
of the steady-state solution to accelerate convergence fluid solid
just any reasonable function, since we are only interest o4 [
in the steady-state results. Figures 2(a) and 2(b) show
space variable coefficients with abrupt transition at tt , [
fluid—solid interfacel/ (Y) and K (Y'), respectively.

T

00 02 04 . 06 08 10
(b)

_ _ _ FIG. 2: Representation of the space variable coefficients
In the analysis of the three-dimensional Burgers’ equas functions with abrupt transitions occurring at the fluid—

tion, Egs. (11) and (12), the following governing pasolid wall interface{a) U (Y") and(b) K (Y)
rameters values have been adopted (Cotta et al., 2013):

ug = 1, ¢ = 5, andv = 1. The Burgers’ equation for-

mulation with homogenous boundary conditions is irthe eigenfunction expansiony, = 30, 35, 40, and 45, and
vestigated first. In order to offer a benchmark solutiofixed number of points in the Gaussian quadrature integra-
the UNIT code with total transformation was first emtion, M = {19,19. In Table 1 the standard total transfor-
ployed with user-provided analytical integration of theation UNIT solution (as obtained from the last column
transformed initial condition and nonlinear source terrim Table la of Cotta et al., 2013) is also presented, here
and double checked against a dedicated GITT solutionaaflled UNIT TT, obtained with user-provided analytical
the same problem (Cotta et al., 2013). Then, high trundategration. The fully discrete solution is also presented,
tion orders could be achieved with reduced computatiorddtained by the method of lines from the NDSolve rou-
cost so as to offer a reliable hybrid solution with four fullyine of the Mathematica system, under the same precision
converged significant digits, as presented in (Cotta et abntrol with mesh refinement, as in the options employed
2013), where convergence is reached at truncation orderghe UNIT PT solution. One should notice that, at the
aroundN = 300 with the traditional squared eigenvalueselected positions, the UNIT PT results are converged to
reordering criterion. Table 1 illustrates the convergentte third significant digit fot = 0.02 and to all four digits
behavior of the UNIT code with the partial transformatioshown fort = 0.1, with the expected improved conver-
scheme, hereinafter called UNIT PT, in which the diregence for larger values df It is also observed that the
tion = has been chosen not to be integral transformed. TBRIT PT results agree with the NDSolve numerical re-
results are presented for a different number of termsdults in three significant digits far= 0.02 andt = 0.1.

5. RESULTS AND DISCUSSION

5.1 Nonlinear Burgers’ Equation
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TABLE 1: Convergence of UNIT code solution with the partial transformation
scheme for a three-dimensional Burgers’ equation with homogeneous boundary
conditions (GITT withN = 30, 35, 40, or 45 terms ant/ = {19,19 in the
Gaussian quadrature integration)

T=0.02,y=05,2=05

z | N=30| N=35] N=40 | N=45 | UNITTT® | NDSolvé&
0.1| 0.2780 | 0.2803 | 0.2807 | 0.2808 | 0.2798 | 0.2807

0.3] 0.7354 | 0.7401 | 0.7407 | 0.7409 | 0.7396 | 0.7406

0.5| 0.9291 | 0.9333 | 0.9336 | 0.9337 | 0.9331 | 0.9336

0.7 | 0.9127 | 0.9155 | 0.9153 | 0.9152 | 0.9156 | 0.9155

0.9| 0.4898 | 0.4898 | 0.4892 | 0.4891 | 0.4905 | 0.4896

T=01,y=052:=05
z | N=30| N=35] N=40 | N=45 | UNITTT® | NDSolvé&
0.1 | 0.04943| 0.04945| 0.04946| 0.04946| 0.04922 | 0.04947
0.3| 0.1494 | 0.1494 | 0.1494 | 0.1494 | 0.1492 | 0.1494

05| 0.2232 | 0.2232 | 0.2232 | 0.2232 | 0.2231 | 0.2233

0.7] 0.2236 | 0.2236 | 0.2236 | 0.2236 | 0.2235 | 0.2236

0.9 | 0.1031 | 0.1031 | 0.1031 | 0.1031 | 0.1031 | 0.1031

“N =300 terms and analytical integration and total transformation, from Table 1(a) of
(Cotta et al., 2013);

*Mathematica 7.

These results, in comparison with those obtained by the

UNIT TT, indicate a faster convergence rate of the UNIT

PT solution, as expected, since three eigenfunction ¢ y=052-05
pansions are represented in the UNIT TT solution, whi
only two are represented in the UNIT PT solution. Ne\
ertheless, it should be remembered that the UNIT PT ¢ o0& —
lution demands additional numerical efforts per equatio
since a system of one-dimensional PDEs is being solvi
while for the UNIT TT scheme the total integral transfor_™
mation process leads to a transformed ODE system. T5 .
may also help explaining the fact that the UNIT PT resul':D
are closer to the fully discrete ones than to the benchmi
UNIT TT solution. In the UNIT PT, even considerably ]
reducing the numerical effort when transforming fror o2 -
a three-dimensional partial differential system to a on
dimensional one, the numerical solution of the couple
PDE'’s transformed system still yields a considerable ¢ °
fect on the final computed results. Apparently, only und 0 02 04 06 0.8 1
a priori imposed variable meshing or adaptive meshing
refinement, the UNIT PT and the fully discrete approadHG. 3: Comparison between the UNIT PT and TT so-
would be able to provide final results of closer accuracylittions and the NDSolve routine solution for the three-
the hybrid numerical-analytical solution with total transtimensional Burgers’ equation problem with homoge-
formation, here adopted as a benchmark. Figure 3 depimé®us boundary conditions

NDSolve
| &—&—A UNITTT

@ @ @UNTPT
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the graphical comparison of the UNIT PT and UNIT TBafe number of points in the Gaussian numerical integra-

solutions, at different times, against those obtained wiibn procedure, in case the user does not wish to manually

the NDSolve routine, where it is observed to be in excedet this option.

lent agreement between the three solutions throughout, tcFigure 4 brings the comparison between the solutions

the graph scale. obtained with the UNIT PT and the UNIT TT with the
Proceeding to the Burgers’ equation problem with noHser-provided filtering option, against the fully discrete

homogeneous boundary conditions, Table 2 illustrates iN@Solve routine solution, along the coordinate. In

convergence behavior of the UNIT solution with partidhese results one may again confirm the excellent adher-

transformation, by varying the truncation ordaf,= 55, ence between the UNIT solutions as well as with the ND-

60, 65, and 70, with a fixed number of points in the Gau§olve solution curves throughout thevariable domain.

sian quadrature integratiofi/ = {19,19. We point out

that no filte_ring |_oroce_dure was performed in this solutiog,» Conjugated Heat Transfer in Microchannels

since the direction with nonhomogeneous boundary con-

ditionsz is the one chosen not to be integral transformetihe dimensionless thermal conductivity has been calcu-

In these results, an excellent convergence behavior is tatted, motivated by an application with a microchannel

served at the selected positions, the results being ceteched on a polyester resin substrdte£ 0.16 W/n?C)

verged to the fourth significant digit throughout. It shouldnd water as the working fluid¢ = 0.64 W/ntC), so

be stressed that, based on the truncation order selectethby k, /k; = 0.25 (Ayres et al., 2011; Knupp et al.,

the user, the UNIT code is able to automatically provide2913b). The single-domain approach combined with inte-

TABLE 2: Convergence of UNIT code solution with the partial transformation
scheme for three-dimensional Burgers’ equation with nonhomogeneous boundary
conditions (GITT withN = 55, 60, 65, or 70 terms and = {19,19 in the Gaus-

sian quadrature integration)

t=0.04

(x,y, 2) N=55| N=60| N=65| N=70 | UNITTT® | NDSolve
(0.2,0.5,0.5)| 0.9407 | 0.9409 | 0.9408 | 0.9408 0.9433 0.9408
(0.5,0.5,0.5)| 0.8523 | 0.8523 | 0.8523 | 0.8523 0.8493 0.8523
(0.8,0.5,0.5)| 0.5945| 0.5945 | 0.5945 | 0.5945 0.5904 0.5948
(0.5,0.2,0.5)| 0.9119 | 0.9119 | 0.9119 | 0.9119 0.9089 0.9119
(0.5,0.8,0.5)| 0.4897 | 0.4896 | 0.4896 | 0.4897 0.4912 0.4896
(0.5,0.5,0.2)] 0.9119 | 0.9119 | 0.9119 | 0.9119 0.9089 0.9119
(0.5,0.5,0.8)| 0.4897 | 0.4897 | 0.4897 | 0.4897 0.4912 0.4896
t=01

(x,y, 2) N=55| N=60| N=65| N=70 | UNITTT® | NDSolve
(0.2,0.5,0.5)| 0.8798 | 0.8801 | 0.8799 | 0.8799 0.8805 0.8798
(0.5,0.5,0.5)| 0.6400 | 0.6400 | 0.6400 | 0.6400 0.6340 0.6398
(0.8,0.5,0.5)| 0.3365| 0.3365 | 0.3365 | 0.3365 0.3307 0.3364
(0.5,0.2,0.5)| 0.7457 | 0.7457 | 0.7457 | 0.7457 0.7402 0.7456
(0.5,0.8,0.5)| 0.3282| 0.3282 | 0.3282 | 0.3282 0.3279 0.3281
(0.5,0.5,0.2)| 0.7457 | 0.7457 | 0.7457 | 0.7457 0.7402 0.7456
(0.5,0.5,0.8)| 0.3282 | 0.3282 | 0.3282 | 0.3282 0.3279 0.3281

“UNIT code solution with total transformation and user-provided polynomial filke=(60,
M ={8,8,10);

*Mathematica 7.
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.. 05.2=05 tem, the automatic option of the UNIT code. In this least
: ' informative choice, the terms with abrupt spatial transi-
: tion that are responsible for the information on the tran-
08 — N 3 ) sition of the two regions (fluid stream and channel walls)
A are grouped into the source term. In the results below, we
illustrate the solution obtained for the case with Pe = 0.5.
Table 3 presents the convergence behavior of the UNIT
N % PT scheme with respect to the number of terms in the
04— ‘ eigenfunction expansiory = 10, 15, 20, 25, or 30, with
" ), | fixed M = 96 points in the Gaussian quadrature integra-
tion. One may observe that the results are converged to
the third or even up to the fourth significant digit with
respect to the truncation order, at the selected positions.
\ The comparison with the reference GITT values (Knupp
L E S S B R e — etal., 2013a), which is fully converged to all digits shown,
0 02 04 06 08 1 indicates a three-significant-digits agreement with the au-
* tomatic UNIT PT solution at the selected positions.
FIG. 4: Comparison between the UNIT PTand UNIT TT Figure 5 depicts the comparison of the UNIT PT so-
solutions vs the NDSolve routine solution for the Burgeriition with the reference curves for the transversal tem-
equation problem with nonhomogeneous boundary congérature profiles for some different longitudinal positions
tions, alongr along the flow,Z = 0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5,
and 4.5, for both the fluid and the channel wall regions.
Despite the adoption of the simplest possible auxiliary
gral transforms for the solution of conjugated heat transfigenvalue problem, a very good graphical agreement be-
problems has been introduced, verified, and validatedtiveen the automatic UNIT PT solution and the dedicated
Knupp et al. (2012), while the same problem consider&TT solution is observed throughout. In fact, in order
here was previously tackled in Knupp et al. (2013a) witb investigate the behavior of the solution of the above
two alternative approaches, thus offering some bendingle-domain formulation by a purely numerical method,
mark results for the comparison of the UNIT solutionwe have attempted to solve the original partial differential
here presented. For the solution via the UNIT PT schenpeoblem through the NDSolve routine of the Mathemat-
the simplest possible auxiliary eigenvalue problem was package under automatic accuracy control. However,
adopted, with constant coefficients, so as to lead to amder default specifications, it was not able to accurately
auxiliary problem with analytical solution readily ob-solve the problem with the intrinsic maximum refinement
tained from the DSolve routine of the Mathematica sysptions. We have also tried to impose limits of refinement

T(xy,z,t)

0.2 — NDSolve
A—A—A UNITTT
-1 @ O QUNTPT

TABLE 3: Convergence behavior of the conjugated problem solution with
Pe = 0.5 obtained with the UNIT code via partial transformation Ntk

10, 15, 20, 25, or 30 terms ardd = 96 points in the Gaussian quadrature
integration

Z=0.1 Z=0.2
N 'y=03[Y=06][Y=00|V=03]Y=06] V=09
10 0.06511| 0.1247 | 0.4899 | 0.1328 | 0.2321 | 0.6920
15 0.06672| 0.1236 | 0.4928 | 0.1330 | 0.2333 | 0.6921
20 0.06667| 0.1233 | 0.4935| 0.1328 | 0.2333 | 0.6920
25 0.06670| 0.1231 | 0.4934 | 0.1330 | 0.2329 | 0.6920
30 0.06634| 0.1230 | 0.4932 | 0.1329 | 0.2329 | 0.6920
GITT* | 0.06626| 0.1241 | 0.4935| 0.1321 | 0.2348 | 0.6923
¢ GITT solution with analytical integration (Knupp et al., 2013a).
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cA—o—h——c—h jugated heat transfer analysis, without requiring any sort
o of iterative procedure. Again, the UNIT code under the
thmark partial transformation scheme was capable of recovering

with accuracy and mild computational cost, the bench-
mark results obtained with a dedicated GITT solution
with analytical integration.

g
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