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Abstract Solutions of the hydraulic diffusivity equation are of utmost importance for many
reservoir engineering problems. Despite all the efforts, there is still a need for the develop-
ment of rigorous and comprehensive solutions for transient flow problems in heterogeneous
oil reservoirs. This study demonstrates the use of an integral transform approach to obtain
such a rigorous and comprehensive solution for the hydraulic diffusivity equation in heteroge-
neous porous domain. The reservoir heterogeneities can be approximated by any continuous
differentiable function. The presented general solution and its derivation are valid for multi-
dimensional problems in any orthogonal coordinate system. It has the advantage of rigorously
solving the hydraulic diffusivity equation for transient, late-transient and steady-state (or
pseudo-steady-state) flow regimes in a single formulation that allows the consideration of
variable flowrates. In this work, applications of the general solution for one-dimensional
problems in the Cartesian and radial coordinate systems are presented, showing comparisons
of the results obtained with a finite difference numerical scheme. The solution presented can
be used to analyze buildup, drawdown and interference test data, making it a useful tool for
pressure transient analysis applied to reservoir engineering problems.
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List of symbols

Lx , Ly, Lz, re Reservoir dimensions
Ni Normalization integrals
ct Total compressibility
pi Initial pressure
F (x) Initial condition
a (x) , b (x) Boundary condition coefficients
k Permeability
p Pressure
q Flowrate
xp, rp Wellbore position
Wp Source term
t Time
x Position vector
S Domain surface
V Domain region
xc Parameter of Equation (14)
rp Oil well radius

Greek symbols

η Hydraulic diffusivity coefficient
μ Viscosity
φ Porosity
φ (x, t) Boundary condition coefficients
ψ (x) Heterogeneous problem eigenfunctions
σ Heterogeneous problem eigenvalues
Ω (x) Auxiliary problem eigenfunctions
λ Auxiliary problem eigenvalues
erf Error function
erfc Complementary error function
Ei Exponential integral function
δ Dirac delta function

1 Introduction

Solutions of the hydraulic diffusivity equation (HDE) have been a subject of study of the
petroleum industry since the first half of the twentieth century. The development of solutions
for the HDE is of utmost importance for many reservoir engineering problems, since the
HDE describes the transient pressure behavior in the porous media. A commonly employed
form of the HDE is given by:

1

η

∂p (x, t)
∂t

= ∇2 p (x, t) (1)
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where η is the hydraulic diffusivity coefficient given by η = k/φμct . Solutions of Eq. 1 form
the foundation of pressure analysis techniques applied to reservoir engineering problems
(Matthews and Russell 1967).

The formulation given by Eq. 1 considers a set of simplifying assumptions: (1) fluid of
small and constant compressibility (most oilfield liquids fit this assumption properly); (2)
constant fluid viscosity; (3) homogeneous and isotropic porous media; (4) Darcy’s law is
respected; (5) small pressure gradients; and (6) negligible gravity forces. In the formulation
given by Eq. 1, the well effects are usually taken into account in the boundary conditions.

According to Cotta (1993), analytical solutions present advantages when compared to
numerical solutions: They are more exact and generally much less computationally expen-
sive, provide trends and asymptotic behaviors, allowing for straightforward inspections of
parameter variations, and can provide benchmark results for the validation of numerical
schemes. Carslaw and Jaeger (1959) presented analytical solutions of Eq. 1 that are widely
employed in the reservoir engineering literature for both the Cartesian and radial coordinate
systems, respectively:

p (x, t) = pi − qμ

kL y Lz

[
x erfc

(
x√
4ηt

)
−

√
4ηt

π
e− x2

4ηt

]
(2)

p (r, t) = pi − qμ

2πkLz

[
1

2
Ei

(
− r2

4ηt

)]
(3)

Despite their importance for many reservoir engineering problems, the solutions given by
Eqs. 2–3 are limited to very restricted cases, as these solutions consider: (1) one-dimensional
fluid flow in a semi-infinite porous media; (2) constant flowrate; (3) fully penetrating wells;
and (4) uniform initial condition.

The classical integral transform technique (CITT) is a method for the solution of linear
diffusion problems based on themethod of separation of variables,which expands the solution
in terms of expansions of an auxiliary eigenvalue problem. The use of the CITT to obtain
analytical solutions of seven classes of linear diffusion problems has been presented and
analyzed by Mikhailov and Ozisik (1984). The obtained formal solutions are applicable over
a broad range of problems.

Aiming to obtain more general solutions of the HDE, Hovanessian (1961) presented
the use of the CITT to analytically solve the transient HDE considering the flow of slightly
compressible liquids through a two-dimensional homogeneous porousmedia in the Cartesian
coordinate system.Numerical exampleswere given to illustrate the application of the solution
to practical problems.

Rahman and Bentsen (2000) presented a systematic approach to obtain several solutions
of the HDE by CITT in the Cartesian coordinate system for one-, two- and three-dimensional
problems, with all possible combinations of the boundary conditions. Later, Rahman and
Bentsen (2001) extended the systematic approach to obtain analytical solution of the HDE
by CITT to problems in the radial coordinate system. In these two works, the application of
the technique was not demonstrated.

Despite all the advances attained by Hovanessian (1961), Rahman and Bentsen (2000),
Rahman and Bentsen (2001) and many others, there is still a need for the development
of rigorous and comprehensive solutions for transient flow problems in heterogeneous oil
reservoirs.

An extension of the analytical ideas behind the CITT led to the development of the
generalized integral transform technique (GITT) (Cotta 1993), which offers more flexibility
in handling a priori non-transformable problems, allowing the solution of more involved
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situations, as the solution of nonlinear (Cotta 1994) convection–diffusion problems (Almeida
andCotta 1995). Naveira-Cotta et al. (2009) presented the use of theGITT to obtain analytical
solutions of eigenvalue problems related to diffusion in heterogeneous media. Following
these ideas, Couto et al. (2011) presented a formal and generalized solution of the HDE in
heterogeneous porous media, without presenting applications of the proposed solution to
heterogeneous domains.

This work presents the use of the GITT to attain rigorous and comprehensive solutions of
transient flow problems in heterogeneous reservoirs. Applications of the proposed solution
to transient flow problems in the Cartesian and radial coordinate systems will illustrate the
accuracy of the proposed solution.

2 Problem Formulation

A general three-dimensional formulation of the HDE that considers transient fluid flow
through heterogeneous reservoirs will be employed in this work. This formulation can be
given by:

φ (x) ct
∂p (x, t)

∂t
= ∇ ·

(
k (x)
μ

∇ p (x, t)
)

+ Wp (x, t) , x ∈ V, t > 0 (4a)

with generalized boundary conditions:

a (x) p (x, t) + b (x)
k (x)
μ

∂p (x, t)
∂n

= ϕ (x, t) , x ∈ S, t > 0 (4b)

and generalized initial condition:

p (x, t) = F (x) , x ∈ V, t = 0 (4c)

The parameters a (x) and b (x) can be handled in order to obtain boundary conditions of
the 1st kind (prescribed pressure, b (x) = 0), 2nd kind (prescribed flux or no flow boundary,
a (x) = 0) and of the 3rd kind. Most of the reservoir engineering applications involve
boundary conditions of the 1st and 2nd kind, which are also called Dirichlet and Newman
boundary conditions, respectively.

The initial condition given by Eq. (4c) is general and can be chosen in order to represent
an initially uniform pressure distribution or any other initial pressure distribution considered
adequate to the flow problem that is going to be solved.

In the way it is written, Problem (4) neglects gravitational effects. This simplification
can be removed by considering that p (x, t) represents flow potential instead of pressure. In
Problem (4), x is the position vector according to any orthogonal coordinate system, k (x) is
the permeability coefficient, φ (x) is the porosity coefficient, and Wp (x, t) is a source term
that represents the well production. Wp (x, t) has dimensions of s−1 and is given by:

Wp (x, t) = q (t)

A
δ
(
x − xp

)
(5)

where q (t) is the volumetric flowrate in reservoir conditions that can be represented by any
continuous differentiable function, δ is the Dirac delta function, and xp represents the well
position inside the reservoir. The parameter A depends on the coordinate system employed
as well as on the number of dimensions that are going to be considered. The definition of
the parameter A is straightforward and can be found in Rahman and Bentsen (2000) for the
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Cartesian coordinate system and in Rahman and Bentsen (2001) for the radial coordinate
system.

The rigorous solution of Eq. 4a allows one to use the space- dependent coefficients φ (x)
and k (x) to represent heterogeneities of the porous medium, as layered formations, sealing
or conducting faults, skin or damage effects, etc. The space- and time-dependent source term
can be used to represent production of a well with variable flowrate as well as the production
of more than one well inside the same reservoir (only for Cartesian coordinate system).

3 Solution Methodology

The solution of the generalized problem given by Eqs. 4a–4c by the GITT considers two
steps: (1) solution of Problem (4) itself using the CITT and (2) solution of the associated
eigenvalue problem with variable coefficients.

Step 1: Solution of Problem (4) using the CITT
Following the formalisms presented by Mikhailov and Ozisik (1984), an exact solution

of Problem (4) by the classical integral transform technique can be obtained:

p (x, t) =
∞∑
i=1

ψ̂i (x)
(
f̄ie

−σ 2
i t +

∫ t

0
ḡi

(
t ′
)
e−σ 2

i (t−t ′)dt ′
)

(6)

The eigenvalues and eigenfunctions are obtained from the eigenvalue problem that con-
tains the information regarding the reservoir heterogeneity. This eigenvalue problem is
obtained by the separation of variables of the homogeneous version of Problem (4) and
can be written as:

∇ ·
(
k (x)
μ

∇ψi(x)

)
+ φ (x) ctσ 2

i ψi(x) = 0, xεV (7a)

with homogeneous boundary conditions given by:

a (x) ψi(x) + b (x)
k (x)
μ

∂ψi(x)

∂n
= 0, x ∈ S (7b)

The normalized eigenfunctions as well as the transformed source terms and initial condi-
tion are computed with Eqs. 8a–8d after solving the eigenvalue problem given by Eqs. 7a–7b.

ψ̂i (x) = ψi(x)

N 1/2
i

Normalized eigenfunctions (8a)

Ni =
∫
V

φ (x) ctψ2
i (x) dV Normalization integrals (8b)

f̄i =
∫
V

φ (x) ctF (x) ψ̂i (x) dV Transformed initial condition (8c)

ḡi (t) =
∫
V
Wp (x, t) ψ̂i (x) dV +

∫
S
ϕ (x, t)

⎡
⎣ ψ̂i (x) − k(x)

μ
∂ψ̂i (x)

∂n

a (x) + b (x)

⎤
⎦ dS

Transformed source term (8d)

The source term ḡi (t) includes the information of both the well’s production and the
boundary conditions. It is important to note that the existence of source terms in the bound-
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aries of the reservoir (non-homogeneous boundary conditions) causes difficulties to obtain
a converged solution at these boundaries, making it important to use filter solutions in order
to improve the convergence behavior.

Step 2: Solution of the associated eigenvalue problem with variable coefficients
The eigenvalue problem containing the information related to the heterogeneous media,

Problem (7), will be tackled with the generalized integral transform technique by the propo-
sition of an appropriate basis that consists of a simpler auxiliary eigenvalue problem with
readily available solutions, and expanding the solution of Problem (7) in terms of this simpler
auxiliary eigenvalue problem is given by:

∇ ·
(
k∗ (x)

μ
∇Ωn(x)

)
+ φ∗ (x) ctλ2nΩn(x) = 0, xεV (9a)

a (x)Ωn(x) + b (x)
k∗ (x)

μ

∂Ωn(x)

∂n
= 0, x ∈ S (9b)

where the coefficients k∗ (x) and φ∗ (x) are simpler forms of the function that represents the
heterogeneous distribution of permeability and porosity throughout the reservoir. The forms
of k∗ (x) and φ∗ (x) are chosen in order to allow for an analytical solution of Problem (9). A
simple choice of these coefficients is k∗ (x) = kavg and φ∗(x) = φavg, where kavg and φavg

represent the average reservoir permeability and porosity, respectively. For this situation,
the eigenfunctions Ωn(x) may be obtained by separation of variables for a general multi-
dimensional formulation and the solution of the separated problems can be readily obtained
from tabulated solutions of classical eigenvalue problems (Ozisik 1993).

The solution of Problem (9) is used as a basis for the eigenfunction expansion of the
eigenvalueProblem (7),which contains the information regarding the reservoir heterogeneity:

ψi(x) =
∑∞

n=1
Ω̂n(x)ψ̂i,n Inverse (10a)

ψ̂i,n =
∫
V

φ∗ (x) ctψi(x)Ω̂n(x)dV Transform (10b)

The integral transformation of Problem (7) is performed by following the formalisms of
the GITT, according to Cotta (1993), in order to obtain:

∞∑
m=1

ψ̂i,m

⎡
⎣∫
V

Ω̂m(x)

(
∇.

k (x)
μ

∇Ω̂n(x)

)
dV +

∫
S

k (x)
μ

(
1 − k∗ (x)

k (x)

) (
Ω̂m(x)

∂Ω̂n(x)

∂n

)
ds

+
∫
V

Ω̂m(x)σ
2
i
k∗ (x)

μ
Ω̂n(x)dV

]
= 0 (11)

The eigensystem given by Eq. 11 can be concisely written in matrix form:

(
A − σ 2B

)
ψ̂ = 0; ψ̂ =

{
ψ̂n,m

}
;B = {

Bn,m
} ;A = {

An,m
}

(12a)

Bn,m =
∫
V

Ω̂m(x)σ
2
i K(x)

k∗ (x)
μ

Ω̂n(x)dV (12b)

An,m =
∫
V

Ω̂m(x)

(
∇ · k (x)

μ
∇Ω̂n(x)

)
dV +

∫
S

k (x)
μ

(
1 − k∗ (x)

k (x)

) (
Ω̂m(x)

∂Ω̂n(x)

∂n

)
ds

(12c)
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The algebraic Problem (12) is solved to provide results for the eigenvalues
(
σ 2

)
and

eigenfunctions
(
ψ̂

)
,which canbe combinedwith the inverse formula (10a) in order to provide

the eigenfunctions that contain the information associated with reservoir heterogeneity. After
one obtains the solution of the eigenvalue problem, it is possible to use the solution given by
Eq. 6 in order to obtain the transient pressure behavior in a heterogeneous reservoir.

For a homogeneous reservoir, the solution given by Eq. 6 is still valid, and instead of using
the procedure presented in Step 2 to solve the eigenvalue problem with variable coefficients,
one can directly call for tabulated solutions of the associated eigenvalue problemwith constant
coefficients, as the ones presented in the textbook by Ozisik (1993).

If analytical representation of the integrals involved in Eqs. (6), (8a), (11) and (12a) are
not available, it will be necessary to numerically integrate these terms. This task, which was
only necessary for the radial coordinate system, can be performed by consolidated routines
with controlled accuracy, such as the Gaussian quadrature.

4 Applications

Applications of the proposed approach to solve the HDE for one-dimensional problems in
the Cartesian and radial coordinate systems will be presented in this section. The solution
was implemented in the platform Mathematica 9.0 (Wolfram 2005). Although not presented
in this work, the computational implementation can be extended in future works to two- or
three-dimensional problems, given an adequate reordering of the terms in the eigenfunction
expansions, as presented by Mikhailov and Cotta (1996). The results will be compared with
known solutions in order to validate the proposed methodology. Table 1 presents reservoir
properties that are common for all the applications presented in this work.

4.1 One-Dimensional Solution in the Cartesian Coordinate System in an
Heterogeneous Reservoir

For this problem, the HDE and its boundary and initial conditions are written as:

φct
∂p∗ (x, t)

∂t
= ∂

∂x

[
k (x)

μ

∂p∗ (x, t)

∂x

]
+ q

Ly Lz
δ
(
x − xp

)
, 0 < x < Lx , t > 0 (13a)

∂p∗ (x, t)

∂x
= 0, x = 0, t > 0 (13b)

p∗ (x, t) = 0, x = Lx , t > 0 (13c)

p∗ (x, t) = 0, 0 < x < Lx , t = 0 (13d)

where p∗ (x, t) = p (x, t)− pi is a filter that homogenizes the boundary conditions, improv-
ing the convergence of the eigenfunction expansion.

Table 1 Dataset for the
applications presented in this
work

Parameter SI units Field units

Porosity, φ 20% 20%

Total compressibility, ct 1 × 10−9 Pa−1 1 × 10−4 bar−1

Viscosity, μ 10−3Pa s 1cP

Initial pressure, pi 5 × 107 Pa 500 bar
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Fig. 1 Reservoir permeabilities considered in the Cartesian coordinate system applications

The permeability k (x) can be represented by any continuous differentiable function.
Figure 1 presents the two different cases of reservoir permeabilities that will be considered:
(1) abrupt reduction of reservoir permeability near thewellbore, aiming to represent formation
damage in the near-wellbore region; (2) smooth permeability variation represented by a fifth-
order polynomial.

For the first case, k (x) is represented by the following function:

k (x) = k1 + (k2 − k1)

(
1

2
+ 1

2
erf (ω · (x − xc))

)
(14)

with k1 = 10 mD, k2 = 50mD, ω = 10 m−1 and xc = 2m. Equation (14) is a continuous
approximation of the Heaviside step function. For the second case, k (x) is given by:

k (x) = 27.6956 + 24.4593x − 3.28835x2 + 0.152226x3 − 0.00289167x4

+ 1.95333 × 10−6x5 (15)

Considering the parameters presented in Table 1 and xp = 0m, Lz = 2m, Ly = 500 and
Lx = 50m, the transient pressure response for Cases 1 and 2 can be obtained by following
the procedure presented in Sect. 3 (see “Appendix 1” for the eigenvalues, eigenfunctions and
norms of the auxiliary eigenvalue problem).
Case 1: Abrupt permeability variation.

Figure 2 presents the transient pressure behavior at the wellbore position (x = xp) for
different numbers of terms in the eigenfunction expansion.

As can be seen in Fig. 2, to the graph scale, the solution is already converged with 100
terms in the eigenfunction expansion. In order to check the validity of the results obtained
by the approach presented in this work, Fig. 3 shows the pressure distribution throughout
the reservoir calculated by: (1) GITT with 300 terms in the eigenfunction expansion and (2)
commercial finite difference numerical scheme (CMG’s IMEXTM).

As can be seen in Fig. 3, the transient pressure response calculated by the GITT is in
excellent agreement with the results calculated by the finite difference numerical scheme
throughout the whole domain, confirming the accuracy of the results obtained by the GITT.
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Fig. 2 Transient pressure behavior at x = xp with different truncation orders
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Fig. 3 Pressure throughout the reservoir (Case 1)

The convergence behavior of the GITT solution for time t = 0.01 days in different positions
throughout the reservoir is presented in Table 2.

The results presented in Table 2 show a good convergence behavior of the infinite series,
even close to x = 2m, where the steep permeability variations take place in the reservoir.
It can also be observed that the convergence progress is slower close to the source term
(x = xp = 0m), as already mentioned by Hovanessian (1961).

Pressure derivative analysis was introduced byBourdet andAyoub (1989) and is nowadays
widely used for the interpretation of pressure transient tests and reservoir characterization.
The solution proposed in this work can be used to obtain exact solutions for the derivative
of pressure with time by applying the operator ∂/∂t to Eq. 6. Table 3 presents an analysis of
the convergence of the pressure derivative calculated by the GITT at the wellbore position
(x = xp).
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Table 2 Convergence behavior
of pressure at t = 0.01days
(Case 1)

x (m) Pressure (bar)

Number of terms (N )

10 50 100 200 300

0 426.19 394.67 391.83 390.39 389.95

2 429.76 432.45 432.76 432.94 432.97

5 443.47 445.07 445.22 445.23 445.23

10 461.07 461.84 461.89 461.92 461.92

20 483.02 483.62 483.65 483.67 483.67

30 493.77 494.10 494.11 494.12 494.12

40 498.19 498.31 498.32 498.32 498.32

50 500.00 500.00 500.00 500.00 500.00

Table 3 Convergence behavior
of pressure derivative at x = xp
(Case 1)

t (days) ∂p/∂t × 103 (bar/s)

Number of terms (N )

10 50 100 200 300

0.001 −145.99 −213.24 −216.89 −218.48 −218.71

0.01 −44.91 −46.26 −46.36 −46.40 −46.40

0.02 −31.51 −32.00 −32.03 −32.05 −32.05

0.1 −5.66 −5.73 −5.73 −5.73 −5.73

0.2 −0.69 −0.70 −0.70 −0.70 −0.70

1 0.00 0.00 0.00 0.00 0.00
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Fig. 4 Pressure throughout the reservoir (Case 2)

The analysis of Table 3 shows that ∂p/∂t has an excellent convergence behavior and that
convergence of ∂p/∂t can be obtained even at the wellbore position (x = xp).
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Table 4 Convergence behavior
of pressure at t = 0.01 day
(Case 2)

x (m) Pressure (bar)

Number of terms (N )

10 50 100 200 300 400

0 434.59 429.37 428.42 427.94 427.78 427.70

5 444.86 445.24 445.25 445.25 445.25 445.25

10 455.27 455.37 455.37 455.38 455.38 455.38

15 466.77 466.62 466.61 466.61 466.61 466.61

20 480.97 481.05 481.05 481.05 481.05 481.05

25 492.14 492.49 492.50 492.50 492.50 492.50

30 496.90 496.79 496.78 496.78 496.78 496.78

35 498.24 498.35 498.35 498.35 498.35 498.35

40 499.14 499.12 499.12 499.12 499.12 499.12

45 499.58 499.60 499.60 499.60 499.60 499.60

50 500.00 500.00 500.00 500.00 500.00 500.00

Table 5 Convergence behavior
of pressure derivative at x = xp
(Case 2)

t (days) ∂p/∂t × 103 (bar/s)

Number of terms (N )

10 50 100 200 300

0.001 −113.42 −116.03 −116.12 −116.13 −116.14

0.01 −47.78 −47.96 −47.96 −47.96 −47.96

0.02 −36.71 −36.81 −36.81 −36.81 −36.81

0.1 −7.10 −7.13 −7.13 −7.13 −7.13

0.2 −0.93 −0.93 −0.93 −0.93 −0.93

1 0.00 0.00 0.00 0.00 0.00

Case 2: Smooth permeability variation.
Figure 4 shows the pressure distribution throughout the reservoir calculated by: (1) GITT

with 300 terms in the eigenfunction expansion and (2) commercial finite difference numerical
scheme.

As can be seen in Fig. 4, the transient pressure response calculated by the GITT is in
excellent agreement with the results calculated by the finite difference numerical scheme,
confirming the accuracy of the results obtained by the GITT. The convergence behavior of
the GITT solution for time t = 0.01 days in different positions throughout the reservoir is
presented in Table 4.

An analysis of the convergence of ∂p/∂t at the wellbore position (x = xp) is shown in
Table 5, where it can be observed that ∂p/∂t has an excellent convergence behavior, even at
the well’s position (x = xp).

In addition to ∂p/∂t , the calculation of ∂p/∂x can be useful for practical applications,
for example, the calculation of flow velocities throughout the reservoir through Darcy’s law.
The GITT can be used to attain converged solutions of ∂p/∂x as presented in “Appendix 3.”

To illustrate the capabilities of the GITT to solve the HDE, Fig. 5 presents the pressure
distribution for the permeability considered in Case 2 (GITT with 300 terms in the eigen-
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Fig. 5 Pressure throughout the reservoir (Case 2, xp = 25m)

function expansion), but instead of placing the well at the system boundary (xp = 0), the
well now is placed at xp = 25 m.

As can be seen in Fig. 5, the proposed solution of the HDE easily handles different
positions of the source term throughout the reservoir, being it possible to use the same
solution procedure to consider several wellbores situated in arbitrary positions throughout
the reservoir, as presented by Couto et al. (2011).

4.2 One-Dimensional Solution in the Radial Coordinate System in an
Heterogeneous Reservoir

For this problem, the HDE and its boundary and initial conditions are written as:

φct
∂p∗ (r, t)

∂t
= 1

r

∂

∂r

[
r
k (r)

μ

∂p∗ (r, t)

∂r

]
+ q

2πLz
δ
(
r − rp

)
, 0 < r < re, t > 0 (16a)

∂p∗ (r, t)

∂r
= 0, r = 0, t > 0 (16b)

∂p∗ (r, t)

∂r
= 0, r = re, t > 0 (16c)

p∗ (r, t) = 0, 0 < r < re, t = 0 (16d)

where p∗ (r, t) = p (r, t)− pi is a filter that homogenizes the boundary conditions, improving
the convergence of the eigenfunction expansion.

The permeability k (r) can be represented by any continuous differentiable function. An
application considering a smooth permeability variation throughout the reservoir (Fig. 6)
represented by a fifth-order polynomial is going to be considered:

k (r) = 67.2419 − 0.562439r + 9.25807 × 10−3r2 − 6.92901 × 10−5r3

+ 2.00515 × 10−7r4 − 1.89480 × 10−10r5 (17)

Considering the parameters already presented in Table 1 and Lz = 100m, re = 500m, the
transient pressure response can be obtained by following the procedure presented in Sect. 3
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Fig. 6 Reservoir permeability considered in the radial coordinate system application
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Fig. 7 Pressure throughout the reservoir in a radial coordinate system

(see “Appendix 2” for the eigenvalues, eigenfunctions and norms of the auxiliary eigenvalue
problem).

Figure 7 shows the pressure distribution throughout the reservoir calculated by: (1) GITT
with 250 terms in the eigenfunction expansion and (2) commercial finite difference numerical
scheme.

As can be seen in Fig. 7, the transient pressure response calculated by the GITT is in
excellent agreement with the results calculated by the finite difference numerical scheme,
confirming the accuracy of the results obtained by the GITT and its ability to properly
represent the reservoir heterogeneities. The convergence behavior of the GITT solution for
time t = 10days in different positions throughout the reservoir is presented in Table 6.

The results presented in Table 6 show that the solution has a good convergence behavior
for positions far from the source term (well’s position). For positions close to the source term,
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Table 6 Convergence behavior
of pressure at t = 10days

r (m) Pressure (bar)

Number of terms (N )

10 50 100 150 200 250

0.1 466.50 456.98 453.09 450.83 449.24 448.00

1 466.50 457.05 453.37 451.44 450.29 449.60

5 466.58 458.68 458.38 459.22 459.24 458.90

10 466.82 462.43 463.31 462.96 463.16 463.02

50 472.54 473.26 473.34 473.31 473.33 473.32

100 478.28 478.04 478.03 478.03 478.02 478.02

200 483.51 483.40 483.40 483.39 483.39 483.39

300 488.42 488.31 488.30 488.30 488.30 488.30

400 489.72 489.68 489.68 489.68 489.68 489.68

500 489.90 489.85 489.85 489.85 489.85 489.85

Table 7 Convergence behavior of pressure derivative at r = 0.1m

t (days) ∂p/∂t × 103 (bar/s)

Number of terms (N )

10 50 100 150 200 250

0.001 −3.3076 −32.1662 −33.5731 −33.5248 −33.5169 −33.5143

0.01 −2.3167 −3.5809 −3.5777 −3.5774 −3.5773 −3.5773

0.02 −1.6430 −1.8377 −1.8370 −1.8369 −1.8369 −1.8369

0.1 −0.3947 −0.3895 −0.3894 −0.3894 −0.3894 −0.3894

0.2 −0.2020 −0.2009 −0.2009 −0.2009 −0.2009 −0.2009

1 −0.0531 −0.0528 −0.0528 −0.0528 −0.0528 −0.0528

10 −0.0148 −0.0148 −0.0148 −0.0148 −0.0148 −0.0148

15 −0.0147 −0.0147 −0.0147 −0.0147 −0.0147 −0.0147

20 −0.0147 −0.0147 −0.0147 −0.0147 −0.0147 −0.0147

convergence progress becomes slower and is not attained, at least for 250 eigenvalues in the
expansion.

In spite of pressure convergence not being satisfactory at the well’s positions, the conver-
gence of the pressure derivative with time is much faster, as can be observed by the analysis
of ∂p/∂t convergence behavior at the position x = 0.1 m for different times, presented in
Table 7.

The analysis of Table 7 shows that ∂p/∂t has an excellent convergence behavior at the
well’s position, even for very short times (few minutes). Figure 8 shows the plot of t · ∂P/∂t
versus t in a log–log scale (a plot commonly used in well test analysis for reservoir characteri-
zation) at thewell’s position (x = 0.1 m) as calculated by: (1)GITTwith different numbers of
terms in the eigenfunction expansion and (2) commercial finite difference numerical scheme.

The analysis of Fig. 8 shows that the convergence of t × ∂P/∂t depends on time. For
t = 0.01 days, the solution is converged, at least to the graph scale, with only 50 terms in
the eigenfunction expansion, and for short times as t = 0.0001 d, 200 terms are necessary
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Fig. 8 Log–log derivative plot for the problem of Sect. 4.2

to attain convergence of the solution. It is also possible to observe that the results perfectly
match the ones obtained by the finite difference numerical scheme.

5 Conclusions

A comprehensive and rigorous solution of the transient hydraulic diffusivity equation in
heterogeneous porous media using the GITT is presented. The presented general solution
and its derivation are valid for multi-dimensional problems in any orthogonal coordinate
system, with generalized boundary and initial conditions. The solution presented is valid for
all flow regimes and allows the calculation of pressure throughout the reservoir and not only
for specific positions inside the porous media.

Applications of the proposed solution to one-dimensional problems in the Cartesian coor-
dinate system are presented considering two different cases of reservoir permeability: (1)
abrupt permeability variation represented by a continuous approximation of the Heaviside
step function and (2) smooth permeability variation represented by a fifth-order polynomial.
The generality of the proposed solution is explored by applying the same solution method to
a one-dimensional problem in the radial coordinate system with heterogeneous permeability
represented by a fifth-order polynomial. For all the examples presented, the accuracy of the
GITT results is checked with results obtained with a finite difference numerical scheme,
showing that the GITT solution is able to properly represent the reservoir heterogeneities
considered. Convergence analysis of the pressure was presented, showing that the solution
is stable with controlled accuracy, being the convergence slower for positions near the well.
The GITT allows the obtainment of time derivatives of pressure analytically, without the use
of any numerical procedure. The convergence behavior of the time derivatives is presented,
showing that the analytical representation of the time derivatives has an excellent convergence
behavior, even at the well’s position. For the radial coordinate system application, the log–
log derivative plot is presented, illustrating an example of the application of the GITT to the
interpretation of transient well test data. Although not explored in this work, the application
of the proposed general solution can be extended to two- and three-dimensional problems.
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The GITT allows the establishment of benchmark results for transient flow problems in
heterogeneous porousmedia and presents itself as a new tool for the analysis of buildup, draw-
down and interference test data associated with pressure transient analysis in heterogeneous
reservoirs.
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Appendix 1

The eigenvalues, eigenfunctions and norms of the auxiliary eigenvalue problem used to solve
the problem given by Eqs. (13a) through (13d) are:

Ωn(x) = cos (λnx) (18)

λn = 2π (n − 1)

2Lx
, n = 1, 2, 3 . . . (19)

NΩn = Lx/2 (20)

Appendix 2

The eigenvalues, eigenfunctions and norms of the auxiliary eigenvalue problem used to solve
the problem given by Eqs. 16a–16d are:

Ωn(r) = J0 (λnr) (21)

λn = nonnegative rootsof (J0 (λnre) = 0) (22)

NΩn = r2e J
2
0 (λnre)

2
(23)

Appendix 3: Integral Balance

The integral balance can be used as a tool to accelerate the convergence of the eigenfunction
expansions, as presented by Scofano Neto et al. (1990) and Leiroz and Cotta (1990). This
technique is used in order to attain a faster convergence of the spatial derivatives of pressure.
The integral balance is based on the integration of the original partial differential equa-
tion (Eq. 4a) in the spatial domain followed by a manipulation of the boundary conditions.
Applying the operator

∫ x
0 dx in Eq. 4a:

∂

∂t

[∫ x

0
φ (x) ct p (x, t) dx

]
= k (x)

μ

∂p (x, t)

∂x

∣∣∣∣
x=x

− k (x)

μ

∂p (x, t)

∂x

∣∣∣∣
x=0

+
∫ x

0
Wp (x, t) dx (24)

substituting a boundary condition with known value of ∂p(x, t)/∂x in Eq. 24, one can obtain
an expression for ∂p(x, t)/∂x with excellent convergence behavior.
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Fig. 9 Pressure derivative throughout the reservoir calculated by: a deriving Eq. 6 and b integral balance

Table 8 Convergence behavior
of spatial pressure derivative at
t = 0.01days (Case 2) calculated
using the spatial derivative of
Eq. 6

x (m) ∂p/∂x (bar/m)

Number of terms (N )

5 10 25 50 100

0.1 0.04132 0.11324 0.41233 1.05652 2.50599

1 0.41149 1.10256 3.50305 5.70715 3.96026

5 1.85822 2.86902 2.16121 2.39140 2.08440

10 2.73776 1.62444 2.22406 1.91202 1.96594

20 2.08025 2.53958 2.78671 2.87803 2.93297

30 0.88337 0.28922 0.56681 0.42765 0.45157

40 −0.04235 −0.00211 0.05662 0.08316 0.09908

50 0.24070 −0.03463 0.13227 0.04428 0.05923

Table 9 Convergence behavior
of spatial pressure derivative at
t = 0.01days (Case 2) calculated
using the integral balance

x (m) ∂P/∂x (bar/m)

Number of terms (N )

5 10 25 50 100

0.1 7.75867 7.75788 7.75777 7.75776 7.75776

1 4.59249 4.58763 4.58699 4.58695 4.58695

5 2.20154 2.19003 2.18897 2.18889 2.18888

10 2.04284 2.02551 2.02291 2.02274 2.02271

20 3.20047 3.00958 2.99239 2.99144 2.99125

30 0.51889 0.48201 0.47740 0.47707 0.47701

40 0.13231 0.11760 0.11611 0.11599 0.11596

50 0.08391 0.07627 0.07517 0.07507 0.07505

Figure 9 presents ∂p(x, t)/∂x for the problem presented in Case 2 as calculated by two
ways: (a) deriving the solution given by Eq. 6 and using 300 terms in the eigenfunction
expansion and (b) by applying the integral balance with 100 terms in the eigenfunction
expansion.
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The convergence behavior of ∂p/∂x as calculated by deriving Eq. 6 and by using the
integral balance is presented in Tables 8 and 9, respectively.

As can be seen in the analysis of Fig. 9 and Tables 8 and 9, the integral balance greatly
enhances the convergence behavior of ∂p/∂x and can be used to attain converged solutions
of the flow velocities during transient flow in heterogeneous porous media.
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