
Abstract

The present work shows how perturbation methods can be used to unveil important features of the turbulent boundary layer structure. 
The intermediate variable technique is presented and applied to problems that involve flow separation, wall roughness, compressibility, 
heat transfer and unsteadiness effects. Comments on shock-wave interaction, riblets and non-equilibrium flows are also made. The 
problem of an impinging jet is discussed to show how the present results can be extended to an apparently very distinct problem.   
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1        Introduction

The description of the turbulent motion in the near wall region is seriously hampered by the very complex structure that sets in. Intricate 
non-linear interactions between the different flow scales originate a configuration consisting on one hand, of a slow convective motion 
of large eddies with sizes comparable to the boundary layer thickness and much larger than the energy containing eddies and, on the 
other hand, of low-speed streaks in the near wall region. This picture has been identified by many authors with a double structure. 

As it turns out, turbulence production, kinetic energy and dissipation reach their maxima within the very thin viscous layer, in the 
immediate neighbourhood of the wall. The implications for computational methods are immediate: (i) extremely fine meshes are 
required to capture the very strong near wall gradients of flow quantities and (ii) complex turbulence models are needed to represent 
all relevant flow features. Both difficulties pay a heavy load on the required computational time. 

In fact, for some time authors sustained that in the low-Reynolds-number wall region, turbulence closure could be achieved through 
consideration of viscosity dependent coefficients. Modifications were largely empirical and so constructed as to make sure that the 
flow properties in the fully turbulent region were completely recovered. The apparent universality of low-Reynolds-number models, 
however, suffered from the inherent inability of damping functions to account for some physical effects including the isotropic 
viscous damping of all turbulent fluctuations and the non-isotropic, non-viscous suppression of the vertical velocity fluctuations due 
to wall non-penetrability (Popovac and Hanjalic, 2007). Damping functions also introduce non-linearity and numerical stiffness, 
and require very fine computational meshes. 
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Strategies to avoid the need for integration of the governing 
equations up to the wall were developed in the mid-sixties. The 
fundamental idea was to patch the numerical two-dimensional 
outer region solution to a one-dimensional analytical near-wall 
solution that embedded all low-Reynolds-number effects. This 
“inner” solutions were expressed in terms of the dimensionless 
variables based on the fluid viscosity and local wall stress. For 
instance, Spalding (1967) advanced some elaborate expressions 
to account for pressure gradient and wall transpiration effects. 
However, most of the existing software still appeal to very 
simple wall-functions. 

The purpose of the present work is to review the asymptotic 
arguments that lay ground for the establishment of a double-
layered structure in terms of the intermediate variable 
tech¬nique of Kaplun (1967). A discussion on changes of the 
flow structure due to the proximity of a separation point is also 
presented. The work shows how elaborated expressions can 
be derived to represent the flow in the fully turbulent region 
so as to account for many distinct effects. 

The works of Cruz and Silva Freire (1998) and Loureiro and 
Silva Freire (2011a) are the main references for the fundamental 
results on the intermediate variable technique. The usefulness 
of the asymptotic analysis is illustrated with the derivation 
of local solutions for several problems of practical interest. 
Important physical effects of disturbances on a boundary layer 
flow including separation, wall roughness, compressibility, 
heat transfer, fluid transpiration, change in wall surface and 
shock-wave interaction can be modelled through perturbation 
techniques. In the following sections, local solutions are 
developed in the scope all these problems.

2 Perturbation analysis:    
 morphological structure

To find the asymptotic structure of the turbulent boundary layer 
of a Newtonian fluid, con-sider the system of Eqs. (1) and (2), 

                                                                           (1)

                (2)

where the notation is classical. Thus, in a two-dimensional flow, 
 stands for a Cartesian co-ordinate system, 

 for the velocities, p for pressure. The dashes are 
used to indicate a fluctuating quantity. In the fluctuation term, 
an overbar is used to indicate a time-average. 

All mean variables are referred to the free-stream mean velocity, 
ue , and to the characteristic length  , (w = 
wall conditions). The leading order velocity fluctuations  
are considered to be of the order of the friction velocity 

 so that  .  The second small 

parameter is defined as , where  
is the Reynolds number. 

The asymptotic structure of the flow will be determined through 
the single limit concept of Kaplun. The fundamental notions on 
perturbation methods to be used henceforth were laid down by 
Kaplun (1967), Lagerstrom and Casten (1972) and Lagerstrom 
(1988) in extensive texts. More recent contributions can 
be found in Cruz and Silva Freire (1998) and Loureiro and 
Silva Freire (2011a). In particular, the article of Loureiro and 
Silva Freire (2011a) discusses in detail most of the relevant 
definitions and results. 

To keep the present work within a permissible level of 
understanding, only the essential information will be repeated 
here. The topology on the collection of order classes introduced 
by Meyer (1967) is used. For positive, continuous functions 
of a single variable f defined on (0, 1], ord η denotes the class 
of equivalence introduced in Meyer. 

Definition (Lagerstrom (1988)). We say that f(x,ϵ) is an 
approximation to g(x,ϵ) uniformly valid to order δ(ϵ) in a 
convex set D ( f is a δ-approximation to g), if 

lim
uniformly for x in D                                            (3)

Consider 

                                     (4)

with η(f ) defined in Ξ (= space of all positive continuous 
functions on (0,1]). 

Definition (of Kaplun limit)(Meyer (1967)).  If the function 

, exists uniformly on 
; then we define ,

The definition of η-limit of a function and of domains of 
validity were given an analogous concept for equations by 
Lagerstrom and Casten (1972). They made the following 
definitions. 

Definition (Lagerstrom and Casten (1972)). If E is an equation 
and  and also , we 
say that E1 contains E2 (relative to E). 

Definition (Lagerstrom and Casten (1972)). The formal 
domain of validity of an equation F , relative to the “full” 
equation E, is the ord η such that  is either F or an 
equation contained in F.
 
The above definitions naturally imply the existence of 
distinguished equations, obtained from specific choices of 
η. These equations are, in the sense of Kaplun (1967), “rich” 
equations. A more elaborate statement is given by 

Definition. An equation P that contains other limit equations 
but is not contained by any other is said to be a principal 
equation. 
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An equation which is not principal is said to be an 
intermediate equation. 

The previous definitions are complemented by the following 
statement, 

Principle (Kaplun (1967)). If y is a solution of an equation E 
and E* is an approximate equation, then there exists a solution 
y* of E* whose actual domain of validity (as an approximation 
to y) includes the formal domain of validity of E* (as an 
approximation to E). 

To analyze the turbulent boundary layer, make 

                         (5) 

Upon substitution of Eq. (5) into Eqs.(1) and (2) and depending 
on the order class of η we then find the following formal limits: 
continuity equation: 

                                        (6)

x-momentum equation: 

                       (7)

       (8)

          (9)

          (10)

                       (11)

                                               (12)

y-momentum equation: 

                     (13)

                                              (14)

The above results show that the turbulent boundary 
layer fluid exhibits a two-deck structure defined by the 
principal equations, Eqs. (9) and (11). The viscosity of the 
fluid defines the thickness of the viscous region through 

 The turbulence dominated region is defined 
by . 

Therefore, the principal equations to the turbulent boundary 
layer problem are Eqs. (9), (11) and (13). The relevant scales 

 and  coincide with the scales proposed by Sychev and 
Sychev (1987) for the description of their two internal layers. 
These authors also consider a third layer. However, in the 
interpretation of Kaplun limits, this is not necessary for only 
redundant information is conveyed. An important point to be 
raised here is the nature of the principal equation in y-direction. 
To solve the boundary layer equations one needs to consider Eq. 
(13), instead of the Prandtl formulation . By doing this, 
the boundary layer approximation becomes a self-contained 

theory in the sense that any type of viscousinviscid interactive 
process becomes unnecessary. 

In respect to the determination of Eq. (11), please, refer to 
further arguments presented in Loureiro and Silva Freire 
(2011a). The matching process that involves the inner and 
outer solutions (Eqs. (9) and (11)) presents a peculiar difficulty, 
sometimes referred to in literature as ‘generation gap’ (Mellor, 
1972). When this happens, an inspection of formally higher 
order terms leads to ‘switchback’ and to a change in the leading 
order of the inner solution. 

As the flow approaches a separation point, however, the 
structure depicted by Eqs. (6) to (14) breaks down since 

. To account for the flow behaviour, we must then 
consider Kaplun limits in x-direction. 

Define 

                                                      

(15)

 
with Δ(ϵ) and η(ϵ) defined on Ξ. 

The idea is to approach the separation point by taking 
simultaneously the η-and Δ-limits at a fixed rate ζ = Δ/η = 
ord(1). 

Close to a separation point, Loureiro and Silva Freire (2011a) 
show that a different near wall scaling must be used with a 
small parameter ϵ dependent on the local pressure gradient 

. Under this condition, 
the following result applies, . 

The resulting flow structure is then given by continuity 
equation: 

                                    (16)

x-momentum equation: 

                     (17)

 (18)

                      

(19)

                                (20)

y-momentum equation: 

                    (21) 

(22)
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(23)

                                        (24)

The principal equations are Eqs. (19) and (23). They 
show that near to a separation point the two principal 
equations, Eqs. (9) and (11), merge giving rise to a new 
structure dominated basically by two regions: a wake 
region  and a viscous region 

. The disappearance of the region 
dominated solely by the turbulence effects is noted. The 
principal equations recover the full Reynolds averaged 
Navier-Stokes equations. 

The system of Eqs (17) to (24) indicates that the pressure gradient 
effects become leading order effects for orders higher than 

. Thus, at about  
we should have , so that these terms furnish 
first order corrections to the mean velocity profile.

3 Near wall approximate solutions  
 for attached and separated   
 flows over smooth surfaces

The present section illustrates how the intermediate equations 
derived above can be used to find some very simple 
approximated flow solutions. 

The two-layered model shows that there exists a fully 
turbulent flow region where the x-motion equation reduces to

                                                                            (25) 

A simple integration of the above equation implies that 
, where we have considered the 

velocity fluctuations to be of the same order. 

The analysis proceeds by taking as a closure assumption the 
mixing-length theory. A further equation integration yields 
the classical law of the wall for a smooth surface 

                                                    (26) 

where  

For laminar flow, at a point of zero skin-friction the velocity 
profile must follow a y2-profile at the wall. For turbulent 
flow, the fact that the local leading order equations must be 
dominated by viscous and pressure gradient effects implies 
immediately that this result remains valid. 

In fact, in the viscous region the local governing equation can 
be written as: 

                                                             (27) 

Two successive integrations of Eq. (27) and the fact that 
τw = 0, give 

  (28) 

with  
 
In Eq. (28) the term ∂x p must be evaluated at y = 0. Hence, 
wall similarity solutions cannot be expressed in terms of the 
external pressure gradient. 

For the turbulence dominated region, Stratford (1959) wrote 

                                                                         (29) 

Two successive integrations of Eq. (29) together with the 
mixing length hypothesis and, again, the fact that at a 
separation point τw , give 

                                                               (30) 

with u+ and y+ defined as in Eq. (28). 

To find his solution Stratford used the condition y = 0, u = 0. 
Strictly speaking, this condition should not have been used 
since Goldstein’s y2-expression is the solution that is valid 
at the wall. Stratford also incorporated an empirical factor 
β (= 0.66) - to Eq. (30) to correct pressure rise effects on ϰ. 

Thus, we may conclude that, at a separation point, 
.

To find a solution over the entire viscous sublayer, for 
attached as well as detached flow, Eqs. (25) and (27) must 
be combined to give 

                                        (31) 

The global solution of Eq. (31) should also reduce, under 
the relevant limiting processes, to the local approximate 
solutions. 

A double integration of Eq. (31) in the fully turbulent region 
 furnishes (see, e.g., Cruz and Silva Freire (1998)) 

                     
(32) 

with  

Equation (32) must be viewed with much discretion for 
depending on the relative values of τw  and (∂x p)y the 
discriminant∆w  might become negative, thus rendering the 
solution undetermined. Furthermore, the argument of the 
logarithmic term cannot become negative. In Cruz and Silva 
Freire (1998), three different cases have been identified and 
explicitly quoted. 
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In general, however, Eq. (32) can be seen as a generalization 
of the classical law of the wall for separating flows. In the 
limiting case (∂x p)y << τw  , Eq. (32) reduces to the logarithmic 
expression 

                                                              (33) 

                                    (34) 

Near a point of separation Stratford’s solution is recovered. 

In principle, Eq. (32) can be used indistinctly in all flow regions 
- including regions of reversed flow - provided the domain 
of validity of its discriminant is respected and appropriate 
integration constants are determined. Equation (32) cannot be 
written in terms of the similarity variables u* and upν for in 
situations where any of these two parameters approaches zero, 
a singularity occurs. Thus, it will be kept in its present form. 

Other different treatments of the lower boundary condition can 
be found in the literature to model separating flows. For two-
dimensional, smooth, steep hills, Loureiro et al. (2007a) have 
investigated the performance of the formulations introduced 
by Mellor (1966), by Nakayama and Koyama (1984) and by 
Cruz and Silva Freire (2002). A much more detailed analysis 
of separated flow over a steep, smooth hill can be found in 
Loureiro et al. (2007b).

4 Near wall approximate solutions  
 for attached and separated flows  
 over rough surfaces

The effects of roughness on a boundary layer can be dramatic. 
Provided the characteristic size of the roughness elements 
are large enough, a regime can be established where the 
flow is turbulent right down to the wall (fully rough flow). 
One important consequence is that the viscous sublayer 
is completely removed so that the linear and Goldstein’s 
solutions do not apply anymore. The roughness also distorts 
the logarithmic profile acting as if the entire flow is displaced 
downwards. 

The manner in which the logarithmic law is expressed to 
describe flow over a rough surface depends on the field of 
application. In meteorology, the common practice is to write 

                                                  (35) 

where y is the distance above the actual ground surface. 

The specification of the lower boundary condition on 
rough walls depends thus on two unknown parameters: the 
aerodynamic surface roughness, y0 , and the displacement 

height, d. Many works have attempted to relate the magnitude 
of d and y0 to geometric properties of the surface. Garratt 
(1992) mentions that the simple relation  (hc= 
height of canopy) seems to offer good results for many of the 
natural vegetation of interest. However, since d is known to 
depend strongly on the way roughness elements are packed 
together, much discretion must be considered in using this 
relation. Garratt (1992) also mentions that many texts suggest 
considering . Typical natural surfaces satisfy 

The arguments that lead to Stratford’s law are based on the 
fundamental hypothesis that near a separation point a fully 
turbulent region can be identified in the flow. This consideration 
remains valid for flow over a rough surface. The direct 
implication is that the procedure that resulted in the derivation 
of Eq. (30) can be repeated for flow over rough surface but 
with  and . The 
integration constant must also be determined so as to correctly 
account for the roughness effects. 

The derivation of Eq. (32) has disregarded any detail of the 
wall roughness. This equation is, in fact, supposed to be valid 
not in the region adjacent to the wall where the complicated 
flow around the individual roughness elements is apparent, 
but, instead, in a region where the flow statistics are spatially 
homogeneous. Hence, inasmuch as for the classical law of 
the wall, the characteristics of the rough surface must enter 
the problem through the integration constant C. In addition, 
the coordinate system must be displaced by d. The immediate 
conclusion is that Eq. (32) can be used to model separating flow 
over a rough surface provided d and C are adequately modeled. 

Parameter C is a general function of τw , ∂x p and y0 that must 
be determined by a con-sistent analysis of experimental data. 
However, an estimate of its functional form might be obtained 
by considering the limiting behaviour of Eq. (32) as τw << (∂x 

p)y. The resulting expression is 

                              (36) 

This parametrization scheme was first presented in Loureiro 
et al. (2008). A detailed comparison with experimental data 
has been presented in Loureiro et al. (2009) and Loureiro and 
Silva Freire (2009).

5 Near wall approximate solutions  
 for flows with wall  transpiration

For flow subject to wall transpiration, the asymptotic structure 
of the turbulent boundary layer does not change. Since the 
wall injection enters the problem as a regular perturbation 
parameter (Silva Freire, 1988a), the flow structure remains 
double-tied. 
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In fact, the result of the injection or suction of fluid into 
an oncoming flow is to modify the velocity distribution 
throughout the boundary layer so that drag is either reduced 
or in¬creased. Any expression advanced with the purpose 
of determining the friction coefficient should therefore 
reflect this. 

Regarding the inner layer equations of motion, the effects of 
flow injection can be account for through consideration of 
contributions by the inertia term, by equation 

                                           (37) 

In Silva Freire (1988a) the matched asymptotic expansions 
method was applied to the equations of motion to find a law 
of the wall in which the additive parameter A varied with 
transpiration. The resulting expression is 

       
 (38)

 

with  = normal 
velocity at the wall and A is given by:

                                                           (39)

and parameters  and  and function W are related to the 
universal wake function. 

The above equations are valid for incompressible, isothermal 
flows over smooth surfaces. They have been derived for 
external flows, but can be easily specialized to describe 
pipe flows. This has been made in Loureiro and Silva Freire 
(2011b), where a resistance law is proposed for pipe flows 
with wall transpiration. 

Compressibility effects can be accounted for provided the 
concept of generalized velocity is summoned. 

Van Driest (1951) solved the equations of motion for a 
compressible, adiabatic flow to find 

                                 (40)

where 

                                   (41) 

with M = Mach number. 

Comparison of Eq.(40) with the log-law of the wall shows that 
the compressibility effects can be accounted for provided the 
incompressible velocity profile is replaced by the generalized 
velocity, uα , defined by 

                                                              (42)

The above equation is normally referred to as the Van Driest 
transformation. In the limit as M → 0, Eq.(40) reduces to the 
incompressible flow case. 

The extension of Eq. (38) to the compressible case with 
application of transformation Eq. (42) has been discussed in 
Silva Freire (1988b).

6 Near wall approximate solutions  
 for flows with wall heat transfer

Consider the problem of a given incompressible fluid 
flowing over a smooth, heated surface under a steady state 
condition. 

In the following analysis, for the sake of completeness, the 
mean velocity and temperature fields are discussed together. 
The purpose is to show how simple analogies can be drawn 
between the two transfer processes. 

The governing equations are: 

Continuity: 

                                                              (43) 

x-Momentum: 

                  (44) 

Energy: 

                      (45) 

where the notation is classical and the boundary layer 
hypothesis applies. 

These equations must be solved under appropriate boundary 
conditions at the wall. For the velocity field, the no-slip 
condition and the permeability condition can be used. For the 
temperature field, a number of different possible boundary 
conditions can be specified. Basically, one can prescribe 
the wall temperature, the wall heat flux or a combination 
of these two. 

Consider next that, as shown before, the turbulent boundary 
layer has a two-layered structure, and that, furthermore, in one 
of the existing layers the turbulence effects dominate. Since 
the general mathematical structure of the temperature problem 
remains the same as that for the velocity problem, 

Thus, in this layer, the governing equations reduce to:
 
x-Momentum: 
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                                                                         (46) 

Energy: 

                                                                                  (47) 

So that the above equations can be solved, a relation has to 
be established between the mean and the turbulent quantities. 
The simplest way of doing this is to invoke the concepts of 
eddy diffusivities for momentum and heat, together with 
the mixing-length hypothesis. This results in the following 
algebraic equations for the turbulent quantities 

                       (48) 

            (49) 

where νt and at denote the eddy diffusivities for momentum 
and heat. 

We further incorporate into our analysis two extra hypotheses: 

1. von Karman’s hypothesis that the mixing–length can be 
considered proportional to the wall distance, i.e. lt = ϰy 
and lt = ϰt y, where ϰ and ϰt are constants. 

2. Prandtl’s hypothesis that in the near wall region the  
total shear stress and the heat flux are constant. 

Thus, upon a simple integration, it results that in the fully 
turbulent region the local solu-tions are given by: 

                                                             (50) 

and 

                                                                  (51) 

where and  

The implication of Eqs. (50) (previously shown as Eq. (26)) 
and (51) is that, provided ϰ and ϰt are known, the skin-friction 
coefficient and the heat-transfer coefficient can be evaluated 
respectively from the inclination of semi-log graphs of 
distance from the wall versus velocity and distance from the 
wall versus temperature. 

If a turbulent Prandtl number is defined, it follows that 

                                                                          (52)

A common sense in literature is that Prt varies across the 
boundary layer in a way that depends on both the molecular 
properties of the fluid and the flow field. In the logarithmic 
region, however, several authors have shown that Prt is 
approximately 0.9 which results in a value of 0.44 for ϰt .

7 Transient convection in turbulent  
 boundary layers over smooth   
 surfaces

Consider now the transient convection in turbulent boundary 
layers over smooth, flat surfaces. The velocity field remains 
unaltered so that the velocity local solution in the fully 
turbulent region can still be approximated by the logarithmic 
equation, Eq. (50). 

The thermal problem, however, suffers an important 
modification since the surface boundary conditions have to 
change to accommodate a time varying imposed heat flux. 

Thus, it results that the energy governing equation become 

                                                                     (53) 

In view of the results of Section 2, the above equation can 
be re-written as 

                                                            (54) 

To find a solution, consider 

                                                               (55) 

Then upon substitution of Eq. (55) onto Eq. (54) it follows that 

                                                     (56)

So that a solution is sought from equations 

                                                                           (57)

                                      (58)

where the sign of σ was chosen so as to ensure that the 
temperature will decay in time. 

The solution of Eq. (57) is 

                                                                          (59) 

To solve Eq. (58) consider the decaying time to be long 
enough so that (ϵ = σ  /  ϰuτ) can be considered a small 
parameter. Then, search for a solution of the form 

                                                       (60) 

The substitution of Eq. (60) onto Eq. (58) and the collection 
of the terms of the same order yields 

                                                            (61) 

                                             (62) 

whose solutions are 

                                                               (63) 
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                                  (64) 

with R = C and 2C + D − S = 0. Thus, the fully turbulent 
approximate solution is given by 

                      
(65) 

where all constants must be determined experimentally.

8 Transient convection in turbulent  
 boundary layers over rough, flat   
 surfaces

If all above results are to be extended to flows over rough 
surfaces of the types ‘K’ or ‘D’, the classical two–layered 
structure of the boundary layer will have to be abandoned. 

We know that for flows over ‘K’ or ‘D’ rough surfaces the 
viscous region is completely destroyed by the protuberances 
at the wall. Under this condition, the fully turbulent region just 
described above has to suffer some adjustments so as to yield 
a good description of the velocity and the temperature fields. 
Other authors have shown that a universal expression can be 
written for the wall region provided the origin for measuring 
the velocity profile is set at some distance below the crest of 
the roughness elements. This displacement in origin is normally 
referred to in literature as the error in origin, ε. 

Thus, for any kind of rough surface, it is possible to write 

                                              (66)

where,

                                                             
(67)

the subscript T is used to indicate that the origin is to be taken 
at the top of the protuberances (and this must not be confused 
with the subscript t used also to indicate temperature), ϰ = 
0.4, A = 5.0 and Ci , i = K, D; is a parameter characteristic of 
the roughness. 

Equations (66) and (67), although of a universal character, 
have the inconvenience of needing two unknown parameters 
for their definition, the skin-friction velocity, u*, and the error 
in origin, ε. A chief concern of many works on the subject is, 
hence, to characterize these two parameters. 

For an experimentalist, however, these equations are 
very useful for they provide a graphical method for the 

determination of the skin-friction coefficient. 

To extend Eq. (65) to turbulent flows over rough surfaces we 
will draw a direct analogy with Eq. (66). 

For flows over rough surfaces, we have just seen that the 
characteristic length scale for the near wall region must be the 
displacement in origin. Indeed, in this situation, the viscosity 
becomes irrelevant for the determination of the inner wall 
scale because the stress is transmitted by pressure forces in 
the wakes formed by the tops of the roughness elements. It is 
also clear that, if the roughness elements penetrate well into 
the fully turbulent region, then the displaced origin for both 
the velocity and temperature profiles will always be located 
in the overlap fully turbulent region. 

The similarity in transfer processes for turbulent flows then 
suggests that
 

                
(68) 

where  and the parameters to be 
determined may now be a function of the roughness. 

In principle, the error in origin for the temperature, εt , should 
be time dependent. 

Eq. (68), however, provides a good means to measure the 
heat flux at the wall. Provided we can evaluate the error in 
origin through one of the classical techniques, the slope of the 
temperature profile plotted in a semi-log graph will furnish the 
friction temperature and, thus, the heat transfer coefficient.

9 Near wall approximate solutions  
 for flows with wall  heat transfer  
 and wall transpiration

To study the effects of transpiration on the thermal boundary 
layer we again split the flow region into distinct parts where 
certain dominant effects can be used to derive simplified 
equations. The formulation of the transpiration problem 
basically differs from the solid surface problem in the sense 
that the inertia effects near the wall can no longer be neglected 
(Eq. 37). Therefore, for the near-wall dominated part of the 
flow, the approximate energy equation becomes 

                                 (69) 

In the fully turbulent region, the mixing-length hypothesis 
can be considered and the molecular diffusivity neglected. 
Hence a double integration of Eq. (69) gives 
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                                                                              (70)

where 

            

(71) 

Here,  the pair  is a constant of integration 
and parameters ϰm and ϰt are characteristic of the turbulence 
modelling. The above equation can be used to determine a 
Stanton number equation. This has been discussed in Faraco-
Medeiros and Silva Freire (1992). 

The above equation can be extended to compressible flow 
(Silva Freire et al. (1995)). The analysis is quite evolving 
and for this reason will not be repeated here. The approach 
resorted to asymptotic techniques to divide flow region into 
distinct parts so that the dominant effects could be used to 
derive simplified sets of equations. The resulting equations for 
the near wall region were then integrated, yielding analytical 
solutions for the main flow parameters. 

From these solutions, the influence of the dissipation terms 
and of the injection velocity was clearly seen. For the solid 
surface case, it was shown that the dissipation contributes to 
the leading order solution with a bilogarithmic term. For flows 
with transpiration, however, the dissipation also contributes 
with a trilogarithmic higher order correction. Also, it emerged 
from the analysis that the dissipation effects become important 
only as E = 0(u*), E = Eckert number. 

The near wall solutions were extended to the defect region 
by adding Coles’ function to their logarithmic term. With 
arguments similar to those of Faraco-Medeiros and Silva 
Freire (1992), a Stanton number equation was developed. 
All predictions are compared with the experimental data of 
other authors. Both parameters in the law of the wall were 
shown to vary with Mach number, whereas only one of them, 
the linear coefficient of the straight part of the velocity and 
temperature profiles, was shown to vary with the injection 
rate. No dependence of these parameters on Eckert number 
could be determined due to the scatter in the experimental data.

10 Wall-layer velocity profile for an  
 impinging jet

The methodology set out in the previous sections can be used 
to tackle some quite different problem. Next, we show how 
that can be made for a impinging jet.

For an impinging jet, Özdemir and Whitelaw (1992) have 
shown that a Weibull distribution represents well some of 
the global features of the profile, such as the position of the 
maximum and of the outer inflection points, but is not an 
adequate approximation for the near wall region. For this 
region, they showed that semi-logarithmic relation can be used 
to model the inner equilibrium layer, so that one can write 

                                             (72) 

The main contribution of Özdemir and Whitelaw (1992) was 
to show that, for the impinging jet, the inner layer appears to 
constitute a considerable part of the inner boundary layer, and, 
if the outer edge of the equilibrium layer is attached to the 
point of maximum velocity, which is very close to the wall, 
then, this maximum, UM , should be an appropriate velocity 
scale. The conclusion, therefore, is that parameter A is not 
invariant but changes with a deviation function. 

Wygnanski et al. (1992) remarked that, for a turbulent wall 
jet, the velocity profile cannot be universally represented 
in wall coordinates, as it can in the boundary layer. That is 
due to large variations in the additive constant in the law 
of the wall. In fact, depending on the jet Reynolds number, 
logarithmic fits can be found to their data in regions defined by 
specific limits. These fitted straight lines have levels varying 
from 5.5 to 9.5. The existence of a well defined logarithmic 
region is particularly important for the determination of the 
skin-friction. Wygnanski et al. further remark that in previous 
experiments the skin-friction was either directly assessed 
through floating drag balances or indirectly by wall heat 
transfer devices or by impact probes like Stanton probes or 
Preston tubes. Since these devices are calibrated taking as 
reference the universal law of the wall, they cannot be reliably 
used in regions where the existence of the law of the wall can 
be questioned. Wygnanski et al. estimated the skin-friction 
through three different techniques: a momentum integral 
method, the mean velocity gradient in the viscous sub-layer, 
and by use of a Preston tube. 

The establishment of the above concepts for the velocity field 
clearly raises some questions for the temperature field. An 
immediate question concerns the existence of an appropriate 
temperature scale at the outer edge of the equilibrium layer. 
At the point of velocity maximum (UM), the temperature 
profiles reach a minimum (Tm ) (Guerra et al., 2005). Thus, 
drawing an analogy to the velocity analyses of Narasimha et 
al. (1973) and of Özdemir and Whitelaw (1992), one would 
expect the appropriate scaling temperature parameter to be 
this minimum temperature. 

The law of the wall for the temperature profile can then be 
written as 

                                 (73) 

where t* is the friction temperature, TW  the wall temperature 
and ϰ+ is the von Karman constant for the temperature field. 

In Guerra et al. (2005) a detailed analysis is made about 
the parametric behavior of A and B for an impinging jet. 
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These results were recently revisited by Loureiro and Silva 
Freire (2012). The analysis in both works resort to structural 
arguments obtained through the intermediate variable 
technique.
 

11 Conclusions

The intermediate variable technique of Kaplun(1967) has 
been formally applied to perturbed turbulent boundary layers 
to develop near-wall local solutions. The technique is also 
useful to identify matching difficulties that eventually appear in 
multi-layered problems. The compressible turbulent boundary 
layer is a typical example. For some time, it was believed that 
the matched asymptotic expansions method would not result 
in a complete matching for the velocity, temperature and 
density profiles; it was thought that the number of available 
parameters was not sufficient to satisfy all the required 
matching conditions. However, using the intermediate variable 
technique Silva Freire (1989) showed that formally this is not 
true. In particular, it was shown that the matching difficulties 
resulted from a faulty choice of the asymptotic expansions. 

Even extremely difficult problems, including that of the 
interaction of a shock wave with a turbulent boundary layer 
can benefit from application of the method of Kaplun (see Silva 
Freire (1988b)). The intermediate variable technique can be 
easily applied to show how the vicinity of the shock defines 
a purely inviscid region; the viscous effects are shown to be 
confined just to the viscous sublayer. The developments can 
be used to derive a skin-friction equation that embodies effects 
of the shock strength, the state of equilibrium of the boundary 
layer and transpiration at the wall. 

Another problem of evident interest is the derivation of near 
wall solutions for two-equation differential models (k _ ϵ, k 
_ w,k _ Ω). In Avelino et al. (1999), local solutions for the 
fully turbulent region of flows subject to wall transpiration are 
developed for the description of ê and ϵ. The expressions were 
implemented in numerical codes, furnishing very good results 
against some reference experimental data. 

Conditions where the boundary layer is in a non-equilibrium 
state resulting from changes in surface properties must also 
be studied in connection with modifications in the viscous 
sublayer. As a flow moves, say, from a rough to a smooth 
surface the properties of the outer region remain nearly 
unaltered. The near wall flow, however, adjusts immediately 
to the new wall condition. There remains an intermediate 
layer - the fully turbulent region - that needs to match these 
two apparently conflicting conditions through a slow variation. 
In Avelino and Silva Freire (2002) and Loureiro et al. (2010) 
this problem has been address in light of the developments of 
the previous sections. 

The results described for flows over rough walls have wide 
application. The prediction of friction factors and Nusselt 
numbers for turbulent forced convection in rod bundles with 
smooth and rough surfaces is a recognized difficult problem. 
The present approach permits (Su and Silva Freire, 2002) the 
development of analytical methods that are easy to implement 
and very accurate. 

The mechanics of turbulent drag reduction for flow over riblet 
surfaces has been much discussed for attached flows. The effect 
of riblets on flow separation over steep, smooth and rough 
curved surfaces is a completely open issue. In Loureiro and 
Silva Freire (2011c), four types of two-dimensional surfaces 
were studied to understand the modifications in the near 
structure. Results were analyzed in view of the asymptotic 
structure described in terms of the intermediate variable 
technique. 

The purpose of the present compilation has been to show 
the usefulness of the intermediate variable technique. In 
particular, the method has been applied to a host of problems 
to illustrate how structural as well as quantitative information 
can be gained. 
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