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from the first principles of mechanics and the formalism of 
a continuous field characterized by density and viscosity.

Thus, the complete absence of a comprehensive theory 
that can convincingly deal with disordered flows may come 
to many as a surprise. The crux of the matter, obviously, is 
the strong non-linear character of the advection terms in the 
equations of motion. Under certain conditions—in particu-
lar, high Reynolds numbers—fluid flows become unstable, 
growing rapidly to a complicated and confused state that 
is termed turbulent and has a large number of degrees of 
freedom.

In fact, it can be argued that an exact and detailed 
description of the manner in which a turbulent flow evolves 
is physically meaningless due to the inherent difficulty 
in specifying its boundary and initial conditions for situ-
ations that are of interest in practical problems. A micro-
scopic account of the flow behavior is certainly relevant for 
the understanding of local and instantaneous irregularities, 
but what is normally of real interest is the behavior of the 
macroscopic regularities of the flow. Therefore, it seems 
that the appropriate description of a turbulent flow needs to 
resort to statistical methods.

Provided the irregular variation of the flow proper-
ties can be averaged over, say, some interval of time, the 
field properties can be decomposed into smoothed out 
(mean part) and rapidly varying quantities (fluctuating 
part). Once this procedure is accepted, substitution of the 
decomposed field variables into the Navier–Stokes equa-
tions results in a new equation for the mean variables, but 
with additional terms involving double correlations of the 
fluctuations, quantities that are formally unknown and that, 
hence, require modeling. The resulting second-order ten-
sor—the Reynolds stress tensor—represents the transport 
of momentum due to the turbulent fluctuations and has the 
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To such common fluids as air and water, the basic laws that 
govern fluid motion are supposed to be known. They stem 
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apparent effect of imposing an additional resistance to the 
flow.

The classical problem of turbulence modeling as intro-
duced by the decomposition of the flow quantities is nor-
mally referred to in literature as the “closure problem”. The 
reduction of the Navier–Stokes equations to a new set of 
equations for the prediction of the mean properties of tur-
bulent flow was essential in the development of quantitative 
theories. For the least, this ingenious scheme permitted the 
introduction of analogies, dimensional analysis and phe-
nomenological arguments for the construction of predictive 
models.

The analysis of turbulent flow has also greatly profited 
from limiting arguments. The general idea is to explore 
the properties of a governing equation or boundary and 
initial conditions in the limit as one or more parameters 
tend to a designated value, normally zero or infinity. This 
approach naturally divides the flow domain into char-
acteristic regions with limiting equations that retain the 
important features of the problem and neglect the second-
ary (higher order) effects. The simplifications facilitate 
the development of analytical or numerical solutions and 
furnish valuable information on the local structure of the 
flow. The classical approaches consider limits of a single 
variable (single limits). However, a limit process can also 
be applied to problems that involve asymptotic approxima-
tions to solutions valid for small values of a variable and 
small values of a parameter (double limits).

The turbulent boundary layer is a classical problem 
whose treatment truly benefits from limiting and modeling 
arguments. For laminar flow, Prandtl had already shown 
in 1904 that at high Reynolds number the flow adjacent 
to surfaces tends to squash into layers. His heuristic argu-
ments considered an order of magnitude analysis to for-
mally divide the flow into “inner” and “outer” equations 
and introduce a method that would later be inspirational to 
the development of singular perturbation techniques.

Following the derivation of the boundary layer equations 
for laminar flow, Taylor [1], Prandtl [2] and von Karman [3, 
4] further pursued the notion that the near wall flow can be 
structured into different layers, governed by different lead-
ing order effects. For attached flows, a linear solution was 
advanced for the viscous layer; the fully turbulent layer was 
associated to a logarithmic solution.

Early arguments for the derivation of the logarithmic 
solution resorted to similitude and mixing hypotheses for 
turbulence closure. In fact, further thoughts on the problem 
showed that none of these somewhat restrictive arguments 
were necessary. More general reasonings based on the 
postulate that solutions over the inner (viscous) and outer 
(inertial) regions must asymptotically match in an overlap 
domain were successfully introduced by Millikan [5]. The 
apparent insensitivity of the logarithmic solution to the 

manner of its derivation certainly played an important role 
on its wide acceptance among workers in fluid mechanics.

Despite the remarkable good results provided by the 
logarithmic solution in regard to prediction of skin-friction 
and mean velocity profiles, certain difficulties soon sur-
faced. Millikan remarked that certain “constants” appear-
ing in the theories needed be given different values to fit the 
experimental observations satisfactorily. von Karman also 
noticed that the similitude arguments applied to a region of 
vanishing shearing stress would naturally break down.

Of course, an essential element in Prandtl’s deriva-
tion—the mixing length concept—immediately became 
a particular source of criticism. Not so much for the sim-
plicity of the formulation, some early experiments clearly 
realized that the turbulence at any point of the domain can-
not be modeled just in terms of local properties (produc-
tion and dissipation) but must consider transport processes 
from other parts of the flow. The exaggerated criticism on 
the adequacy of mixing length theories was disputed by 
Townsend [6], who argued that near a rigid wall the bal-
ance of turbulent kinetic energy is virtually unaffected by 
the flow in the adjacent regions.

The objective of the present work is not to praise or con-
demn the logarithmic solution for fully turbulent bound-
ary layer flows, or the arguments that led to its derivation. 
Rather, we show how the simple set of arguments intro-
duced by Taylor, Prandtl, von Karman and Millikan based 
on similitude, mixing theories and limit processes can be 
used to find useful approximate solutions to very intricate 
problems. Instances that include compressibility, wall tran-
spiration, heat transfer, roughness, shock wave interaction, 
separation and non-Newtonian fluids are all discussed. In 
particular, the developments indicate the prevalence of log-
arithmic solutions to all discussed cases in a characteristic 
near wall region where turbulent effects can be considered 
the dominant effects. Irrespective of the flow complexity, 
the work shows that adequate mathematical transforma-
tions can be defined to reduce the mean velocity profiles to 
logarithmic solutions.

For flows near to a separation point, the logarithmic 
solution has been shown by Stratford [7] to reduce to a 
power-law solution of the type y1/2. In the context of the 
above statement, it is demonstrated that a general local 
solution can be obtained which under the appropriate limit 
process tends to the logarithmic solution on one side and to 
the y1/2-solution on the other.

Wall functions have been used to test new theories, 
calibrate measuring instruments and validate numerical 
schemes, having become one of the great paradigms of tur-
bulence theory. In particular, they have been a great relief 
to the numerical computation of turbulent flows. As pointed 
out by Launder and Spalding [8], they are economic in 
terms of computer time and storage and can be often 
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specialized to account for different physical effects. Alter-
native formulations, notably low Reynolds number models 
have been proposed. However, this latter approach usually 
requires dense computational grids and introduces addi-
tional non-linearity and numerical stiffness. The enduring 
usefulness of wall-function methods has been illustrated in 
the recent works of Craft el at. [9] and Popovac and Han-
jalic [10]. One difficulty with wall-function methods is 
the introduction of the wall boundary condition explicitly, 
which naturally results in numerical instability. This draw-
back can be solved with the introduction of unconditionally 
unstable numerical procedures. This is a common problem 
that is rarely discussed in literature, but is given a detailed 
treatment in Fontoura Rodrigues et al. [11].

Here, some early expressions proposed for the descrip-
tion of the mean velocity behavior in the near wall region 
are discussed in a separate section. The lack of a unique 
approach means that some of the proposed equations can 
be more effective than others to some particular conditions 
and that, in particular, they differ in simplicity of formula-
tion, the extent of phenomenological domain covered and 
esthetic form. Two sets of experimental data were selected 
for theory validation, the data presented in Andersen et al. 
[12] and Purtell et al. [13].

The arguments invoked by Millikan [5] are also shortly 
revisited in a separate section, but given a different devel-
opment so that a new insight into the derivation of the log-
law is introduced and the skin-friction equation follows 
from differentiating arguments.

The asymptotic structure of the turbulent boundary layer 
is discussed through the rationale introduced by Yajnik 
[14]. Deliberately avoiding similarity, dimensional or mod-
eling arguments, Yajnik used matched asymptotic expan-
sions to demonstrate that the unclosed Reynolds equations 
lead to a double-layered structure. Here, we show that the 
application of limit processes directly to the equations 
rather than to the anticipated solutions results in a different 
interpretation of the flow structure. The new explanation is 
consistent with some elements of the work of Sychev and 
Sychev [15].

2  Equations of motion

The equations of motion are here introduced for the sake 
of completeness. In the following developments, any differ-
ences observed in notation are particularly highlighted.

In turbulent flows, the parameters in the Navier–Stokes 
equations are decomposed into mean and fluctuating quan-
tities. The continuity, momentum and energy equations 
obtained through mass-weighted-averaging can be written 
in the following form (Cebeci and Smith [16]):

(a) Continuity 

(b) Momentum 

(c) Energy 

where the stress tensor and the heat flux tensor are 
given, respectively, by 

 and 

 and the total enthalpy by 

In the above equations, xi, ui, p, ρ, h and H have their 
classical meaning, � is the bulk viscosity (=−(2/3)µ ), 
µ the dynamic viscosity, K the thermal conductivity 
and δij the Kronecker delta operator. The tilde denotes 
mass-weighted averaging and the over line conven-
tional time averaging; fluctuations are denoted with the 
dashes.

3  The law of the wall

In the early arguments, the flow in the wall layer was pos-
tulated to depend on the wall shear stress τw, on the dis-
tance y to the wall, on a roughness parameter ks, and on 
the fluid properties ρ and µ. Then, from dimensional con-
siderations, it follows that the functional dependence of the 
mean velocity u (in the following, an over line is omitted to 
represent a mean quantity) on the flow parameters can be 
expressed as

where uτ (=
√
τw/ρ) denotes the wall friction velocity and 

ν = µ/ρ.
This equation was referred to by Millikan as the “Prandtl 

Wall Velocity Law”. For the flow over a smooth wall, it 
reduces to

(1)∂t ρ̄ + ∂i(ρ̄ũi) = 0

(2)∂t(ρ̄ũi)+ ∂j(ρ̄ũjũi) = −∂ip̄+ ∂j(−ρu′iu
′
j + τij)

(3)

∂t(ρ̄H̃)+ ∂j(ρ̄ũjH̃) = ∂t p̄++∂j(−q̄j − ρu′jH
′

+ ũiτij + u′iτij)

(4)τij = �δij∂kuk + µ(∂jui + ∂iuj)

(5)qj = K∂jT

(6)H = h+ uiui

2

(7)
u

uτ
= f

(

uτ y

ν
,
y

ks

)

(8)
u

uτ
= f

(uτ y

ν

)

= f
(

y+
)
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For the outer flow region, von Karman suggested the solu-
tion to be independent of Reynolds number or wall rough-
ness, but dependent on a gross property of the flow, say, the 
boundary layer thickness, δ. The “Velocity Defect Law” 
was written as

where uo stands for the outer flow velocity.
Of course, the solutions specified by Eqs. (8) and (9) are 

not expected to hold in the viscous region. However, it is 
plausible to consider that there exists a finite region where 
both equations are valid and undistinguished. In this region 
of overlap,

so that

with u+ = u/uτ .

Since dη/dy+ = ν/δuτ = η/y+, it follows immediately 
that

implying

and

The integration parameters in the above equations need 
to be determined experimentally. Parameter A is normally 
written as κ−1, with κ = 0.4. In fact, in his 1930 classical 
paper, von Karman suggested κ = 0.36. Many subsequent 
works have quoted κ to vary between 0.36 and 0.44. The 
value κ = 0.4 has been specially suggested by Coles [17], 
who also recommends A = 5 (smooth wall).

For a slight different derivation of the logarithmic law, 
consider again Eq. (10). Differentiation with respect to x 
yields

where the dashes indicate differentiation.
A further differentiation with respect to y gives,

(9)
uo − u

uτ
= g

(y

δ

)

= g(η)

(10)f (y+) = u+o − g(η), u+o = uo/uτ

(11)
∂u+

∂y+
= df

dy+
= −dg

dη

dη

dy+

(12)y+
df

dy+
= −η

dg

dη
= constant = A

(13)u+ = f (y+) = A ln y+ + B

(14)u+o − u+ = g(η) = −A ln η + C

(15)
u′o = uτ

[

u′τ
uτ

y+f ′(y+)− δ′

δ
ηg′(η)

]

+ u′τ [ f (y+)+ g(η)]

(16)

0 = uτ

[

uτ
ν
f ′(y+)+ 1

δ
g′(η)

]

, that is

g′(η) = − uτ δ
ν
f ′(y+)

Substitution of Eqs. (10) and (16) into (15) results

or still,

The left and right sides of the above equation are functions 
of different variables. This equality is only satisfied pro-
vided they are equal to the same constant, so that

The left side of Eq. (18) furnishes

an expression that can easily be recognized as the law of 
resistance for turbulent flow.

4  Further formulations for the law of the wall

Following the developments of the original authors, numer-
ous alternative formulations for the u+(y+) relation were 
proposed. The main motivation was to advance single expres-
sions valid in the whole range of the non-dimensional dis-
tance y+ and, in some cases, for the complete velocity pro-
file. New formulations introduced a modified mixing length 
hypothesis or even arguments in favor of a power-type law.

Some of the theories are reviewed next.

4.1  The theory of Reichardt [18]

The equation of continuity implies that for the very near 
wall region, v ∼ y2. Then, as shown by Reichardt [18], it 
results from the momentum equation that νt ∼ y3. On the 
other hand, for large values of y+ the eddy viscosity must 
present a linear behavior. Thus, it was only natural to 
Reichardt to assume that

The velocity profile can then be obtained from

(17)u′o = uτ

[

u′τ
uτ

y+f ′(y+)+ δ′

δ
y+f ′(y+)

]

+ u′τ
uo

uτ

(18)

u′o
uτ

− uo
u′τ
u2τ

u′τ
uτ

+ δ′
δ

= y+f ′(y+)

(19)y+f ′(y+) = A, f (y+) = A ln y+ + B

(20)

u′o
uτ

− uo
u′τ
u2τ

= A

[

u′τ
uτ

+ δ′

δ

]

d

dx

[

uo

uτ

]

= A
d

dx
[ ln uτ + ln δ]

uo

uτ
= A ln uτ δ + B

(21)
νt

ν
= k

(

y+ − δ+l tanh
y+

δ+l

)

(22)(µ+ ρνt) ∂yu = τw.
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Unfortunately, this equation cannot be solved analytically. 
An approximated solution is given by

where κ = 0.41, δ+l = 11 and c = 7.4.

4.2  The theory of Rotta [19]

Rotta [19] assumed that, for the flow in the region 
5.0 < y+, the total shear stress is determined through both 
viscous and turbulence effects. Thus, a direct application of 
the mixing length hypothesis leads to

where Im = κ(y− δl).

The solution to the above equation can be written as

with I+m = uτ Im/ν and δ+l = uτ δl/ν.
The main difficulty with this formulation is that it 

requires the correct specification of the value of the thick-
ness of the viscous sub-layer δ+l . The abrupt distinction 
made between the viscous sub-layer and the turbulent 
region, however, does not reflect the true physics of the 
flow where the turbulent fluctuations are continuously 
damped by viscous effects. In the present implementation 
of Eq. (25), we initially considered δ+l = 5.0. That hypoth-
esis resulted in a very low level for the logarithmic part of 
the profile. A purely empirical choice based on the experi-
mental data of Andersen et al. [12] and Purtell et al. [13] 
suggests δ+l = 7.0.

4.3  The theory of Van Driest [20]

Van Driest [20] was the first to consider the inclusion of a 
damping function into the mixing length theory of Prandtl. 
As a result, he wrote

The rate at which the flow velocity approaches zero at the 
wall is now controlled by the damping exponential func-
tion. In this case, νt ∼ y4 as y → 0.

An integration of Eqs. (22) and (26) gives

(23)

u+ = 1

κ
ln (1+ κ y+)+ c

[

1− exp(−y+/δ+l )

− y+

δ+l
exp(−0.33y+)

]

(24)ρ

(

ν + I2m

∣

∣∂yu
∣

∣

)

∂yu = τw

(25)

u+ = 1

2κI+m

(

1−
√

1+ 4I+2
m

)

+ 1

κ
ln

(

2I+m +
√

1+ 4I+2
m

)

+ δ+l

(26)νt = κ
2y2

(

1− exp(−y+/a)
)2∣
∣∂yu

∣

∣

where Van Driest considered a = 26.

4.4  The theory of Rannie [21]

As the wall is approached, all previous expressions for the 
non-dimensional eddy viscosity show a functional behavior 
with either the form y+3 or y+4. However, for finite values 
of y+ a more appropriate behavior would be of the form 
y+2. To satisfy this requirement, Rannie [21] proposed for 
the region y+ ≤ 27.5 the following expression

The resulting mean velocity profile is then given by

where σ = 0.0688.

4.5  The theory of Spalding [22]

The motivation for Spalding [22] was to find a good for-
mula for the representation of the velocity profile which 
presented at the same time a simpler form than the expres-
sions of Reichardt and Van Driest. This formula should fit 
the experimental data closely, contain a sufficient num-
ber of constants to permit modification in the light of the 
experimental data, and have a simple analytical form. 
He then proposed a formula that satisfied the following 
conditions:

1. passes through the point: y+ = 0, u+ = 0;
2. is tangential at this point to: u+ = y+;
3. is asymptotic at large y+ to: u+ = 2.5 ln y+ + 5.5;
4. fits the experimental points at intermediate y+ values.

The equation introduced as a candidate was

where C = exp(−κA), with A the standard constant in 
the law of the wall. For A = 5.5 (the value suggested by 
Spalding), C becomes 0.1108.

Expression (30) furnishes, for large values of y+, the 
asymptotic behavior νt/ν ∼ y+4

.

(27)

u+ = 2

∫ y+

0

dy+

1+ [1+ 4κ2 y+2(1− exp(−y+/a))2]1/2

(28)
νt

ν
= sinh2(σy+)

(29)u+ = 1

σ
tanh(σ y+)

(30)

y+ = u+ + C

[

exp(κ u+)− 1− κ u+

− (κ u+)2

2! − (κ u+)3

3! − (κ u+)4

4!

]
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4.6  The theory of Rasmussen [23]

Following the same line of thought of Spalding, Rasmussen 
[23] introduced a similar expression, but with fewer terms. 
In his formulation, we have

The above equation satisfies the two boundary conditions 
specified by Spalding at the wall. In addition, conditions 
(y = δ, u = uo) and (y = δ, ∂yu = 0) are satisfied. Only the 
requirement (y = δ, u = uo) is not satisfied exactly. How-
ever, it is easily shown that the error becomes vanishingly 
small for u+ > 20.

4.7  The theory of Musker [24]

Observing the limiting behavior of the eddy viscosity for 
small and large values of y+, Musker [24] proposed the fol-
lowing interpolating formula

where C (=0.001093) is a proportionality constant.
Using Eq. (22), it follows

An integration of this equation gives

4.8  The theory of Haritonidis [27]

In the sixties, some authors, notably Kline et al. [25] and 
Kovasznay [26], associated the structure of the turbulent 
boundary layer to a sequence of “events” dominated by two 
features: wall layer streaks and the bursting phenomenon. 
The streaks are elongated in the flow direction, typically 
have a length of the order of 1000ν/uτ and can be observed 
over a large characteristic time, the quiescent period. The 
resulting set organized large-scale motions was shown to 
be responsible for the bulk of turbulence production.

In an attempt to incorporate the bursting process into a 
simple algebraic model for the eddy viscosity, Haritonidis 
[27] considered a two-dimensional mean flow with ran-
domly distributed bursts. In the analysis, the transverse 
velocity fluctuation was modeled in accordance with a 
modified mixing length hypothesis.

(31)y+ = u+ + exp−A
[

2 cosh(κu+)− (κu+)2 − 2
]

(32)
1

νt/ν
= 1

C y+3
+ 1

κ y+

(33)
du+

dy+
= κ + Cy+2

κ + Cy+2 + Cκy+3
.

(34)

u+ = 5.454 tan−1

[

2y+ − 8.15

16.7

]

+ log10

[

(y+ + 10.6)9.6

(y+2 − 8.15y+ + 86)2

]

− 3.52+ 2.44

The resulting expression for the eddy viscosity was writ-
ten as

where n is the number of ejections of equal strength and 
duration over the period �tb between bursts, f = 1/�tb is 
the bursting frequency, and lm (=my) is the distance trave-
led by the bursts.

An integration of Eqs. (22) and (35) gives

where �2 = αf+, α = 2−1nm2, a = (h+)−1 and h+ is the 
half height of a channel or pipe. For a zero-pressure gradi-
ent boundary layer a = 0.

A relation between m and κ was found to be 
m = κn−1(�te/δtb)

−1 and �te is the duration of the 
ejections.

In the calculations of Haritonides, �2 was considered 
equal to 0.00877.

4.9  The theory of Yakhot et al. [28]

A new formulation for an algebraic eddy viscosity model 
based on a renormalization group approach (RNG) was 
developed by Yakhot et al. [28]. Through a systematic 
elimination of the small scales of motion from the Navier–
Stokes equation in a given wave-number interval, say, 
�f < k < �0, the following expression follows:

where H is the ramp function defined by H(x) = max(x, 0), 
a = 0.12, and C = 160.

The RNG eddy viscosity is expressed in terms of the 
mean dissipation rate, ǫ, and the length scale, � = 2π�−1

f , 
corresponding to the smallest fluctuating scales retained in 
the system. Appealing to well known correlations for the k-
ǫ transport model of turbulence, to an equilibrium hypoth-
esis between production and dissipation near the wall and 
to mixing length type arguments, Eq. (37) becomes:

Assuming that H(x) = x, Eq. (38) can be written as

where, ν̂ = νt/ν, ν̂m = κl+, l+ = uτ l/ν.

The quartic Eq. (39) is solved under the constraint ν̂ =

max(ν̂, 1), l = min(y, γ δ∗), γ = γ0(1− H−1)−1
 ; γ0 = 0.3, 

(35)νt =
1

2
n l2m f

(36)u+ = �
−1 tan−1(�y+)− 2−1a�−2 ln(1+ �

2y+
2
)

(37)
νt

ν
=

[

1+ H

(

a
ǫ�−4

f

ν3
− C

)]1/3

(38)
νt

ν
=

[

1+ H

(

κ
4 u4τ l

4

νt ν3
− C

)]1/3

(39)Q4(ν̂) = ν̂4 + (C − 1)ν̂ − ν̂4m = 0,
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H is the shape factor (=δ∗/θ), δ∗ = displacement thickness, 
θ = momentum thickness.

In the fully turbulent region, the flow is governed by Eq. 
(22) with ν = 0. An integration of this equation together 
with Eq. (39) gives

where z = (ν̂3 − 1+ C)1/4/ν̂3/4 and ν̂ = ν̂(y+) is the solu-
tion of the quartic Eq. (39).

4.10  The theory of Barenblatt [29]

Starting with early studies, two different propositions 
were advanced for the description of the mean velocity 
distribution.

The logarithmic law was derived on the assumption 
that for “sufficiently large local Reynolds number and suf-
ficiently large flow Reynolds number, the dependence of 
the velocity gradient on the molecular viscosity disappears 
completely” [29]. In mathematical terms that is to say that 
y+∂y+u

+ tends to a finite value as y+ and Re tend to infinity. 
It follows immediately that κ and B are universal constants.

In the alternative approach, the velocity gradient depend-
ence on molecular viscosity is considered not to disappear 
regardless of how big y+ and Re may be. In this approach, 
the velocity gradient is assumed to possess a power-type 
asymptotic behavior, where the exponent and the multiply-
ing parameter are supposed to depend on the Re. The form 
of the power-scaling law yields a family of curves whose 
parameter is the Reynolds number. The resulting envelop 
of curves is shown to be very close to the universal log-law.

The derivations of both laws are generally considered 
equally consistent and rigorous. They are, however, based 
on entirely different assumptions. Based on arguments 
related to general fractal properties of vortex dissipative 
structures in turbulent flow and on the experimental data of 
Nikuradze [30] for pipe flow, Barenblatt [29] proposes

where

(40)

u+(y+) = 1

3k

[

4C1/4 − z + ln

(

z + 1

z − 1

)

+ 2 tan−1(z)

− ln

(

C1/4 + 1

C1/4 − 1

)

− 2 tan−1(C1/4)

]

,

(41)u+ = C (y+)α ,

(42)

C = 1√
3
lnRe +

5

2

=
√
3+ 5α

2α
, α = 3/(2 lnRe).

4.11  An alternative expression

As we shall see next, the results provided by most of the 
above formulations are generally in good agreement with 
experimental data, despite the quite different underlying 
hypotheses in the derivation of the equations. In fact, their 
derivations have appealed to such diverse arguments as 
dimensional analysis, mixing length theories, heuristics, RNG 
theory, asymptotic limits, or even a combination of these.

All formulations, however, present shortcomings. The 
theories of Reichardt and Van Driest propose modifica-
tions in the mixing length theory which lead to quadratures 
requiring numerical integration. The theories of Spalding 
and Rasmussen present solutions in an inverse form. Rotta, 
Rannie and Haritonidis present solutions with a limited 
range of validity. The theory of Yakhot requires the solu-
tion of a quartic equation. Barenblatt’s solution has been 
developed for pipe flow. The theory of Musker is the easiest 
to implement and provides a solution with a wide range of 
validity and good accuracy.

To find an alternative solution, we combine some of the 
ideas of Rotta, Spalding and Van Driest. First, identify a 
specific region of the flow where Eq. (22) holds. Next, the 
mixing length theory is evoked to perform a first integra-
tion and obtain

This exact result is similar to the one found by Rotta, Eq. 
(25). The only difference here is the omission of the thick-
ness of the viscous sub-layer, δ+l . The asymptotic behavior 
of Eq. (43) is

The result is that the single-variable profile, Eq. (43), fails 
in the high y+ limit. To ensure a good curve fitting for the 
whole range of inner scales, we add the function

to Eq. (43), where d = 6.7 and yc = yr = 8.

This function substitutes the need for the specification of 
δ+l  in Rotta’s theory, adjusting the asymptotic behavior of 
Eq. (43) as y+ → ∞.

(43)

u+(y+) = 1

κ

(

1−
√

1+ 4κ2 y+2

2κ y+

+ ln

(

2κ y+ +
√

1+ 4κ2 y+2

))

(44)u+ → y+, y+ → 0

(45)u+ → 2.5 ln y+ − 1.325, y+ → ∞

(46)DA(y
+) = d

2

[

1+ tanh

(

2κ y+ − yc

yr

)]
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4.12  Discussion

The theories are compared with the data of Andersen [12] 
and Purtel et al. [13]. Curves corresponding to the first 
three theories are plotted in Fig. 1.

The main comments are: (1) the theory of Reichardt 
overshoots the experimental data; (2) the solution of Ran-
nie is good but limited to y+ < 27.5; (3) Rotta’s solution 
clearly suffers from the ill definition of δ+l  (here, we have 
used δ+l = 7); (4) the agreement with the experimental 
data provided by Van Driest’s solution is very good, the 
same is true to Spalding’s expression; (5) the theory of 
Rasmussen undershoots the data; (6) the agreement with 
the data yielded by Musken’s expression is very good; 
(7) Haritonidis’solution is good but limited to y+ < 27.5 ; 
(8) the results provided by the RGN theory are not good 
in the transition region; (9) the theory of Barenblatt 
developed for pipe flows needs a better definition of the 
Reynolds number for boundary layer flows, in the present 
comparison we have used Re based on the external flow 
velocity uo and the boundary layer thickness, δ; (10) the 
present formulation compares well with the data, being 
also comparable with the solutions of Van Driest and of 
Musker.

5  The asymptotic structure of turbulent flows

The early ideas upon which the boundary layer theory rests 
were systematically generalized and formalized in the first-
half of the last century to give birth to what has normally 
been referred to in literature as singular perturbation meth-
ods. The heart of these methods is to divide the problem 
into global and local domains, find the approximate solu-
tions and use some accepted working rule for their unifi-
cation into a single composite solution that is expectedly 
asymptotic to the exact solution in the limit as a small 
parameter tends to zero.

A critical aspect of the described methodology refers to 
the process of unification, commonly referred to as match-
ing. Two are the main possibilities: intermediate variables 
and the asymptotic matching principle. The former leans 
its results on extension theorems and overlap hypotheses 
to produce intermediate matching (Eckhaus [31, 32]). The 
latter appeals to the asymptotic matching principle, that 
is, to assumptions regarding the structure of the uniform 
expansions.

The interrelations between the two procedures were 
investigated by Eckhaus [31], who showed that the exist-
ence of an overlap domain assures the validity of the 

Fig. 1  Formulations for the law of the wall according to the several authors
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asymptotic matching principle, but the nonexistence of 
an overlap does not preclude the validity of the principle. 
Matching based on an intermediate limit and the corre-
sponding intermediate variable is an idea closely related—
but not identical—to the original notion advanced by 
Prandtl of a “limit matching principle” whereby it suffices 
the local limit of the global equation to be equal to the 
global limit of the local equation.

Precise definitions and exact results can be enunciated 
to determine uniform approximations and perform the 
matching of functions. However, the determination of the 
domain of validity of an approximation is a difficult mat-
ter. Two important results in perturbation theory are the 
intermediate matching lemma and the extension theorem 
of Kaplun. These results are of fundamental importance 
for the definition of matching, but say nothing about the 
domain of validity of the approximations. To circumvent 
this difficulty, Kaplun [33] applied the concept of limit 
processes directly to the equations rather than to the solu-
tions and enunciated an Ansatz about domains of valid-
ity to relate the domain of validity of solutions with the 
formal domain of validity of equations (a concept which 
is easily defined). For some difficult problems, e.g., the 
Stokes paradox of fluid mechanics, only consideration 
of these ideas can clarify the conceptual structure of the 
problem.

The notions on perturbation methods introduced by 
Kaplun were particularly discussed by Lagerstrom and 
Casten [34] and Lagerstrom [35]. Further discussions can 
be found in Silva Freire and Hirata [36], Silva Freire [37] 
and Silva Freire [38]. The next section highlights some of 
the results introduced in these works.

Most of Kaplun’s ideas were developed in connection 
with boundary value problems. In the present work, some 
formal properties of the turbulent boundary layer equations 
are investigated through the concepts introduced by Kaplun 
and relate them to the actual problem of determining the 
overlap domain and local approximations.

The asymptotic structure of the turbulent boundary layer 
was extensively investigated by many authors in the past. 
Using only the hypothesis that the order of magnitude of 
the Reynolds stresses does not change throughout the 
boundary layer, Yajnik [14] and Mellor [39] have described 
the structure of the turbulent boundary layer through the 
matched asymptotic expansions method. They modeled the 
flow by a two-deck structure, consisting of a wall region 
and a defect region. Other authors using closure conditions 
in terms of eddy viscosity (Bush and Fendell [40]) or κ–ǫ 
(Deriat and Guiraut [41]) models have reached the same 
conclusion, making the two-deck asymptotic structure of 
the turbulent boundary layer the basis of most subsequent 
work. Sychev and Sychev [15], however, used the same 
method to find a three-layered structure.

In this work, the asymptotic structure of the turbulent 
boundary layer is investigated through a direct application 
of Kaplun ideas to the Navier–Stokes equation.

5.1  Kaplun limits

The following topology is introduced on the collection of 
order classes (Meyer [42]).

For positive, continuous functions of a single variable ǫ 
defined on (0, 1], let ord η denote the class of equivalence

A partial ordering is constructed on these functions by 
defining

A set D of order classes is said to be convex if 
ord δ1, ord δ2 ∈ D and ord δ1 < ord θ < ord δ2 together 
imply ord θ ∈ D. A set D is said to be open if it is con-
verse and if ord θ ∈ D implies the existence of functions 
γ , δ such that ord θ > ord γ ∈ D and ord θ < ord δ ∈ D. A 
set D, on the other hand, is said to be closed if it is con-
vex and has particular elements ord δ1, ord δ2 such that 
ord δ1 ≤ ord θ ≤ ord δ2 for every ord θ ∈ D. Two order 
sets, D and D′ are said adjacent if: (1) D′ > D and (2) 
η < D′ and η′ > D → η′ > η. We may refer to D′ as being 
the upper adjacent region of D. Analogously, D is said to be 
the lower adjacent region of D′.

Definition (Lagerstrom [35]) We say that f (x, ǫ) is an 
approximation to g(x, ǫ) uniformly valid to order δ(ǫ) in a 
convex set D (f is a δ-approximation to g), if

The function δ(ǫ) is called a gauge function.
The essential idea of η-limit process is to study the limit 

as ǫ → 0 not for fixed x near the singularity point xd, but 
for x tending to xd in a definite relationship to ǫ specified by 
a stretching function η(ǫ). Taking without any loss of gen-
erality xd = 0, we define

with η(ǫ) a function defined in �, the space of all positive 
continuous functions in (0, 1].
Definition (Meyer [42]) If the function 
G(xη;+0) = limG(xη; ǫ), ǫ → 0, exists uniformly on 
{xη/|xη| > 0}; then, we define limη F(x; ǫ) = G(xη;+0).

Thus, if η → 0 as ǫ → 0, then, in the limit process, 
x → 0 also with the same speed of η, so that x/η tends to a 

(47)
ord η = {θ(ǫ) / lim θ(ǫ)/η(ǫ), ǫ → 0, exists and is �= 0}.

(48)ord η1 < ord η2 ⇔ lim
η1

η2
= 0, ǫ → 0.

(49)

lim
f (x, y)− g(x, y)

δ(ǫ)
= 0, ǫ → 0, uniformly for x inD.

(50)xη = x

η(ǫ)
, G(xη; ǫ) = F(x; ǫ),
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non-zero limit value. One of the central results of Kaplun’s 
work is the extension theorem, which is here presented in 
the following version (Meyer [42]).

Kaplun’s extension theorem    If f (x; ǫ) is a ξ(ǫ)-approxi-
mation to g(x; ǫ) uniformly in a closed interval D0, then it 
is so also in an open set D ⊃ D0.

The above theorem was first published in Kaplun and 
Lagerstrom [43] in connection with the Stokes paradox 
for flow at low Reynolds number. The theorem needs to be 
complemented by an Axiom and by an Ansatz to relate the 
formal domain of validity of an equation with the actual 
domain of validity of its solution. The idea of Kaplun was 
to shift the emphasis to applying limit processes directly to 
the equations rather than to the solutions, establishing some 
rules to determine the domain of validity of solutions from 
the formal domain of validity of an equation.

The set of equations that will result from passage of the 
limit is referred to by Kaplun as the “splitting” of the dif-
ferential equations. The splitting must be seen as a formal 
property of the equation obtained through a “formal pas-
sage of the η-limit process”. To every order of η a corre-
spondence is induced, limη → associated equation, on that 
subset of � for which the associated equation exists.
Definition    The formal limit domain of an associated 
equation E is the set of orders η such that the η-limit pro-
cess applied to the original equation yields E.

Passage of the η-limit will give equations that are distin-
guished in two ways: (1) they are determined by specific choices 
of η, and (2) they are more complete, or in Kaplun’s words, 
“richer” than the others, in the sense that, application of the η-
limit process to them will result in other associated equations, but 
neither of them can be obtained from any of the other equations.

Limit processes which yield “rich” equations are called 
principal limit processes. The significance of principal limit 
processes is that the resulting equations are expected to be 
satisfied by the corresponding limits of the exact solution. 
The notion of principal equation will be formalized below.

The above concepts and ideas can be given a more rig-
orous interpretation if we introduce Kaplun’s concept of 
equivalent in the limit for a given set of equations for a 
given point (η, δ) of the (�,�) product space.

Given any two associated equations E1 and E2, we define 
the remainder of E1 with relation to E2 as

where ǫ denotes a small parameter.
According to Kaplun [33], R should be interpreted as an 

operator giving the “apparent force” that must be added to 
E2 to yield E1.
Definition (of equivalence in the limit) (Kaplun [33]) Two 
equations E1 and E2 are said to be equivalent in the limit for 
a given limit process, limη, and to a given order, δ, if

(51)R(xη; ǫ) = E1(xη; ǫ)− E2(xη; ǫ),

The following propositions are important; they can be 
found in Kaplun [33]. The symbol ∼ is used to indicate 
equivalent in the limit whereas �∼ indicates not equivalent 
in the limit.

Proposition 1  If E ∼ E′ for the point (η′, δ′) of the prod-
uct space �×�, then E ∼ E′ for all points (η, δ) such that 
η = η′ and δ ≫ δ′. Conversely, if E �∼ E′ for the point 
(η′, δ′), then E �∼ E′ for all points (η, δ) such that η = η′ and 
ord δ ≪ ord δ′.

Proposition 2  If E ∼ E′ for the point (η, δ) of the prod-
uct space �×�, and if associated equations for that point 
exist for E, then they exist also for E′ and are identical for 
both.

Proposition 3  If associated equations exist for E and E′,  
respectively, corresponding to η = η′ and the sequence 
δ = δ′0, δ

′
1, . . . , δ

′
n, δ

′ where δ′n > δ′ > δ′n+1, and are identi-
cal for both, then E ∼ E′ for the point (η′, δ′).

We can make the following definition.
Definition (of formal domain of validity) The formal 
domain of validity to order δ of an equation E of formal 
limit domain D is the set De = D ∪ D′

is, where D′
is are the 

formal limit domains of all equations E′
i such that E and E′

i 
are equivalent in D′

i to order δ.
Definition (of principal equation) An equation E of for-
mal limit domain D is said to be principal to order δ if:

(1) one can find another equation E′, of formal limit 
domain D′, such that E and E′ are equivalent in D′ to 
order δ;

(2) E is not equivalent to order δ to any other equation in 
D.

An equation which is not principal is said to be intermedi-
ate.

To relate the formal properties of equations to the 
actual problem of determining the uniform domain of 
validity of solutions, Kaplun [33] advanced two asser-
tions, the Axiom of Existence and the Ansatz about 
domains of validity. These assertions constitute primi-
tive and unverifiable assumptions of perturbation 
theory.

Axiom (of existence) (Kaplun [33]) If equations E and E′ 
are equivalent in the limit to the order δ for a certain region, 
then given a solution S of E which lies in the region of 

(52)
R(xη; ǫ)

δ
→ 0, as ǫ → 0, xη fixed.



1369J Braz. Soc. Mech. Sci. Eng. (2016) 38:1359–1399 

1 3

equivalence of E and E′, there exists a solution S′ of E′ such 
that as ǫ → 0, |S − S′|/δ → 0, in the region of equivalence 
of E and E′.

In other words, the axiom states that there exists a solu-
tion S′ of E′ such that the “distance” between S and S′ is of 
the same order of magnitude of that between E and E′.

In using perturbation methods, the common approach 
is to consider the existence of certain limits of the exact 
solution or expansions of a certain form. This is normally 
a sufficient condition to find the associated equations and 
to assure that the axiom is satisfied (Kaplun [33]). Equiv-
alence in the limit, however, is a necessary condition as 
shown by Propositions (1)–(3).

To the axiom of existence there corresponds an Ansatz; 
namely that there exists a solution S of E which lies in the 
region of equivalence of E and E′. More explicitly, we 
write.

Ansatz (about domains of validity) (Kaplun [33]) An equa-
tion with a given formal domain of validity D has a solu-
tion whose actual domain of validity corresponds to D.

The word “corresponds to” in the Ansatz was 
assumed by Kaplun to actually mean “is equal to”; this 
establishes the link we needed between the “formal” 
properties of the equation and the actual properties of 
the solution.

The Ansatz can always be subjected to a canonical test 
which consists in exhibiting a solution S′ of E′ which lies in 
the region of equivalence of E and E′ and is determined by 
the boundary conditions that correspond to S.

Because the heuristic nature of the Axiom and of the 
Ansatz, comparison to experiments will always be impor-
tant for validation purposes. The theory, however, as imple-
mented through the above procedure, is always helpful in 
understanding the matching process and in constructing the 
appropriate asymptotic expansions.

5.2  The asymptotic structure of the zero‑pressure 
gradient turbulent boundary layer

For an incompressible two-dimensional turbulent flow over 
a smooth surface in a prescribed pressure distribution, the 
time averaged motion equations, Eqs. (1) through (2), can 
be written as

where the notation is classical. Thus, (x1, x2) = (x, y) stand 
for the coordinates, (u1, u2) = (u, v) for the velocities, p for 

(53)∂juj = 0,

(54)

uj∂jui = −∂jp− ǫ2∂j

(

u′ju
′
i

)

+ R−1
e ∂2jjui,

pressure and Re for the Reynolds number. The dashes are 
used to indicate a fluctuating quantity. In the fluctuation 
terms, an overbar is used to indicate a time average.

The small parameter ǫ is defined through Eq. (56) below.
All mean variables are referred to some characteristic 

quantity of the external flow. The velocity fluctuations, on 
the other hand, are referred to a characteristic velocity uR, 
first introduced in Cruz and Silva Freire [44].

The correct assessment of the characteristic velocity is 
fundamental for the determination of the boundary layer 
asymptotic structure. For unseparated flows the characteris-
tic velocity is known to be the friction velocity; for separat-
ing flows it reduces to (ν(dp/dx)/ρ)1/3. For the moment, 
we will consider attached flow so that we can write

This result is valid for incompressible flows as well as for 
compressible flows (see, e.g., Kistler [45] and Kistler and 
Chen [46]).

The small parameter ǫ is, therefore, defined by

where, again, uτ is the friction velocity and uo the external 
flow velocity.

To find the asymptotic structure of the boundary layer, 
we consider the following stretching transformation

with η(ǫ) defined on �.
Passage of the η-limit process onto the motion equation 

results:
x-momentum equation:

Passage of the η-limit process onto the y-momentum equa-
tion shows the dominance of the pressure term in all regions 

(55)ord (u′i) = ord (uτ ).

(56)ǫ = uR

uo
= uτ

uo

(57)ŷ = yη = y

η(ǫ)
, ûi(x, yη) = ui(x, y)

(58)ord η = ord 1 : û∂xû+ v̂∂yη û = −∂xp̂

(59)ord ǫ2 < ord η < ord 1 : û∂xû+ v̂∂yη û = −∂xp̂

(60)ord ǫ2 = ord η : û∂xû+ v̂∂yη û = −∂xp̂− ∂yη û
′v̂′

(61)ord (ǫRe)
−1 < ord η < ord ǫ2 : ∂yη û

′v̂′ = 0

(62)ord (ǫRe)
−1 = ord η : ∂yη û

′v̂′ + ∂2yηyη û = 0

(63)ord (ǫRe)
−1 < ord η : ∂2yηyη û = 0
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of the domain. All information regarding the asymptotic 
structure of the boundary layer is, therefore, contained in 
the x-momentum equation.

In respect to the determination of Eq. (62), please, refer 
to further arguments presented in Loureiro and Silva Freire 
[47]. The matching process that involves the inner and 
outer solutions presents a peculiar difficulty, sometimes 
referred to in literature as “generation gap” (Mellor [39]). 
When this happens, an inspection of formally higher order 
terms leads to “switchback” and to a change in the leading 
order of the inner solution.

Equations (60) and (62) are distinguished in two 
ways: (1) they are determined by specific choices of η , 
and (2) they are “richer” than the others in the sense 
that, application of the limit process to them yields 
some of the other equations, but neither of them can 
be obtained from passage of the limit process to any of 
the other equations. Thus, according to the definitions 
introduced in the previous sections, these equations 
are the principal equations. We have seen that princi-
pal equations are important since they are expected to 
be satisfied by the corresponding limits of the exact 
solution.

A complete solution to the problem should then accord-
ing to the Axiom of Existence and Kaplun’s Ansatz, be 
obtained from the principal equations located at points 
ord(η) = ord(ǫ2) and ord(η) = ord((ǫRe)

−1). The formal 
domains of validity of these equations cover the entire 
domain and overlap in a region determined according to the 
definition of equivalent in limit.

To find the overlap region of Eqs. (60) and (62), we must 
show these equations to have a common domain where 
they are equivalent. A direct application of the definition of 
equivalence in the limit to Eqs. (60) and (62) yields

Noting that the leading order term in region 
ord(1/ǫRe) < ord(η) < ord(ǫ2) is the turbulent term, of 
ord(ǫ2/η), we normalize the above equation to order unity 
to find

The overlap domain is the set of orders such that the η-limit 
process applied to R tends to zero for a given α. Then, since 
ord(∂y) = ǫ and ord(∂x) = 1, the formal overlap domain is 
given by

According to Kaplun’s Ansatz about domains of validity, 
the approximate equations, Eqs. (60) and (62), only overlap 
if set (66) is a non-empty set, that is, if

(64)R =
û∂xû+ v̂∂yη û+ ∂xp̂− ∂2yηyη û

ǫα

(65)R = η

ǫ2
R

(66)Doverlap = {η/ ord(ǫ1+αRe)
−1 < ordη < ord(ǫ2+α)}

The implication is that the two-deck turbulent boundary 
layer structure given by the two principal equations, Eqs. 
(60) and (62), provides approximate solutions which are 
accurate to the order of ǫαmax, where αmax is the least upper 
bound of the interval (67). This fundamental result can only 
be reached through the application of Kaplun’s concepts 
and ideas to the problem.

6  Logarithmic solutions for generalized flows

Variations of the arguments used in the early research for 
the determination of local solutions of the turbulent bound-
ary layer have led to the development of some complex 
expressions for the near wall treatment of yet more com-
plex problems. The examples are many, but perhaps a very 
good illustration may be provided by that of the wall shear 
stress prediction for the interaction of a shock wave and a 
turbulent boundary layer at high transonic speeds (Liou and 
Adamson [48]).

Solutions for the interaction between a shock wave 
and a boundary layer are very complex since they must 
account not only for the geometry of the problem but also 
for the nature of the boundary layer, i.e., whether it is 
laminar or turbulent, and for the strength of the shock. If 
the pressure rise across the shock is moderate, the bound-
ary layer remains attached through the interaction, giving 
rise to a flow configuration that can be treated analyti-
cally. Once separation occurs, however, the flow pattern 
changes drastically and analytical solutions become dif-
ficult to obtain. Three-dimensional effects further compli-
cate the problem.

To apply perturbation methods to the interaction prob-
lem, authors in the past separated the flow field into a 
region of strong interaction and regions of weak interac-
tion upstream and downstream of the shock wave. Particu-
lar solutions for every region of the flow were developed in 
terms of three small parameters: the friction velocity, the 
global Reynolds number and the strength of the shock. A 
composite solution for the whole field is found from the 
asymptotic matching of the various solutions in the x- and 
y-directions.

Silva Freire [49, 50] showed how perturbation methods 
could also be used to study passive flow control when a 
plenum chamber in fitted underneath an interacting shock 
wave.

In the following subsections, several near wall solutions 
are constructed for different flow conditions. The combina-
tion of the several effects is made in such a way as to lead 
to conditions with an increasing order of complexity.

(67)0 ≤ α ≤ −1

2

(

ln Re

ln ǫ
+ 3

)
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6.1  The compressible turbulent boundary layer

In turbulent compressible flow, the transport mechanisms 
associated with the fluctuations in density, temperature and 
viscosity do not alter the asymptotic structure of the flow 
as shown by Silva Freire [51]. In fact, this discussion is not 
trivial.

Afzal [52] extended the theories of Yajnik [14] and 
Mellor [39] to compressible flow. His theory was for-
mulated for a perfect gas with constant specific heats 
when (γ − 1)M2

o  and the molecular Prandtl number 
are of order unity; he also worked with an underde-
termined system of equations. However, Melnik and 
Grossman [53], Adamson and Feo [54] and Liou and 
Adamson [48] argued that Afzal had not showed that 
the flow properties in the inner and outer regions actu-
ally matched. Their main objection was related to the 
matching of the density profiles. Because the density 
varied by order unity from one region to the other, the 
solution presented by Afzal was not capable of dealing 
with this behavior. Of course, the failure in achieving 
matching depended on the choice of the asymptotic 
expressions.

In Silva Freire [51], the matched asymptotic expan-
sion method is applied to the compressible turbulent 
boundary layer. Local equations and solutions for the 
defect and wall regions disclose the existence of first-
order logarithmic and second-order bi-logarithmic 
terms. The bi-logarithmic terms appearing in the sec-
ond-order solutions for the velocity, temperature and 
density solutions are shown to make matching viable. 
The analysis shows how important it is the considera-
tion of bi-logarithmic terms in the compressible flow 
problem. The analysis further applies the theory of 
Kaplun [33] to the equations of momentum, energy and 
state to show that double limits also indicate the exist-
ence of an overlap domain.

For a compressible flow, Morkovin [55] showed that

where M stands for Mach number.
This equation indicates that the fluctuations in density 

are small as compared to the mean value, not exceeding 
values over 0.1 for Mach numbers less than 5. The conclu-
sion is that the fluctuations in temperature and density do 
not exert a significant influence on the turbulent field for 
M ≤ 5. Therefore, part of the knowledge of the turbulent 
structure obtained for subsonic flow may be extended to 
supersonic flow.

Under certain conditions, the energy equation for a tur-
bulent flow exhibits an analytical solution. For the specific 
case of constant wall temperature, Crocco [56] shows that

(68)
t′

T
= −ρ′

ρ
= −(γ − 1)M2 u

′

u
,

where, γ = cp/cv, r = recovery factor (=0.896), Tw =

wall temperature,To = outer flow temperature, Tr = recov-

ery temperature, and

For adiabatic flow, Eq. (69) becomes

The above remarks suggest that the compressible tur-
bulent boundary layer may be divided into two regions, 
an inner (wall) layer and an outer (defect) layer. In the 
region adjacent to the wall, viscous effects dominate so 
that

where the changes in viscosity have been considered 
through

Substitution of Eq. (69) into Eq. (72) with ω = 1 results

where

and the superscript c has been used to remind the reader 
that the flow is compressible.

In the limit Mδ −→ 0, the incompressible flow law of the 
wall is recovered.

On top of the region dominated by viscous effects, there 
exists a region where the fully turbulent effects prevail. In 
this region, the local velocity gradient is

(69)

T

To
= −Tw

To
+ Tr − Tw

To

u

uo

− r
γ − 1

2
M2

o

(

1−
(

u

uo

))

,

(70)Tr = To

(

1+ r
γ − 1

2
M2

o

)

.

(71)
T

To
= 1+ r

γ − 1

2
M2

o

(

1−
(

u

uo

))

,

(72)∂yu = u2τ

νw

(

Tw

T

)ω

,

(73)µ = µw

(

Tw

T

)ω

.

(74)
uc

uτ
= uτ y

νw
,

(75)

uc = u

[

1+ 1

2
a∗

u

uo
− 1

3
b∗2

(

u

uo

)2
]

,

a∗ = To

Tw

(

1+ r
γ − 1

2
M2

o

)

− 1,

b∗2 = r
γ − 1

2
M2

o

To

Tw

(76)∂yu
c = uτ

κy

(

T

Tw

)1/2
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An integration of the above equation results

where

The above transformation is known as Van Driest’s trans-
formation [57]. Equation (78) transforms a compressible 
velocity profile, uc, into a corresponding incompressible 
profile, u∗. All the compressible effects are incorporated to 
the transformation through coefficients a∗ and b∗. Constant 
C∗
1 takes on the classical value 5.

An extension of Eq. (78) to the outer part of the flow is 
easily carried out with the addition of a wake function. For 
details see Maise and McDonald [58]. Figure 2 shows the 
application of Eq. (78) to the outer region of the compress-
ible turbulent boundary layer.

6.2  Transpired incompressible turbulent boundary 
layer

For flow subject to wall transpiration, the asymptotic struc-
ture of the turbulent boundary layer does not change. Since 
the wall injection enters the problem as a regular pertur-
bation parameter (Silva Freire [59]), the flow structure 
remains double layered.

In fact, the result of the injection or suction of fluid into an 
oncoming flow is to modify the velocity distribution throughout 
the boundary layer so that drag is either reduced or increased. 

(77)
u∗

uτ
= 1

κ
ln

yuτ

ν
+ C∗

1 ,

(78)u∗ = uo

b∗
sen−1

[

2b∗2 u
c

uco
− a∗

(a∗2 + 4b∗2)1/2

]

.

Any expression advanced with the purpose of determining the 
friction coefficient should, therefore, reflect this fact.

Regarding the inner layer equations of motion, the effects 
of flow injection can be account for through consideration of 
contributions by the inertia term, through equation

In Silva Freire [59], the matched asymptotic expansions 
method was applied to the equations of motion to find a law 
of the wall in which the additive parameter A varied with 
transpiration. The resulting expression is

where u+ = uu
−1
τ , y+ = yuτ ν

−1, v+
w
= vwu−1

τ , vw = normal  
velocity at the wall , and A is given by:

The parameters � and �̃ and function W are related to the uni-
versal wake function.

Figure 3 shows the logarithmic behavior of the tran-
spired incompressible turbulent boundary layer, provided 
the velocity profile is plotted according to the transforma-
tion given by Eq. (82),

(79)vw∂yu = ν∂2yyu+ ∂y(−ρu′v′)

(80)

u+ = κ
−1 ln

(

y+
)

+ A+�κ
−1W

(

yδ−1
)

+ v+w
(

(2κ)−1 ln
(

y+
)

+ 2−1A
)2

+ �̃κ
−1W

(

yδ−1
)

(81)A = 5− 512(vwu
−1
o )

(82)
� = 2(v+w )

−1

[

(

v+w (u
+)2 + 1

)1/2
− 1

]

= κ
−1 ln y+ + A

Fig. 2  Van Driet’s transformation applied to compressible, adiaba-
tic, turbulent boundary layers. Data shown in Maise and McDonald 
[58]. The experiments cover a Mach number range of 1.47–4.93 and 
a Reynolds number (based on the momentum thickness) range of 
2,640–702,000

Fig. 3  Mean velocity profiles for transpired incompressible flow. 
Data of Andersen [12]. The injection rate (F = vw/uo) varies accord-
ing to F = 0.0, 0.001, 0.002, 0.00375, 0.008
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The validation data are the data of Andersen [12].
The above equations are valid for incompressible, iso-

thermal flows over smooth surfaces. They have been 
derived for external flows, but can be easily specialized to 
describe pipe flows. This has been made in Loureiro and 
Silva Freire [60], where a resistance law is proposed for 
pipe flows with wall transpiration.

The resistance formula for flow in a rough transpired 
pipe can be obtained by extending Eq. (82) to flow over 
a rough surface. Some further algebraic manipulation and 
an integration of Eq. (82) over the cross-sectional area of a 
pipe result

where

D denotes the pipe diameter, Um is the mean flow veloc-
ity, Ak = B− 512v++

w , ks is a characteristic length of the 
roughness and B = 8.5 (completely rough regime).

In the limiting case, v+w → 0, Eq. (83) reduces to the law 
of resistance of Nikuradze.

The pressure losses for three experimental conditions 
are shown in Fig. 4 (Bandeira et al. [61]). The straight line 
for the unblown case indicates that the flow is in a com-
pletely developed state. In external flows, an increase in 
v++
w  always results in a decrease of uτ. In transpired pipe 

flows, the local acceleration provoked by the wall transpira-
tion increases the pressure drop. In fact, as shown in Fig. 4, 
the highest injection rate yields an increase in pressure drop 
of about 5.5 as compared with the unblown case.

(83)

1 =
√
�

2
√
2
(2.5 ln(R/ks)+ Ak − 3.75)+ v

+
w
(1.56 ln2(R/ks)

+ (1.25Ak − 4.68) ln(R/ks)+ A
2
k

4
+ 1.86Ak + 5.47).

(84)� = 2D

ρU2
m

dp

dx
, v+w = vw

uτ
, v++

w = vw

Um

6.3  Transpired compressible turbulent boundary layer

The question to be discussed concerns the appropriate use 
of the transformation defined in Sect. 6.1 to the results of 
Sect. 6.2. The answer is not easy due to the strong variation 
in density and temperature throughout the boundary layer. To 
account for the normal velocity local change with tempera-
ture, a quadratic expression (Squire [62]) can be used which 
leads to a compressible law of the wall with air injection that 
involves an elliptic integral. The derivation of Squire appeals 
to the mixing length theory and considers a constant κ, inde-
pendent of Mach number and injection velocity.

An extension of Eq. (82) to the compressible case 
through the transformation defined by Eq. (78) was pro-
posed in Silva Freire [63]. One distinct modification was 
the use of a characteristic normal velocity vwo, the normal 
velocity in the overlap region. For the numerical implemen-
tation of the velocity profiles and the skin-friction equation, 
it was considered that vwo = v(y/δ) = v(0.1).

Predictions of the friction coefficient Cf  with the formu-
lation of Silva Freire [63] are shown in Fig. 7 for one Mach 
number (=1.8). A comparison with two other flow con-
ditions (M = 2.5, 3.6) is further discussed in Silva Freire 
[63]. Results are presented for predictions of Cf  and the 
mean velocity profile (Fig. 5).

6.4  Transpired near wall solution for the κ–ǫ model

The above results for the transpired turbulent boundary 
layer have been achieved with the specification of algebraic 
turbulent models. A more general formulation that is likely 
to work better for flows with high injections rates is that 
provided by the κ–ǫ model.

In this Section, we show how perturbation methods can be 
used to find closed analytical solutions for the flow velocity, 

Fig. 4  Pressure drop for three flow conditions in a transpired pipe

Fig. 5  Predictions of Cf  for a compressible turbulent boundary 
layer with air injection for M = 1.8. multiplication symbols Silva 
Freire [63]; open circles Squire [62]; plus symbols experiments. 
(FC = ρwvw/ρouo); FC = 0.0 (1), FC = 0.0013 (2), FC = 0.0025 
(3), FC = 0.0031 (4)
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u, turbulent kinetic energy, κ, and turbulent energy dissipation 
rate per unit mass, ǫ, in the near wall fully turbulent region. 
These analytical solutions offer a convenient set of boundary 
conditions for a numerical computation of the flow field that 
avoids the complexities of the sub-layer region. In this case, 
the outer region numerical solution is matched to the analyti-
cal solutions rather than to the conditions at the wall itself.

The approaches that resort to a near wall analytical solu-
tions normally consider the velocity profile to be given by 
universal logarithmic laws. In this case, the turbulent kinetic 
energy is made directly proportional to u2τ and the dissipa-
tion rate directly proportional to u3τ /κy. For transpired flows, 
these approximations are reasonable provided the transpira-
tion rate is small and the changes in the friction velocity are 
not large. For high injection rates, modifications in the clas-
sical formulation must be made so as to correctly capture the 
strong explicit dependence of the wall region flow solution 
on the injection or suction velocity. In fact, for high injection 
rates the dominance of the term which explicitly depends on 
the injection velocity on the flow solution is complete.

In the κ–ǫ model, dimensional arguments are invoked to 
give

where cν is a model constant.
The turbulence parameters, κ and ǫ, are determined 

through the following transport equations

where all the c′s and σ ′s are model constants. Typical val-
ues of the empirical constants are shown in Table 1.

As we have seen before, the region where the turbulent 
effects dominate is defined by the domain

Passing the η-limit with ord(η) = ord(uτ
2) onto the 

momentum equation and Eqs. (85)–(88), we get

(85)νt = cν
κ2

ǫ
,

(86)
Dκ

Dt
= P − ǫ + ∂

∂xi

(

νt

σκ

∂κ

∂xi

)

,

(87)
Dǫ

Dt
= ∂

∂xi

(

νt

σǫ

∂ǫ

∂xi

)

+ cǫ1
ǫ

κ
P − cǫ2

ǫ2

κ
,

(88)P = νt
∂ui

∂xi

(

∂ui

∂xj
+ ∂uj

∂xi

)

,

(89)D = {η/ord(1/uτRe) < ord(η) < ord(uτ
2)}.

(90)vw
∂u

∂y
= ∂

∂y

[

cν
κ2

ǫ

∂u

∂y

]

,

(91)vw
∂κ

∂y
= νt

(

∂u

∂y

)2

− ǫ + ∂

∂y

(

νt

σκ

∂κ

∂y

)

,

These are the intermediate equations, in the sense of 
Kaplun, that hold in the fully turbulent region. The wall 
functions for u, κ and ǫ are constructed on their basis.

To find the solutions to Eqs. (90)–(92), we consider the 
flow quantities to be given by the following asymptotic 
expansions

The first- and second-order approximate equations can be 
found if we substitute Eqs. (93)–(95) into Eqs. (90)–(92) 
and collect the terms of same order. The result is:

(a) first-order equations, 

(b) second-order equations, 

(92)vw
∂ǫ

∂y
= cǫ1

ǫ

κ
νt

(

∂u

∂y

)2

− cǫ2
ǫ2

κ
+ ∂

∂y

(

νt

σǫ

∂ǫ

∂y

)

.

(93)u(x, y) = uτu1(x, y)+ vwu2(x, y),

(94)
κ(x, y) = u2τ κ1(x, y)+ uτ vwκ2(x, y)

+ v2wκ3(x, y),

(95)
ǫ(x, y) = u3τ ǫ1(x, y)+ u2τ vwǫ2(x, y)

+ uτ v
2
wǫ3(x, y).

(96)0 = ∂

∂y

[

cν
κ21
ǫ1

∂u1

∂y

]

,

(97)

0 = cν
κ21
ǫ1

(

∂u1

∂y

)2

− ǫ1

+ ∂

∂y

[

cν

σK

κ21
ǫ1

∂κ1

∂y

]

,

(98)

0 = cǫ1 cν κ1

(

∂u1

∂y

)2

− cǫ2
ǫ21
κ1

+ ∂

∂y

[

cν

σǫ

κ21
ǫ1

∂ǫ1

∂y

]

;

(99)

∂u1

∂y
= ∂

∂y

[(

cν
κ21
ǫ1

∂u2

∂y

+ 1

ǫ1

(

2κ1κ2 −
ǫ2

ǫ1
κ21

)

∂u1

∂y

)]

,

Table 1  Model constants

cν cǫ1 cǫ2 σκ σǫ

0.09 1.44 1.92 1.0 1.30
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The solutions of the above equations are:

(a) first-order solutions, 

(b) second-order solutions, 

 where y+ = yuτ /ν, κ is the Von Karman constant and 
A0 is a parameter that was shown to vary with the tran-
spiration rate (Silva Freire [59]).
The constants A, B, C, D, E and F are given by 
A = (

√
cν)

−1 = 3.3, B = 1, C = (κ
√
cν)

−1 = 8.1 , 
D = (κ

√
cν)

−1((17/2)− σǫ) = 58.3, E = 3κ−2 =
17.9, F = (49− 2σǫ)(4κ

2) = 69.6.
Please note that the values of these constants are deter-

mined exactly from the standard κ–ǫ model constants.
To verify the logarithmic form of κ, we re-write Eq. (93) 

as

The experimental results plotted as Ŵ against y+ are shown 
in Fig. 6. The presence of a logarithmic region is clearly 
illustrated, thus confirming the solution obtained for Eq. 
(104). An observation of the experimental data shows 
that the uncorrected expressions cannot provide a good 

(100)

∂κ1

∂y
= 2 cν

κ21
ǫ1

∂u1

∂y

∂u2

∂y
+ cν

ǫ1

(

2κ1κ2 −
ǫ2

ǫ1
κ21

)

×
(

∂u1

∂y

)2

− ǫ2 +
cν

σK

∂

∂y

×
[(

κ21
ǫ1

∂κ2

∂y
+ 1

ǫ1

(

2κ1κ2 −
ǫ2

ǫ1
κ21

)

∂κ1

∂y

)]

,

(101)

∂ǫ1

∂y
= cν cǫ1

(

2κ1
∂u1

∂y

∂u2

∂y
+

(

2κ2 −
ǫ2

ǫ1
κ1

)

×
(

∂u1

∂y

)2)

cǫ2

1

κ1

(

2ǫ1ǫ2 −
κ2

κ1
ǫ21

)

+ cν

σǫ

∂

∂y

[(

κ2
1

ǫ1

∂ǫ2

∂y
+ 1

ǫ1

(

2κ1κ2 −
ǫ2

ǫ1
κ21

)

∂ǫ1

∂y

)]

.

(102)u1 =
1

κ
(ln y+ + A0), κ1 = A, ǫ1 =

B

ky

(103)

u2 =
1

4κ2
(ln y+ + A0)

2,

κ2 = C ln y+ + D,

ǫ2 = E
ln y+

y
+ F

y
;

(104)Ŵ = C ln y+ + D, Ŵ = κ − uτ
2A

uτ vw
.

description for the boundary conditions. The difficulty here 
is that κ is seen to increase with an increase in injection rate 
whereas uτ is seen to decrease. When suction is applied to 
the flow, the inverse behavior is observed. The conclusion 
is that consideration of the higher order correction term is 
crucial for a good representation of the flow field.

In Avelino et al. [64], a full account on the implementa-
tion of Eqs. (102) and (103) for the numerical simulation 
of flows with very high injection rates is presented. The 
results obtained with the modified equations are clearly 
better than those obtained with the standard approach.

6.5  The thermal incompressible turbulent boundary 
layer

The temperature boundary layer exhibits an asymptotic 
structure identical to that of the velocity boundary layer. 
Distinct flow regions can be identified where conductive 
and convective effects dominate separately. These two 
regions overlap in the region where fully turbulent diffusive 
effects prevail. The overlap domain is upper limited by a 
characteristic length of the order of the fluctuations ord(t′) 
≈ ord(v′) ≈ ord(uτ ) ≈ ord(tτ ), where tτ is the temperature 
friction. The lower limit defines the thickness of the con-
duction region and depends on the Reynolds and Prandtl 
numbers. The analysis of Cruz and Silva Freire [44] shows 
that the overlap region to the leading order is given by

Thus, a logarithmic law of the wall naturally appears for 
the temperature boundary layer. Much in the same way, be 
outer flow region can be described by a “law of the wake”.

Consider the problem of a given incompressible fluid 
flowing over a smooth, heated surface under a steady-
state condition. In the following analysis, for the sake of 

(105)
Doverlap temperature = {ord (ǫPrRe)

−1 < ord η < ord (ǫ2), ǫ = uτ u
−1
o

}.

Fig. 6  The logarithmic behavior of Ŵ according to the data of 
Andersen [12] for three different injection rates
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completeness, the mean velocity and temperature fields 
are discussed together. The purpose is to show how simple 
analogies can be drawn between the two transfer processes.

The governing equations, Eqs. (1) through (3), reduce:
Continuity:

x-Momentum:

Energy:

where the notation is classical and the boundary layer 
hypotheses apply.

These equations must be solved under appropriate bound-
ary conditions at the wall. For the velocity field, the no-slip 
condition and the permeability condition can be used. For the 
temperature field, a number of different possible boundary con-
ditions can be specified. Basically, one can prescribe the wall 
temperature, the wall heat flux or a combination of these two.

Consider next that, as shown before, the turbulent boundary 
layer has a two-layered structure, and that, furthermore, in one 
of the existing layers the turbulence effects dominate. Thus, in 
the fully turbulent region, the governing equations reduce to:
x-Momentum:

Energy:

So that the above equations can be solved, a relation has to 
be established between the mean and the turbulent quanti-
ties. Previously, we showed how similitude arguments can 
be used. Here, the concepts of eddy diffusivity for momen-
tum and heat, together with the mixing length hypothesis 
are invoked. This results in the following algebraic equa-
tions for the turbulent quantities

where νt and at denote the eddy diffusivities for momentum 
and heat.

We further incorporate into our analysis two extra 
hypotheses:

1. von Karman’s hypothesis that the mixing length can 
be considered proportional to the wall distance, i.e., 
l = κy and lt = κty, where κ and κt are constants.

(106)∂xu+ ∂yv = 0,

(107)ρu∂xu+ ρv∂yu = µ∂2yyu− ρ∂yu′v′,

(108)ρcpu∂xT + ρcpv∂yT = k∂2yyT − ρcp∂yv′t′,

(109)∂yu′v′ = 0,

(110)∂yv′t′ = 0.

(111)−∂yu′v′ = ∂y
[

νt∂yu
]

= ∂y

[

l2
(

∂yu
)2
]

= 0,

(112)−∂yv′t′ = ∂y
[

at∂yu
]

= ∂y
[(

l∂yu
)(

lt∂yT
)]

= 0

2. Prandtl’s hypothesis that in the near wall region the 
total shear stress and the heat flux are constant.

A simple integration results that in the fully turbulent 
region the local solutions are given by:

and

where u+ = u/uτ, uτ =
√
(τw/ρ) and T+ = (Tw − T)/tτ, 

tτ = qw/(ρcpuτ ).

The implication of Eqs. (113) [previously shown as Eq. 
(13)] and (114) is that, provided κ and κt are known, the 
skin-friction coefficient and the heat transfer coefficient 
can be evaluated, respectively, from the slope of semi-log 
graphs of y vs u and y vs T.

If a turbulent Prandtl number is defined, it follows that

A common sense in literature is that Prt varies across the 
boundary layer in a way that depends on both the molecular 
properties of the fluid and the flow field. In the logarith-
mic region, however, several authors have shown that Prt 
is approximately 0.9 which results in a value of 0.44 for κt.

6.6  The thermal incompressible turbulent boundary 
layer with wall transpiration

Flow transpiration is an effective means of promoting the 
thermal protection of walls. For the velocity field, a local 
solution of the momentum equation resulted in logarith-
mic and bi-logarithmic terms. To study the effects of tran-
spiration on the temperature boundary layer we again split 
the flow region into distinct parts where certain dominant 
effects can be used to derive simplified equations. The 
formulation of the transpiration problem basically differs 
from the solid surface problem in the sense that the inertia 
effects near the wall can no longer be neglected (Eq. 79). 
Therefore, for the near wall dominated part of the flow, the 
approximate energy equation becomes

In the fully turbulent region, the mixing length hypothesis 
can be considered and the molecular diffusivity neglected. 
Hence, a double integration of Eq. (116) gives (Medeiros 
and Silva Freire [65])

(113)u+ = κ
−1 ln y + A,

(114)T+ = κ
−1
t ln y + B,

(115)Prt =
νt

at
= κ

κt

.

(116)ρcpvw∂yT = k∂2yyT + ρcp∂y(−v′t′)

(117)
φ = 1

κt

ln
y+

y+b
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where

here, v+w = vwu
−1
τ , the pair (y+b , u+b ) is a constant of inte-

gration and parameters κm and κt are characteristic of the 
turbulence modeling.

The analytical solution of the near wall conductive layer gives

with t+b = 10.

A comparison of Eq. (117) with the data of Whitten 
et al. [66] is shown in Fig. 7.

The above equation can be used to determine a Stanton 
number equation. This has been discussed in Medeiros and 
Silva Freire [65].

The above formulation can be given an alternative solution 
provided the following flow similarity variables are considered

These parameters do not include uτ in their definition, thus 
allowing an immediate evaluation of Stanton number. The 
alternative law of the wall is thus given by

with v∗w = vw/uo
√
St .

(118)

φ = κm

κt

2

v+w

[(

v+w t
+ + 1

v+w t+b + 1

)

κt/2κm
[

v+w
2

(

1

κm

ln
y+a
y+b Pr

)

+
√

1+ v+wu+a

]

−
√

1+ v+wu+a

]

(119)y+b = ln v+w t
+
b + 1

v+wPr

(120)t∗ = T − Tw

(To − Tw)
√
St
, y∗ = yuo

√
St

ν

(121)

2

v∗w

[

√

(1+ t∗v∗w)−
√

(1+ t∗bv
∗
w)

]

= κ
−1
t ln(y∗/y∗b)

Figure 7 compares Eq. (121) with the data of Whitten 
et al. [66]).

6.7  The thermal compressible turbulent boundary 
layer with wall transpiration

To find a local solution for the temperature transpired tur-
bulent boundary layer in a compressible flow, we consider 
(Silva Freire et al. [67]) that the flow parameters can be 
expressed by

where h denotes the enthalpy, ht the friction enthalpy, and

An asymptotic expansion for the viscosity is derived by 
expanding µ in a Taylor series around h1, i.e.,

Substitution of Eqs. (122) through (128) into the equa-
tions of motion (continuity, momentum, energy and state) 
together with an eddy viscosity/mixing length hypothesis, 
and collection of the terms with the same order of magni-
tude furnishes a set of equations (Silva Freire et al. [67]) 
for the determination of u1, u2, h1, h2 and h3 (Fig. 8).

The result is

(122)u(x, y) = uτu1 + vwu2

(123)v(x, y) = (uτRe)
−1[uτ v1 + vwv2]

(124)p(x, y) = p1 + uτp2 + vwp3

(125)hc(x, y) = h1 + hτh2 + vwh3

(126)ρ(x, y) = ρ1 + uτ ρ2 + vwρ3

(127)hc =
h

ho − hw

(128)µ = µ(h1)+ hτ (∂hµ(h1))h2 + vw(∂hµ(h1))h3

Fig. 7  Temperature law of the wall for transpired incompressible 
flow. Data from Whitten et al. [66]. v+w = vw/uτ

Fig. 8  Temperature law of the wall for transpired incompressible 
flow, alternative approach. Data from Whitten et al. [66]
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where parameters κm, κt, A and B are in general a function 
of E (= u2o/(cp(To − Tw)), Eckert number) and

The asymptotic results of Eqs. (129)–(133) are leading 
order results in the sense that they have been obtained with 
the leading order terms of the density and temperature 
solutions.

The influence of the Eckert number and the injection 
velocity on the problem solution is clearly characterized 
through Eqs. (129)–(133). For the solid surface case, it was 
shown that the dissipation contributes to the leading order 
solution with a bi-logarithmic term. For flows with tran-
spiration, however, the dissipation also contributes with a 
trilogarithmic higher order correction.

To validate Eqs. (129)–(133) the experimental data of 
Danberg [68], Squire [69] and Mabey et al. [70] were used. 
The velocity profiles are plotted with the transformation 
defined by Eq. (82). The enthalpy behavior is tested with 
the following transformation

(129)u1 = κ
−1
m ln y + A

(130)u2 = 4−1[κ−1
m ln y + A]2

(131)h1 = hw(ho − hw)
−1

(132)h2 = κ
−1
t lnPry + B+ Eu3τS

−1
t (κmκt)

−1 ln2 Pry

(133)

h3 = 4−1
κ
−2
t (κmA+ 2)h2B

+ [6−1 + 3−1Eu3τS
−1
t (κmκ

2
t )

−1]
× ln3 Pry− 12−1Euτκmκ

−1
t u31

(134)hB = κ
−1 lnPry

+B

(135)
�t =

ht

vw

(

−1+
√

(

1− 2
vw

ht

[

�e

ht
− h

hτ

])

)

with

Compressible mean velocity profiles and the behavior of 
κm are shown in Fig. 9.

Following the tendency observed by Squire and by 
Mabey et al., κm shows an appreciable dependence on 
Mach number (M), being apparently invariant with the 
injection rate. For the lowest Mach number, κm is equal to 
0.43; an increase in Mach number provokes an increase in 
κm (=0.6 for M = 6.5). The value of κm (=0.6) found for 
the data of Danberg is about l0 % lower than the theoretical 
value given by the correlation of Winter and Gaudet [71].

Silva Freire et al. [67] show that A varies with M and the 
injection rate. This is in accordance with previous observa-
tions for incompressible and compressible flows. It is now 
generally recognized in literature that A decreases with the 
increase in injection rate.

Typical temperature profiles, plotted under the appropri-
ate coordinate defined by Eq. (135), are shown in Fig. 10. 
The linear, logarithmic and wake regions of the flow are 
clearly visible.

The theoretical values of St are normally higher than 
the experimental values by a margin of 10–30 %. This is 
acceptable since the error found in literature for skin-fric-
tion and Stanton number data on transpired compressible 
turbulent boundary layer flows normally ranges, even for 
very low injection rates, from 20 to 50 %.

In Silva Freire et al. [67], the near wall solutions were 
extended to the defect region by adding Coles’ function to 

(136)

�e = − Eu2τ

2κmκt

ln2 Pry

+ vw

[

− Eu3τ

6Stκmκ
2
t

ln3 Pry

−
(

κm

4κt

+ A

2

)

u21 +
Euτκm

6κt

(

u22
St

− 1

2

)

u31

]

Fig. 9  Typical mean velocity profiles and the behavior of κm for transpired compressible flows. Data from Squire [69]. F stands for the injection 
rate (=ρwvw/ρouo)
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the logarithmic terms. With arguments similar to those of 
Medeiros and Silva Freire [65], a Stanton number equation 
was developed.

6.8  Turbulent boundary layers over rough surfaces

The effects of roughness on the flow in the near wall 
region of a turbulent boundary layer are significant. 
Provided the characteristic size of the roughness ele-
ments is large enough, a regime can be established 
where the flow is turbulent right down to the wall (fully 
rough flow) (Fig. 11). One important consequence is 
that the viscous sub-layer may be completely removed 
so that local purely viscous solutions do not apply any-
more. The roughness also distorts the logarithmic pro-
file acting as if the entire flow is displaced downwards. 
The differences between flows over smooth and rough 
walls are illustrated in Fig. 11. The linear region in the 
smooth wall flow is easily identified. For the rough 
surface, only the logarithmic and defect regions are 
observed. The origin for the rough profile is set on the 
top of the protuberances.

Schlichting [72] offers a physical interpretation of 
the flow regimes in the following terms: (1) a regime is 
said to be hydraulically smooth provided “the size of the 
roughness is so small that all protrusions are contained 
within the laminar sub-layer” (0 ≤ k+s ≤ 5, k+s = (ksuτ)/ν , 
ks = sand grain roughness), (2) in the transition regime, 
“protrusions extend partly outside the laminar sub-layer 
and the additional resistance, as compared with a smooth 
pipe, is mainly due to the form drag experienced by the 
protrusions in the boundary layer” (5 ≤ k+s ≤ 70); (3) in 
the fully rough regime, “all protrusions reach outside the 
laminar sub-layer and by far the largest part of the resist-
ance to flow is due to the form drag which acts on them” 
(k+s ≥ 70).

The classification intervals defined above are reminded 
by Schlichting [72] to have been obtained with maximum 
density sand. In practical applications, the typical rough-
ness density is much smaller, so that roughness cannot be 
described by the indication of the height of a protrusion, k. 
Thus, k+s  is not directly related to the geometry of the sur-
face, but to the dynamic properties of the flow.

The manner in which the logarithmic law is expressed to 
describe flow over a rough surface depends on the field of 
application. In meteorology, a common practice is to write

where y is the distance above the actual ground surface.
The specification of the lower boundary condition on 

rough walls depends thus on two unknown parameters: the 
aerodynamic surface roughness, y0, and the displacement 
height, d. Many works have attempted to relate the magni-
tude of d and y0 to geometric properties of the surface.

To find uτ, d and y0, two methods can be used: the 
graphical method of Perry et al. [73] and the hypothesis of 

(137)u+ = κ
−1 ln((y − d)/y0),

Fig. 10  Typical mean temperature profiles and the behavior of St for transpired compressible flows. Data from Danberg [68]. b multiplication 
symbols theory; asterisks experiments

Fig. 11  Mean velocity profiles for smooth and rough surfaces
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Prandtl [2] that across the wall layer the total shear stress 
deviates just slightly from the wall shear stress.

In the first method, the raw undisturbed velocity pro-
files are subtracted by a small value (e.g., 0.1 mm) from 
their distance to the wall. Then, a global optimization 
algorithm is used to find the best logarithmic fit. This 
process is progressively repeated—using the same sub-
traction step—until the curve with the best statistics 
can be identified. The slope of the determined curve, α,  
furnishes uτ (since α = uτκ

−1). The level of the curve 
gives y0.

In the second method, the Reynolds shear stress con-
sidered to be the dominant part of the total shear stress in 
the fully turbulent region. Then, by introducing the hypoth-
esis that in the neighborhood of the wall the shear stress 
remains constant, we have

The logarithmic law for flow over a rough surface is 
sometimes written in terms of the distance from the top 
of the rough elements. The distance to which the veloc-
ity profile is referred below the crest of the roughness 
elements is called the error in origin, ε (Perry et al. [73], 
Perry and Joubert [74], Antonia and Luxton [75], Ave-
lino and Silva Freire [76], Loureiro and Silva Freire 
[77]).

Thus, Eq. (137) is re-written as

where,

(138)τw = −ρu′v′.

(139)
u

uτ
= 1

κ
ln

[

(yT + ε)uτ

ν

]

+ A− �u

uτ

(140)
�u

uτ
= 1

κ
ln
[εuτ

ν

]

+ C;

the subscript T is used to indicate that the origin is to be 
taken at the top of the protuberances, ε = error in origin, 
κ = 0.4, A = 5.0, and C is a parameter characteristic of the 
roughness.

Of course, the simple geometrical relation holds 
k = d + ε, k = height of protuberances.

Figure 12 illustrates the velocity gradient method when 
applied to Eq. (139).

Loureiro et al. [78] discusses six different methods 
that can be used for the determination of uτ in flows over 
smooth and rough surfaces. The work comments in detail 
the behavior of the logarithmic profile and of the second- 
and third-order moments in regions of non-equilibrium pro-
voked by the changes from a rough to a smooth surface.

The Reynolds shear stress, the velocity gradient and the 
Preston tube methods consider that close to the wall in the 
fully turbulent region there the flow is primarily determined 
by the wall shear stress. In other words, they rely their esti-
mates on the existence of the logarithmic law. The first two 
methods are based on estimates obtained from local data. 
The Preston tube readings correspond to pressure data aver-
aged over the entire tube diameter. This integral charac-
ter of the Preston tube makes its readings less sensitive to 
measurements off equilibrium condition. The conclusion of 
Loureiro et al. [78] is that the Reynolds shear stress and the 
velocity gradient method fail in regions of non-equilibrium 
flow, but the Preston tube still furnishes useful results.

6.9  Thermal turbulent boundary layers over rough 
surfaces

The increase in the heat transfer rate provoked by the 
exposition of a turbulent flow to a rough wall is known 
to be considerably less than the corresponding increase in 
skin-friction. The matter is clearly discussed in Owen and 
Thomson [79]. As a simple argument, the transport of heat 
in the vicinity of a wall is controlled solely by a molecular 
property of the fluid, its thermal conductivity, whereas the 
shear stress is observed to depend on the form drag of indi-
vidual protuberances. In other words, the pressure mecha-
nism for the transfer of momentum finds no counterpart for 
the transfer of heat in flows over rough surfaces. The dif-
ferent transfer mechanisms for momentum and heat imply 
that characteristic parameters for the velocity and tempera-
ture profiles must behave distinctly, including the rough-
ness effective length and the error in origin. For this reason, 
the Reynolds analogy between transfer processes must be 
modified to consider the local influence of the Reynolds 
and Prandtl numbers.

To extend Eq. 139 to the temperature turbulent boundary 
layer (Avelino and Silva Freire [76]), we simply postulate 
the momentum and heat transfer processes for turbulent 

Fig. 12  Illustration of the velocity gradient method
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flows to be similar in the fully turbulent flow region. The 
result is

with,

and D is a constant characteristic of the roughness.
Equations (141) and (142) are the law of the wall formu-

lation for flows over rough surfaces with transfer of heat.
As discussed in the previous Section, two key concepts 

for the interpretation of turbulent boundary layers over 
rough walls are the roughness length and the error in origin 
(also known as the displacement in height or the zero-plane 
displacement). While a clear distinction is made in the lit-
erature regarding the behavior of the roughness lengths for 
the velocity and temperature fields (see, e.g., the works of 
Malhi [80]) and Sun [81]), the position of the error in ori-
gin (ε) for both fields is normally considered identical or 
even not considered in the investigations. In fact, Raupach 
[82] argues that the error in origin is normally considered 
property independent for the pragmatic reason that inde-
pendent assessments of ε and εT are not available.

Loureiro and Silva Freire [77] show that d and dT are 
different quantities, which take on different values. Param-
eter dT (k − εT) is argued to depend only on the molecu-
lar heat flux coming from the roughness elements. Thus, 
it is clear that both d (k − ε) and dT depend on different 
physical parameters, and hence are unrelated quantities. 
Loureiro and Silva Freire [77] also show that the physical 
interpretation of d presented in Jackson [83] is not consist-
ent. Jackson [83] interprets the displacement in height as 
the level at which the mean drag on the surface appears 
to act. In particular, he considers the displacement height 
to be identical to the displacement thickness for the shear 
stress. Three distinct experimental data sets analyzed by 
Loureiro and Silva Freire [77] support the notion that d and 
dT are different.

The temperature gradient method is shown in Fig. (13).

6.10  Transient convection in turbulent boundary layer 
over smooth and rough surfaces

Consider now the transient convection in turbulent bound-
ary layers over smooth, flat surfaces. The velocity field 
remains unaltered so that the velocity local solution in 
the fully turbulent region can still be approximated by a 

(141)

Tw − T

tτ
= 1

κt

ln

[

Pr

(yT + εt)uτ

ν

]

+ B− �t

tτ

(142)
�t

tτ
= 1

κt

ln
[

Pr

εtuτ

ν

]

+ D

logarithmic profile. The thermal problem, however, suf-
fers an important modification since the surface boundary 
conditions have to change to accommodate a time varying 
imposed heat flux.

Thus, it results that the energy governing equation 
becomes

In view of the results of Sect. 2, the above equation can be 
re-written as

A solution to Eq. (144) can be found (Loureiro and Silva 
Freire [77]) through the method of variables separation and 
some asymptotic arguments, to give

where all constants must be determined experimentally.
For flow over a rough surface, Eq. (145) reduces to

where y+ = (yT + εt)uτ /ν and the parameters to be deter-
mined may now be a function of the roughness.

The error in origin for the temperature, εt, is now time 
dependent.

Equation (146) provides a good means to measure the 
heat flux at the wall. Provided we can evaluate the error in 
origin through one of the classical techniques, the slope 
of the temperature profile plotted in a semi-log graph fur-
nishes the friction temperature and, thus, the heat transfer 
coefficient.

(143)∂tT = −∂yv′t′.

(144)∂tT = ∂y
(

uτκty∂yT
)

.

(145)
T(y, t) = Je−σ t[(C ln y + D)+ (σ/(κtuτ ))

× (E ln y + R y ln y + S y + Q)],

(146)
T(y, t) = Je−σ t[(C ln y+ + D)+ (σ/(κtuτ ))

× (E ln y+ + Ry+ ln y+ + Sy+ + Q)],

Fig. 13  Illustration of the temperature gradient method
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The behavior of the friction temperature for a time vary-
ing wall heat flux is shown in Fig. 14. Stanton number fol-
lows from St = (uτ /uo)(tτ /(Tw − To)).

6.11  Near wall approximate solutions for attached 
and separated flows over smooth surfaces

The structure of the separate turbulent boundary layer has 
been studied in Cruz and Silva Freire [44], Loureiro et al. 
[84], Loureiro et al. [85] and Loureiro and Silva Freire [47]. 
This section and the next summarize some of the results.

The action of an arbitrary pressure rise in the inner lay-
ers of a laminar or turbulent flow is to distort the velocity 
profile until it is balanced by the gradient of shear stress. At 
the wall, inertia forces are zero so that the momentum bal-
ance is expressed through the viscous and pressure terms.

For laminar flow, at a point of zero skin-friction the 
velocity profile must follow a y2-profile at the wall. For tur-
bulent flow, the fact that the local leading order equations 
must be dominated by viscous and pressure gradient effects 
implies immediately that this result remains valid.

In fact, in the viscous region the local governing equa-
tion can be written as:

Two successive integrations of Eq. (147) and the fact that 
τw = 0, give

with u+ = u/upν, y+ = y/(ν/upν), upν = ((ν/ρ)∂xp)
1/3.

In Eq. (148) the term ∂xp must be evaluated at y = 0. 
Hence, wall similarity solutions cannot be expressed in 
terms of the external pressure gradient.

For the turbulence dominated region, Stratford [7] wrote

(147)ν∂2yyu = ρ−1∂xp.

(148)u+ = (1/2) y+
2
,

Two successive integrations of Eq. (149) together with the 
mixing length hypothesis and, again, the fact that at a sepa-
ration point τw = 0, give

with u+ and y+ defined as in Eq. (148).
To find his solution Stratford used the condition y = 0, u 

= 0. Strictly speaking, this condition should not have been 
used since Goldstein’s y2-expression is the solution that is 
valid at the wall. Stratford also incorporated an empirical 
factor—β (=0.66)—to Eq. (150) to correct pressure rise 
effects on κ.

Thus, we may conclude that, at a separation point, 
ord(u′) = ord(v′) = ord(upν).

The DNS data of Na and Moin [86] are used in Fig. 15 
to illustrate the solutions of Goldstein and Stratford. These 
solutions are given, respectively, by u+ = 0.484(y+)2 
and u+ = 4.125(y+)1/2 − 4.332 in the ranges 
0.028 << y+ << 1.33 and 1.54 << y+ << 14.82.

The relevant velocities and length scales in the wall 
region for flows away and close to a separation point are 
then (uτ, ν/uτ) and (upν, ν/upν), respectively.

An important result is that both relevant velocity 
scales—uτ and upν—are contained in

In the limiting cases τw >> (y/ρ)(∂xp) and τw << (y/ρ)(∂xp), 
the scaling velocity tends to uτ and ((ν/ρ)∂xp)1/3, respec-
tively, where ∂xp is to be considered at the wall.

To propose a characteristic velocity that is valid for the 
whole domain, Cruz and Silva Freire [44, 87] suggested 
to reduce Eq. (153) to an algebraic equation by consider-
ing ord(u′) = ord(v′) = ord(uR) and ord(y) = ord(ν/uR), 
where the reference velocity, uR, is to be determined from

(149)∂yτt = ∂xp.

(150)u+ = (2κ−1) y+
1/2

,

(151)ν∂2yyu+ ∂y(−ρu′v′) = ρ−1∂xp.

Fig. 14  Friction temperature for flow over smooth and rough wall
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Fig. 15  Velocity profiles at the point of zero wall shear 
stress for the DNS data of Na and Moin [86]. a Solu-
tion of Goldstein (u+ = 0.484(y+)2); b solution of Stratford 
(u+ = 4.125(y+)1/2 − 4.332)
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Equation (152) always presents, at least, one real root. 
When three real roots are obtained, the highest root must 
be considered.

Figures 16 and 17 show the variation of uτ, upν and uR 
according to the data of Na and Moin [86] and Loureiro et al. 
[85]. A negative value of uτ indicates a region of reverse flow 
whereas a negative upν indicates that this parameter has been 
evaluated in a region of favorable pressure gradient. The results 
show the dominance of uτ in regions of attached flow. Close 
to the separation and re-attachment points and in the region of 
reverse flow upν dominates. The ponderation furnished by ur 
captures the relevant effects in all regions of the flow.

To find a solution over the entire viscous sub-layer, for 
attached as well as detached flow, we consider

(152)u3R − (ρ−1τw) uR − (ρ−1ν)∂xp = 0.

(153)ν∂2yyu+ ∂y(−ρu′v′) = ρ−1∂xp.

The global solution of Eq. (153) should reduce, under the 
relevant limiting processes, to the local approximate solu-
tions in the viscous and turbulent regions.

A double integration of Eq. (153) in the fully turbulent 
region (µ∂2yyu ≈ 0) gives (see, e.g., Cruz and Silva Freire 
[44])

with �w = ρ−1τw + (ρ−1∂xp)y.

Equation (154) can be used indistinctly in all flow 
regions—including regions of reverse flow—provided its 
domain of validity is respected and appropriate integration 
constants are determined. Many other different treatments 
of the lower boundary condition can be appreciated in lit-
erature. Loureiro et al. [84], for example, have investigated 
the numerical prediction of flows over two-dimensional, 

(154)

u = 2κ−1
√

�w + κ
−1uτ

× ln
(

(
√

�w − uτ )/(
√

�w + uτ )
)

+ C,

Fig. 16  Characteristic behavior 
of uτ, upν and uR for the flow 
of Na and Moin [86]. a Global 
behavior; b behavior near to 
the separation point; c behavior 
near to the re-attachment point

Fig. 17  Characteristic behavior 
of uτ, upν and uR for the flow of 
Loureiro et al. [85]. a Global 
behavior; b behavior near to 
the separation point; c behavior 
near to the re-attachment point
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smooth, steep hills according to the above formulation and 
the formulations of Mellor [88] and of Nakayama and Koy-
ama [89]. The standard κ–ǫ model was then used to close 
the averaged Navier–Stokes equations. The results were 
shown to vary greatly.

In general, however, Eq. (154) can be seen as a generali-
zation of the classical law of the wall for separating flows. 
In the limiting case (∂xp)y ≪ τw, Eq. (154) reduces to the 
logarithmic expression

Near a point of separation Stratford’s solution is recovered.
Figure 18 shows the behavior of Eq. (154) in the several 

flow regions according with the DNS data of Na and Moin 
[86].

6.12  The separating thermal turbulent boundary layer

The similarity dependence of the thermal field for the inner 
layers of a turbulent flow can be generally expressed as 
(Cruz and Silva Freire [44])

where cp and qw stand for the specific heat at a constant 
pressure and the local flux of heat at the wall.

(155)u+ = κ
−1 ln y+ + bm,

(156)bm = 2κ−1 + κ
−1 ln((u3pν/4u

3
τ )e

κC).

(157)∂yT = g(y, ρ, cp, qw, ∂yu),

Further dimensional considerations give

where B is a constant still to be determined.
These equations lead to three different integration func-

tions depending on the relative values of τw and dpw/dx 
(Cruz and Silva Freire [44]). The resulting equations (not 
shown here) are the law of the wall for the temperature 
boundary layer in separating flows. Under the appropriate 
limit processes the equations meet the expected behavior 
near and far away from a separation point. In fact, for the 
limit case, |τw/ρ| >> |(dpw/dx)(y/ρ)|, they reduce to the 
classical law of the wall logarithmic profile given by

In the limit case τw → 0, they reduce to

This equation has a functional form different from Strat-
ford’s law of the wall; this clearly characterizes the break 
down of the Reynolds analogy near to a separation point.

6.13  The asymptotic structure of a separating flow

The asymptotic structure of a separating turbulent bound-
ary layer has been discussed in Cruz and Silva Freire [44] 
and Loureiro and Silva Freire [47]. The main discussion for 
the velocity field is shortly reproduced here. The discussion 
for the thermal field can be seen in Cruz and Silva Freire 
[44].

As the flow approaches a separation point the classical struc-
ture must break down since uτ → 0. To account for the changes 
in the flow, we must consider Kaplun limits in x-direction.

Define

with �(ǫ) and η(ǫ) defined on �.
The idea is to approach the separation point by tak-

ing simultaneously the η- and �-limits at a fixed rate 
ζ = �/η = ord(1). Note that in regions where ord(�) = 
ord(ǫ), ord(uτ) = ord(upν); under this condition, ord(ǫ2) = 
ord(1/ǫRe).

The resulting flow structure is given by continuity 
equation:

(158)∂yT = B
qw

ρcp

1

(y2∂yu)

(159)
T − Tw

tτ
= 1

κt

lny+ + ct(Pr).

(160)
Tw − T

tτ
= 1

κt

qw

ρcp

2
√

1
ρ
dpw
dx

y

+ ct(x,Pr).

(161)

x̂ = x� = x/�(ǫ),

ŷ = yη = y/η(ǫ),

ûi(x�, yη) = ui(x, y)

(162)ord(v̂i(x, yη)) = ord(ûi(x, yη)).

Fig. 18  Mean velocity profiles in wall coordinates according to the 
data of Na and Moin [86]. a x/δ∗i = 50; b 158 (position of flow sepa-
ration); c 200; d 257 (position of flow re-attachment). δ∗i  = inlet dis-
placement thickness
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x-momentum equation:

y-momentum equation:

The principal equations are Eqs. (165) and (169). They 
show that near to a separation point the two principal equa-
tions that were found for attached flow merge giving rise 
to a new structure dominated basically by two regions: 
a wake region (ord(η), ord(�) > ǫ2) and a viscous region 
(ord(η), ord(�) < ǫ2). These are regions governed by inter-
mediate equations. Thus, matching between them can-
not be achieved directly. The disappearance of the region 
dominated by the turbulence effects is noted. The princi-
pal equations recover the full Reynolds averaged Navier–
Stokes equations.

The system of Eqs. (163)–(170) indicates that the 
pressure gradient effects become leading order effects 
for orders higher than ord(ǫ2) = ord(�). Thus, at about 
ord(x / l) = ord(�) = ord(ǫ) we should have ord(uτ) = 
ord(upν), so that these terms furnish first-order corrections 
to the mean velocity profile.

The asymptotic structure of the flow is illustrated 
through Fig. 19, where the thickness scalings (ǫRe)

−1 and  
ǫ2 are shown in semi-log form for the data of Na and Moin  
[86]. Far upstream of the separation point a classical two-
layered structure is found with thickness (ǫRe)

−1 represent-
ing a leading order balance between the laminar and turbu-
lent stresses. Thickness ǫ2 represents the balance between 
the turbulent stress and inertial effects. As the separation 

(163)ord� = ord1 : û1∂x� û1 + v̂1 ∂yη û1 + ∂x� p̂1 = 0

(164)ordǫ2 < ord� < ord1 : û1∂x� û1 + v̂1 ∂yη û1 + ∂x� p̂1 = 0

(165)

ordǫ2 = ord� : û1∂x� û1 + v̂1∂yη û1 + ∂x� p̂1

= −∂x�u
′
1
2 − ∂yηu

′
1v

′
1 + ∂2x� û1 + ∂2yη û1

(166)ord� < ordǫ2 : ∂2x� û1 + ∂2yη û1 = 0

(167)ord� = ord1 : û1 ∂x� v̂1 + v̂1 ∂yη v̂1 + ∂yη p̂1 = 0

(168)

ordǫ2 < ord� < ord 1 : û1∂x� v̂1 + v̂1∂yη v̂1 + ∂yη p̂1 = 0

(169)

ordǫ2 = ord� : û1∂x� v̂1 + v̂1 ∂yη v̂1 + ∂yη p̂1

= −∂x�u
′
1v

′
1 − ∂yηu

′
1
2 + ∂2x� v̂1 + ∂2yη v̂1

(170)ord� < ordǫ2 : ∂2x� v̂1 + ∂2yη v̂1 = 0

point is approached, (ǫRe)
−1 and ǫ2 exhibit opposed vari-

ations. The steady increase of (ǫRe)
−1 together with the 

steady decrease of ǫ2 provokes a continuous narrowing of 
the turbulence dominated region up to the point where it 
becomes completely extinguished. This happens exactly 
at the position of flow separation. The implication is that 
at this position the near wall flow solution is viscous 
dominated so that a Goldstein solution prevails up to y ≈ 
(ǫRe)

−1 . On the other hand, the region ord(η) = ord(y / l) = 
ord(ǫ2) defines the flow position where Stratford’s solution 
is supposed to hold. Above this point, an inertia dominated 
solution is to be found.

6.14  Near wall approximate solutions for attached 
and separated flows over rough surfaces

The arguments that lead to Stratford’s law are based on the 
fundamental hypothesis that near a separation point a fully 
turbulent region can be identified in the flow. This consider-
ation remains valid for flow over a rough surface. The direct 
implication is that the procedure that resulted in the deriva-
tion of Eq. (150) can be repeated for flow over rough sur-
face but with yp = (y − d)/y0 and upν = ((y0/ρ)∂xp)

1/2 . 
The integration constant must also be determined so as to 
correctly account for the roughness effects.

The derivation of Eq. (154) has disregarded any detail 
of the wall roughness. This equation is, in fact, supposed 
to be valid not in the region adjacent to the wall where 
the complicated flow around the individual roughness ele-
ments is apparent, but, instead, in a region where the flow 
statistics are spatially homogeneous. Hence, inasmuch as 
for the classical law of the wall, the characteristics of the 
rough surface must enter the problem through the integra-
tion constant C. In addition, the coordinate system must be 
displaced by d. The immediate conclusion is that Eq. (154) 
can be used to model separating flow over a rough surface 
provided d and C are adequately modeled.

0 0.1 0.2 0.3 0.4 0.5 0.6
x (m)

0.00001

0.00010

0.00100

0.01000

2 , 
1/

(
R

) 2

1/( R)

Fig. 19  Diagram of the asymptotic structure of the turbulent bound-
ary layer for separating and reattaching flows; DNS data of Na and 
Moin [86]
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Parameter C is a general function of τw, ∂xp and y0 that 
must be determined by a consistent analysis of experimen-
tal data. However, an estimate of its functional form might 
be obtained by considering the limiting behavior of Eq. 
(154) as τw ≫ (∂xp)y. The resulting expression is

This parametrization scheme was first presented in 
Loureiro et al. [90]. A detailed comparison with experi-
mental data has been presented in Loureiro et al. [91] and 
Loureiro and Silva Freire [92].

The mean velocity profile at a point of zero wall shear 
stress for turbulent flow over a rough surface is shown in 
Fig. 20.

(171)C = κ
−1uτ

[

ln
(

4u2τ /((ρ
−1∂xp)y0)

)

− 2
]

.

Equation (154) together with the parametrization 
scheme provided by Eq. (171) is tested in Fig. 21.

6.15  Interaction between shock waves and transpired 
turbulent boundary layers

The general configuration of the flow around transonic 
aerofoil has been discussed by Nieuwland and Spee [93]. 
For Mo slightly higher than the critical Mach number 
(Mcr), a weak shock wave develops on the aerofoil and a 
small supersonic region forms ahead of the shock. As Mo 
increases the strength of the shock increases inducing even-
tually boundary layer flow separation.

To prevent flow separation—and consequently the 
occurrence of large wave drag increase—the shapes of con-
ventional aerofoils have been modified. One suggestion is 
to make the surface in the vicinity of the separation porous. 
Transpiration can then be used to control the shock/bound-
ary layer interaction (SBLI). A passive control technique 
consists of placing a porous surface over a plemun chamber 
in the interaction region. The higher pressure downstream 
of the shock forces fluid into the cavity and out ahead of 
the shock.

Nagamatsu et al. [94] studied a supercritical aerofoil 
with a uniform perforated surface. A porosity of 2.8 % of 
the total area surface resulted in a drag decrease of 46 % 
for Mo = 0.84.

Next, we discuss the application of perturbation methods 
to the description of the interaction between shock waves 
and transpired turbulent boundary layers.

Fig. 20  Stratford profiles. y is plotted in m; u in ms−1. Data of 
Loureiro et al. [90, 91]. RSB indicates the type of rough surface [90]

Fig. 21  Turbulent boundary 
layer flow over a steep hill, 
Loureiro et al. [90, 91]. Flow 
conditions RSB. x is referred 
to the center of the hill, H 
denotes the height of the hill. a 
Upstream flow, b reverse flow, c 
downstream flow



1387J Braz. Soc. Mech. Sci. Eng. (2016) 38:1359–1399 

1 3

6.15.1  Matched asymptotic expansions analysis

An important attempt at developing a rational theory to 
explain the interaction problem between a shock wave 
and a turbulent boundary layer was made by Lighthill in 
1953. Lighthill [95] identified the physical mechanisms of 
the interaction and recognized that in most of the bound-
ary layer the stream-wise pressure gradient is large com-
pared to the shear stress so that the local interaction can 
be described by the inviscid flow equations. Most of the 
details in Lighthill’s theory are correct for laminar flow. 
However, for turbulent flow modifications need to be made 
to render the theory compatible with the asymptotic struc-
ture of the boundary layer.

The three basic parameters of the problem are the 
free stream Mach number (Mo), the non-dimensional 
friction velocity (u∗τo = uτ /uo) and the Reynolds num-
ber (Re). The last two parameters are correlated through 
u∗τo = ord(lnRe)

−1. Melnik [96] classified the structure of 
the interacting field according to the order of magnitude of 
the parameter

Four distinct cases were listed:

1. very weak shock wave, χτ → 0,
2. weak shock wave, χτ = ord(1),
3. moderate shock wave, χτ → ∞, Mo → 1,
4. strong shock wave, χτ → ∞, Mo fixed.

The present account discusses the case of a moderate shock 
wave.

Following previous studies of the problem by Messiter 
[97] and Silva Freire [49], in the interaction region we sep-
arate the asymptotic expansions for the solution into rota-
tional and irrotational parts. The asymptotic structure of the 
flow is shown in Fig. 22.

We introduce the two small parameters

and

where a∗ is the critical sound speed in the external flow just 
ahead of the shock, τw is the shear stress at the wall, and ρw 
is the density at the wall.

The solution in the defect layer is shown by Messiter 
[97] to be governed by inviscid effects. The complete 

(172)χτ = M2
o − 1

u∗τo

(173)ǫ∗ = uo

a∗
− 1,

(174)u∗τ = 1

a∗

√

τw

ρw
,

analysis is presented by Silva Freire [49]. Here, only the 
solution for the pressure at the wall is shown, that is,

where the subscript u indicates an upstream quantity,

and

with uoi(y) = mean velocity profiles in the defect layer.
The intermediate layer (Reynolds layer) is governed by 

the standard boundary layer equations. Analytical solutions 
to all flow parameters can be found through considera-
tion of the mixing length closure hypothesis. The resulting 
equations and respective solutions, unfortunately, are too 
complicate and long to be shown here. The solutions in the 
intermediate layer must satisfy seven local equations and 
match with the inner solutions, which add eleven extra con-
straints to the problem.

The wall layer is solved by assuming û(x, ŷ) to be 
decomposed as

(175)

pw(x)

pe
= 1+ γ

[

2ǫ∗ + (2γ − 1)ǫ∗2
]

− γ

[

1+ γ ǫ∗ + ǫ∗2[(γ − 1)2 + 2−1(7γ − 7)]
]

×
[

u∗τuϕ1x(x, 0)+ v∗wuϕ2x(x, 0)
]

(176)pe = 1− γ ǫ∗ + 2−1γ ǫ∗2

(177)

ϕix(x, y) = − 4

π

[

1+ (γ − 1)ǫ∗

+
[

γ

[

γ − 0.5

]

+ 3

]

ǫ∗2
]

×
∫ ∞

0

xuoi(y)

x2 + (y − η)2
dη

(178)û(x, ŷ) = u∗τuû01(ŷ)+ v∗wuû02(ŷ)+ vwdû03(ŷ)

Fig. 22  Flow structure for the interaction of shock waves and tran-
spired turbulent boundary layers
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where the hat is used to denote a wall solution, the sub-
script d to denote a downstream quantity, and, in general, 
u∗τd is a function of x, ǫ∗, u∗τu, v

∗
wu, v

∗
wd and û0i represents the 

mean velocity profiles that are to be matched to the inter-
mediate layer solution.

The wall solution gives rise to a skin-friction equation 
that can be written as

(179)

u∗τu(x) = u∗τu

[

1+ a1ǫ
∗ + a2ǫ

∗2 + u∗τuu1(x)

+ ǫ∗u∗τu
1

κ
ln

δ

δ̂
u1l(x)+ ǫ∗u∗τuu11(x)

]

+
[

v∗wuu2(x)+ ǫ∗v∗wu ln
2 δ

δ̂
u2l(x)

+ ǫ∗v∗wu ln
δ

δ̂
u2m(x)+ v∗wuǫ

∗u22(x)

]

where a1, a2, u1(x), u1l(x), u11(x), u2(x), u2l(x), u2m(x) and 
u22(x) are defined in Silva Freire [49].

Results provided by Eqs. (175) and (179) for the exper-
imental flow conditions of Sawyer and Long [98] for 
Mo = 1.27 are shown in Fig. 23.

The effects of wall transpiration are illustrated in 
Fig. 24 for porosities that result in weak (σ = 0.005 , 
F = (ρwvw)/(ρa

∗) = 0.001) and moderate (σ = 0.02, 
F = 0.004) injection rates. The increase in porosity results 
in an overall decrease the distributed pressure, a decrease 
of Cf  upstream of the shock wave and a sharp increase of Cf  
downstream of the shock.

6.15.2  Double limits for the interaction problem

To find the asymptotic structure of the flow in the interac-
tion region through Kaplun limits, we consider the follow-
ing stretching transformation,

Fig. 23  Solid wall. Predictions of pressure and skin-friction for the interaction of a shock wave and a turbulent boundary layer at Mach number 
1.27. — - - — experiment; – – – theory

Fig. 24  Porous wall. Predictions of pressure and skin-friction for the interaction of a shock wave and a turbulent boundary layer at Mach num-
ber 1.27 for three porosities σ = 0.0, 0.005, 0.02



1389J Braz. Soc. Mech. Sci. Eng. (2016) 38:1359–1399 

1 3

with �(ǫ∗) and η(ǫ∗) defined on �.
The flow velocity components are described through

where uα and uβ represent, respectively, the irrotational and 
the rotational parts of the flow.

Upon substitution of Eqs. (181) and (182) into the equa-
tions of motion, and passage of the η-limit process onto the 
resulting equations, we get for the x-momentum equation:

Since we are considering the flow in the interaction region, 
in passing the η-limit we have taken ord(�) = ord(ǫ∗). The 
other equations, continuity, energy and state, do not give 
any contribution to the asymptotic structure. In fact, Silva 

(180)

x� = x

�(ǫ∗)
,

yη = y

η(ǫ∗)
, ûi(x�, yη) = ui(x, y),

(181)u = 1+ ǫ∗uα(x, y)+ u∗τuβ(y),

(182)v = ǫ∗3/2vα(x, y),

(183)

ord η = 1 : ∂

∂x�

(

ρûα ûα
)

+ ∂

∂yη

(

ρûα v̂α
)

= − ∂ p̂α

∂x�
,

(184)

ord u∗τ
2
< ord η < 1 : ∂

∂x�

(

ρûα ûα
)

+ ∂

∂yη

(

ρûα v̂α
)

= − ∂ p̂α

∂x�
,

(185)

ord η = ord u∗τ
2 : ∂

∂x�

(

ρûα ûα
)

+ ∂

∂yη

(

ρûα v̂α
)

= − ∂ p̂α

∂x�

+ ∂

∂yη

(

−ρû′α v̂′α
)

,

(186)ord 1/Reu
∗
τ < ord η < ord u

∗
τ
2 : ∂

∂yη

(

−ρû′α v̂′α
)

= 0,

(187)

ord η = ord 1/Reu
∗
τ : ∂

∂yη

(

−ρû′α v̂′α
)

+ ∂2ûβ

∂y2η
= 0,

(188)ord η < ord 1/Reu
∗
τ : ∂

2ûβ

∂y2η
= 0.

Freire [51] has shown that if the full energy equation is 
considered, and the concepts of section two are applied to 
the full set of equations, then the overlap domains of the 
velocity field and of the temperature field will coincide.

The continuity equation simply implies that

The classical two-deck structure of the turbulent boundary 
layer is then clearly seen from Eqs. (183)–(188). Note that 
Eqs. (185) and (187) are the principal equations; their over-
lap domain is identical to the overlap domain determined 
for the incompressible flow case.

In the vicinity of the shock wave, however, the asymp-
totic structure must change. The strong pressure gradient 
imparted to the boundary layer by the shock wave alters 
the balance of terms in the equations of motion, giv-
ing rise to a new structure where for most of the bound-
ary layer the problem becomes an inviscid one. The need 
for the establishment of an inviscid rotational flow model 
for the description of the interaction has been recognized 
since Lighthill [95] proposed his linearized solution for 
the laminar problem. The result is that all recent theo-
ries advanced for the turbulent problem must somehow 
accommodate the inviscid rotational interaction model 
without contradicting the features of the turbulent flow. 
To overcome this difficulty, the theories of Melnik and 
Grossmann [53], Adamson and Feo [54], Messiter [97] 
and Liou and Adamson [48] consider the introduction of 
a blending region in the interaction region. The blend-
ing layer is, in fact, nothing else but the turbulent region 
defined by the overlap domain and derived by our asymp-
totic analysis of the problem. The absence of an equation 
similar to Eq. (186) in the matched asymptotic expansions 
method is the main reason for the difficulties this method 
presents. Likewise, this is the reason why the structure 
depicted by Eqs. (185)–(188) can deal with the interaction 
problem.

To take into account for the presence of the shock wave, 
we pass the �-limit process onto Eqs. (183)–(188). The 
result is:

(189)ord(v) = η

�
ord(u).

(190)

ord � = ord ǫ∗ : ∂

∂x�

(

ρûα ûα
)

+ ∂

∂yη

(

ρûα v̂α
)

= − ∂ p̂α

∂x�
,

(191)

ord ǫ∗/Reu
∗
τ
3
< ord � < ord ǫη/u∗τ

2 : ∂

∂x�

(

ρûα ûα
)

+ ∂

∂yη

(

ρûα v̂α
)

= − ∂ p̂α

∂x�
,
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The change in the asymptotic structure of the flow in the 
interaction region is noticeable from the above equations. 
In particular, we note that as the shock is approached, 
that is, as the order of magnitude of � increases, the 
validity domain of the outer principal equation changes 
position until the two principal equations merge at 
(�, η) = (ǫ∗/(u∗τ

3Re), 1/(u
∗
τRe)). Indeed, as shown by 

the calculations, at the beginning of the interaction the 
outer principal equation is positioned at (�, η) = (ǫ∗, u2τ ). 
However, as the order of magnitude of η varies from u∗τ

2 

(192)

ord � = ord ǫ∗/Reu
∗
τ
3 : ∂

∂x�

(

ρûα ûα
)

+ ∂

∂yη

(

ρûα v̂α
)

= − ∂ p̂α

∂x�

+ ∂

∂yη

(

−ρû′α v̂′α
)

+ ∂2ûβ

∂y2η
,

(193)ord � < ord ǫ∗/Reu
∗
τ
3 : ∂

2ûβ

∂y2η
= 0.

to 1/u∗τRe, this equation moves along the path (ǫ∗η/u∗τ
2, η) 

until reaching the point (ǫ∗/(u∗τ
3Re), 1/(u

∗
τRe)). The flow 

structure is then shown to reduce from a classical two-
deck structure to a one deck structure near to the foot of 
the shock wave. According to these results, there is a region 
at the foot of the shock where the full boundary layer equa-
tions are recovered.

The flow diagram defined by the above analysis is 
shown in Fig. 25. A comparison with the experimental data 
of Sawyer and Long [98] for Mach numbers 1.37 is shown 
in Fig. 26.

Figure 26 reproduces, from the experimental data, a map 
which indicates the dominant region of every term in the 
equations of motion. The meaning of the shades in gray is 
clear. Thus, the farthest from the wall tone corresponds to 
the inertia and pressure gradient terms, the intermediate 
tone to the turbulent terms and the remaining tone to the 
viscous terms. The shock wave is located at x = 0. Note, 
as predicted by the asymptotic theory, the complete domi-
nance of the inertia and pressure terms in the vicinity of 
the shock. The consequence is that the phenomenon is, for 
most of the interaction region, and, to a leading order, gov-
erned by inviscid equations.

6.16  Unsteady wall layer model for the velocity profile 
in turbulent flows

Attempts to incorporate the structure of organized 
motions into near wall analytical models were given 
important contributions by Bark [99], Hatziavramidis 
and Hanratty [100], Chapman and Kuhn [101], Walker 
et al. [102] and Landahl [103]. These authors advanced 
modeling theories based on very different arguments 
between each other that were completely original at 
the time they were proposed. Walker et al. strived to 
develop an analytical solution for the time-dependent Fig. 25  Flow diagram for the interaction of a shock wave and a tur-

bulent boundary layer

Fig. 26  Experimental validation for the flow diagram representing the interaction of a shock wave and a turbulent boundary layer. Data of Saw-
yer and Long [98]. Mach number 1.37. Left local view. Right global view of interaction
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velocity profile from asymptotic arguments and similar-
ity solutions of a non-homogeneous diffusion equation.

The model of Walker et al. [102] was formulated in 
terms of the dynamics of the time-dependent wall layer 
flow. A simplified set of the Navier–Stokes (N.-S.) equa-
tions was obtained to describe the unsteady flow in the 
wall layer during a quiescent period. Following the 
description generally found in the literature, the flow 
dynamics is considered to be dominated by two features: 
wall layer streaks and the bursting phenomenon. The 
streaks are elongated in the flow direction, typically have 
a length of the order of 1000ν/uτ and can be observed 
over a large characteristic time, the quiescent period. To 
determine the mean velocity profile in the wall layer, a 
time average of the leading order instantaneous velocity 
was performed over the average period between bursts, 
which is considered to be approximately equal to the 
duration of the quiescent period.

Mikhailov and Silva Freire [104] reviewed the physi-
cal and mathematical validity domain of the model of 
Walker et al. [102]. The definitions of the instantaneous 
and mean velocity profiles, as introduced by Walker et al., 
depend on the determination of four unknowns, the aver-
age period between bursts (T+

B ), the origin of time (t+0 ),  
a constant of integration of the time-dependent equation 
(A0) and the local pressure gradient (p+). Once one of 
the parameters is specified, say, p+, a set of three non-
linear equations must be solved to furnish T+

B , t+0  and A0.  
These parameters must be real and satisfy T+

B > t+0 . In 
Walker et al. [102] no comments were made regarding 
any possible limitation on the value of p+. The attempts 
of Mikhailov and Silva Freire [104] to find a feasible 
domain p+min ≤ p+ ≤ p+max from the expressions shown in 
Walker et al. [102] failed. In fact, it was discovered that 
two terms are missing in Eq. (63) of Walker et al. [102].

The work of Mikhailov and Silva Freire [104] discusses 
in detail all similarity solutions for the homogeneous diffu-
sion differential partial equation presented in Walker et al. 
[102]. Also, a new treatment is introduced whereby the 
pressure term is included as a non-homogeneous contribu-
tion. To permit fast computations, interpolation functions 
were generated from initial and boundary value problems, 
to represent the special function � (Walker et al. [102]) and 
its derivatives (see Mikhailov and Silva Freire [105]), based 
on original identities for the hypergeometric functions 1F1 
and pFp. An explicit parameterization is presented for T+

B , t+0  
and A0 in terms of p+.

The time-mean structure of the flow in Walker et al. 
[102] is based on the classical two-layered asymptotic 
analyses of large Reynolds number turbulent boundary 
layer flow. Solutions are then developed in terms of the two 
small parameters, R−1

e  and u∗τ (=uτ /uo).

The full details of the analysis of Walker et al. are omit-
ted here; they can be found in Mikhailov and Silva Freire 
[104] or in the original paper. The leading order governing 
equations of the unsteady flow in the wall layer during a 
quiescent period were shown by Walker et al. [102] to be 
given by

with

Equation (194) appears in Walker et al. (as Eq. 27) with an 
obvious typographical error. The term ∂u0/∂t+ was mis-
printed as ∂u0/∂y+. In fact, the time dependency on Walker 
et al.’s model is only accounted for by the term ∂u0/∂t+.

The set of Eqs. (194) and (195) is a coupled system of 
non-linear equations that has to be solved numerically. The 
forcing function M depends on a pressure term and must be 
determined from the time-dependent motions in the outer 
layer and on further terms arising from the evolution of the 
other modes. Mikhailov and Silva Freire [104] shown that 
under the appropriate boundary conditions, Eqs. (194) and 
(195) can be solved to give

This expression depends on four unknown parameters—a0 , 
A0, t

+
0  and T+

B —which must be specified for prescribed 
pressure gradients, p+. Walker et al. [102] proposed to 
determine these parameters by computing the time aver-
age of u0 and forcing the asymptotic form of the resulting 
expression in the limit of high y+ to follow a logarithmic 
behavior so that

(194)
∂u0

∂t+
= −p+ + ∂2u0

∂y+2
+M(y+, t+)

(195)M = −∂p0

∂ x̃
− π

�+

∞
∑

n=1

m
∂(umfm)

∂y+

(196)

u0 = [(a0/4) log τ + A0]erfη
+ (2a0/π)�(η)− p+τ

×
[

1− 8√
π
e−η2HermiteH(−3, η)

]

(197)a0 =
2

κ

(198)A0 = Ci + p+t+0 + 1

2
p+T+

B − γ0

2κ
+ ln 2

κ

(199)

4p+κ((t+0 )
3/2 − (t+0 + T+

B )3/2)+ 3(−
√
πκT+

B

−
√

t+0 (−2+ 2A0κ + ln(t+0 ))

+
√

t+0 + T+
B (−2+ 2A0κ

+ ln(t+0 + T+
B ))) = 0



1392 J Braz. Soc. Mech. Sci. Eng. (2016) 38:1359–1399

1 3

Equations (198), (199) and (200) can be solved to yield A0, 
t+0  and T+

B . They specify a system of transcendental non-lin-
ear algebraic equations that needs to be solved numerically.

The mean and instantaneous velocity profiles for p+ = 0 
and 0.5 are shown in Fig. 27. The logarithmic behavior of 
all profiles for large y+ must be observed. Since all instan-
taneous profiles are required to tend to the same steady 
solution for large y+, their average is objectively that solu-
tion. For small values of y+ solutions are dominated by the 
error function, erf, for large y+ solutions are dominated by 
the special function, �.

To find parameters A0, t
+
0  and T+

B  the software Mathe-
maticaTM was used. Solutions were found with 25 precision 
digits. Given the physical and mathematical constrains, the 
feasible domain of Walker et al.’s model was found to be 
p+ ∈ [−0.025, 41.886]. However, if as a further require-
ment, the model of Walker et al. [102] is asked to furnish 
only positive derivatives at the wall for the instantaneous 

(200)

�

A0 −
2

κ

�





1
�

t+0 + T+
B

− 1
�

t+0





+ 2p+
�

�

t+0 −
�

t+0 + T+
B

�

+ 1

2κ





ln(t+0 + T+
B )

�

t+0 + T+
B

− ln t+0
�

t+0



 = 0

velocity, the feasible domain is reduced to p+ ∈ [−0.025, 
0.104996].

Provided a flow representation is required in the interval 
p+ ∈ [−0.010, 0.104996], the following parameterization 
can be used:

with A03 = 260.0, A02=−177.7, A01 = 51.3, A00 = 6.0 and a 
maximum relative error of 0.5 %;

with TB2 = 719.0, TB1 = −383.7, TB0 = 103.1 and a maxi-
mum relative error of 1.5 %;

with t01 = 0.000646, t02 = 0.0319, t00 = −0.0231.
The set of Eqs. (196) and (201) through (203) permits 

a straightforward implementation of the model of Walker 
et al. [102] in a domain that is physically and mathemati-
cally meaningful.

6.17  Logarithmic solutions for non‑Newtonian purely 
viscous fluids

The turbulent flow of non-Newtonian power-law fluids over 
smooth walls was studied by Metzner and Reed [106] and 
Dodge and Metzner [107]. The analysis leads to the intro-
duction of a generalized Reynolds number defined by

where D = pipe diameter, U = mean flowvelocity , 
ρ = fluid density, and K and n express the relationship 
between shear stress and shear rate, that is,

The viscous layer solution for a power-law fluid can 
be found from a simple integration of the viscous layer 
approximate equation,

so that,

(201)
A0 = A03(p

+)3 + A02(p
+)2

+ A01p
+ + A00

(202)T+
B = TB2(p

+)2 + TB1p
+ + TB0

(203)t+0 = t01

(t02 + (p+))2
+ t00

(204)NR = DnU2−nρ

K
,

(205)

τ = K

(−du

dr

)n

= K

(−du

dr

)n−1

×
(−du

dr

)

= µ

(−du

dr

)

.

(206)
∂τ

∂y
= ∂

∂y

(

K

(

du

dy

)n)

= 0,

(207)
u

uτ
= y

(

Kun−2
τ /ρ

)1/n
,

Fig. 27  Mean (thick line) and instantaneous velocity profiles for 
p+ = 0 and 0.5 (t+/T+

B = 0.01, 0.1, 0.2, 0.5, 1)
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or else, using the usual notation,

Thus, it is follows from Eq. (207) that the viscous layer rel-
evant length scale is

Dodge and Metzner [107] instead defined in their work 
u+ = (y+)1/n, implying that y+ = yn(uτ )

2−nρ/K. In the 
present work, we use the definition provided by Eq. (207).

If there is to be a logarithmic solution in the inner 
regions of a flow and, if this region is to comply to simili-
tude conditions, then it is clear that the characteristic length 
and velocity scales must be ℓ and uτ as implied by Eq. 
(207).

Therefore, a log-solution should be written as

where g1 is a function that must accommodate the exter-
nal flow behavior and An and Bn need to be determined 
experimentally.

The implication is that the slope of the log-term in Eq. 
(210) should vary with the inverse of n. This fact was 
noticed by Clapp [108] and Bogue and Metzner [109], who 
proposed mean velocity profile formulations with An vary-
ing according to the reciprocal of n.

In Loureiro and Silva Freire [110], the asymptotic struc-
ture of the turbulent boundary layer of a non-Newtonian 
power-law fluid is discussed. The application of double 
limits to the equations of motion shows that the turbulent 
boundary layer exhibits a canonical two-layered structure 
defined by two principal equations. The viscosity of the 
fluid defines the thickness of the viscous region through 
ǫǫ̂ = (ǫn−2/Re)

1/n, where

the influence of the non-Newtonian turbulence term is 
shown to be very restrict, limited to domain ord(η) ≤ 
ord(ǫǫ̂ ). The turbulence dominated region (defined by 
ord(ǫǫ̂) < ord(η) < ord(ǫ2)) is governed by turbulence orig-
inated from the inertial terms in the equations of motion. 
No contribution arises from the averaging of the non-linear 
viscous terms. In fact, the analysis shows that in the fully 
turbulent region, ord(ǫǫ̂) < ord(η) < ord(ǫ2),

(208)u+ = y+.

(209)ℓ =
(

Kun−2
τ /ρ

)1/n
.

(210)
u

uτ
= An ln

(y

ℓ

)

+ Bn − g1(yR
−1, n),

(211)

ǫ = uτ

uo
, ǫ2ǫ̂n = 1

Re

,

Re =
ρu2−n

o Ln

K
,

(212)ord

(

∂u′v′

∂y

)

> ord

(

∂

∂y

(

(

∂u

∂y

)n−2(
∂u′

∂y

)2
))

.

The two relevant length scales of the flow are:

–– Turbulent layer thickness, δ̃ = (u2τ /u
2
o)L

–– Viscous sub-layer thickness, δ̂ = (Kun−2
τ /ρ)1/n

–– The obvious conclusion is that for n < 1 the viscous 
sub-layer thickness decreases (in relation to that of a 
Newtonian fluid, n = 1), whereas for n > 1, δ̂ increases. 
Mean velocity profiles obtained by Escudier and Presti 
[111] and Pereira and Pinho [112] are shown in Fig. 28 
for different types of shear-thinning fluids. Provided 
they are plotted in terms of y+ = y/ℓ they all present 
the same slope (=κ−1) and different levels. A decrease 
in the value of n pushes the level up as expected.

The above results suggest A = κ
−1 and B = 5/n.

However, the DNS results of Anbarlooei et al. [113] 
show that B = 5n−1 only works well for the limited range 
flow indices 0.5–0.75 (Fig. 29). A detailed inspections of 
the results for the index range n = 0.5, 0.69, 0.75, 0.9, 1, 
1.2 show that the following correlation must be used

Fig. 28  Mean velocity profiles in wall coordinates according to the 
data of Pereira and Pinho [112] and Escudier and Presti [111]

Fig. 29  The behavior of B for n ranging from 0.4 to 1.2
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The asymptotic structure of the turbulent boundary layer 
for a Carreau fluid is also analyzed in Loureiro and Silva 
Freire [110]. For a Carreau fluid, the viscosity and local 
shear rate are related according to

where µ∞ and µ0 are the limiting viscosity levels, θ is the 
relaxation time and n the power-law index.

An application of double limits to the equations of 
motion shows that for a Carreau fluid, the morphological 
structure of the turbulent boundary layer is more complex: 
three principal equations appear in the analysis, character-
izing a three-layered structure.

The analysis considers the following definitions

and the leading order velocity fluctuations are considered 
to be of the order of the friction velocity.

The contribution of the viscous terms is of leading order 
in region ord ǫǫ̃ > ord η. The power-law viscosity contri-
bution prevails in domain ord ǫǫ̃ > ord η > ord ǫǫ̃ǫ̂. In the 
innermost sub-layer, ord ǫǫ̃ǫ̂ > ord η, the flow behavior is 
exactly that of a Newtonian fluid.

Thus, for a Carreau fluid, the relevant characteristic 
lengths in the wall region are:

–– Turbulent layer thickness, δ = (u2τ /u
2
o)L

–– Power-law sub-layer thickness, δ̃ = (Kun−2
τ /ρ)1/n, with 

K = (µ0 − µo)θ
n−1

–– Newtonian sub-layer thickness, 
δ̂ = [((µ0 − µo)/µo)θ

n−1un−1
τ ]1/(n−1).

–– The behavior of a Carreau fluid was illustrated in 
Loureiro and Silva Freire [110] through the data of Jap-
per-Jaafar et al. [114] for a Carreau–Yasuda fluid with 
power-law indexes ranging from 0.3 to 0.9. Figure 30 
shows the mean velocity data in terms of the inner flow 
variables y+w = yuτ /νw and y+o = yuτ /νo.

6.18  Wall layer velocity profile for an impinging jet

For an impinging jet, Özdemir and Whitelaw [115] have shown 
that a Weibull distribution represents well some of the global 
features of the profile, such as the position of the maximum 

(213)u+ = 2.5 ln y+ + 5.0− 5.44 ln n

(214)µ = µ∞ + (µ0 − µ∞)

(

1+
(

θ
∂u

∂y

)2
)

n−1
2

,

(215)

ǫ = uτ

uo
, ǫ2ǫ̃n = αβ

Re

,

Re =
ρuoL

µo

, α = ((µ0/µo)− 1),

β = ((uo/L)θ)
n−1, ǫ̃ = ǫ̂n,

velocity and of the outer inflection point, but is not an adequate 
approximation for the near wall region. For this region, they 
showed that a semi-logarithmic relation can be used to model 
the inner equilibrium layer, so that one can write

with

and where κ = 0.4, uτ denotes the friction velocity and A1 and 
A2 must be experimentally determined. The experimental data 
of Loureiro and Silva Freire [116] imply that A1 = 0.962 and 
A2 = 9.

The main contribution of Özdemir and Whitelaw [115] 
was to show that, for the impinging jet, the inner layer appears 
to constitute a considerable part of the inner boundary layer, 
and, if the outer edge of the equilibrium layer is attached to 
the point of maximum velocity, which is very close to the 
wall, then, this maximum, umax, should be an appropriate 
velocity scale. The conclusion, therefore, is that parameter A 
is not invariant, but changes with a deviation function.

Wygnanski et al. [117] remarked that, for a turbulent wall 
jet, the velocity profile cannot be universally represented in 
wall coordinates, as it can in the boundary layer. That is due to 
large variations in the additive constant in the law of the wall. 
In fact, depending on the jet Reynolds number, logarithmic fits 
can be found to their data in regions defined by specific lim-
its. These fitted straight lines have levels varying from 5.5 to 
9.5. The existence of a well-defined logarithmic region is par-
ticularly important for the determination of the skin-friction. 
Wygnanski et al. further remark that in previous experiments 
the skin-friction was either directly assessed through floating 
drag balances or indirectly by wall heat transfer devices or by 
impact probes like Stanton probes or Preston tubes. Since these 
devices are calibrated taking as reference the universal law 

(216)
u

uτ
= 1

κ
ln
(yuτ

ν

)

+ A,

(217)A = A1
umax

uτ
− A2,

Fig. 30  Mean velocity profiles for the data of Japper-Jaafar et al. 
[114]; y+w = yuτ /νw
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of the wall, they cannot be reliably used in regions where the 
existence of the law of the wall can be questioned. Wygnanski 
et al. estimated the skin-friction through three different tech-
niques: a momentum integral method, the mean velocity gradi-
ent in the viscous sub-layer, and by use of a Preston tube.

The establishment of the above concepts for the veloc-
ity field clearly raises some questions for the temperature 
field. An immediate question concerns the existence of an 
appropriate temperature scale at the outer edge of the equi-
librium layer. At the point of velocity maximum (umax), the 
temperature profiles reach a minimum (Tmin) (Guerra et al. 
[118]). Thus, drawing an analogy to the velocity analyses 
of Narasimha et al. [119] and of Özdemir and Whitelaw 
[115], one would expect the appropriate scaling tempera-
ture parameter to be this minimum temperature.

The inner temperature profile was shown by Guerra 
et al. [118] to follow a logarithmic solution, that is,

with

where B1 = 1.003 and B2 = 9.462.

In the above equation, tτ is the friction temperature 
(=qw/(ρcpuτ )), uτ is the friction velocity (=

√
τw/ρ) and 

κt = 0.44.
The logarithmic behavior of the inner regions of an 

impinging jet is shown in Fig. 31.

7  Final remarks

The present paper has attempted to show how simple 
arguments based on similitude, mixing theories and limit 

(218)
Tw − T

tτ
= 1

κt

ln
(yuτ

ν

)

+ B,

(219)B = B1

(

Tw − Tmin

tτ

)

− B2,

processes can be used to develop useful approximate 
solutions to very intricate configurations of the turbulent 
boundary layer. After a short review of eleven proposals for 
the near wall description of the mean velocity profile for 
incompressible zero-pressure-gradient turbulent boundary 
layer, different formulations for problems involving com-
pressibility, wall transpiration, heat transfer, roughness, 
flow separation, shock waves and a combination of these 
effects were introduced.

But, the previous content is not exhaustive. Further cases 
of interest were not included in the review. Silva Freire [37, 
38] showed how Kaplun limits can be used to find an ana-
lytical solution for the model equation defined by

subject to the boundary conditions

and where y1 = point where continuity off , ∂f /∂y and 
ν must be ensured, ǫ = 10−6, α = 0.02, κ = 0.4, and 
f0(x) = ∂f (x, 0)/∂y.

Equation (220) mimics turbulent flow past over a flat 
surface, retaining most of the features of the real problem. 
The developed analytical solution is instrumental in elu-
cidating the flow structure, making clear that the problem 
consists of two characteristic layers defined by two princi-
pal equations.

Su and Silva Freire [120] show how logarithmic velocity 
and temperature profiles can be used to develop a simple 

(220)f
∂f

∂x
− ∂

∂y

(

ν
∂f

∂y

)

− ǫ
∂2f

∂y2
= 0,

(221)ν =
{

κ
2y2

∂f
∂y

if y < y1,

αǫ x f0 f if y ≥ y1;

(222)
x = 0, f = 1; y = 0, f = 0;
y −→ ∞, f = 1

Fig. 31  Impinging jet mean 
velocity and temperature pro-
files. Data of Guerra et al. [118]
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analytical method for the prediction of friction factors and 
Nusselt numbers of turbulent forced convection in rod bun-
dles with smooth and rough surfaces.

In Brasil et al. [121], an inverse problem is solved for the 
estimation of upstream velocity profiles in an incompress-
ible turbulent boundary layer over a smooth flat plate. The 
inverse analysis is based on the boundary layer morphol-
ogy, making use of the law of the wall and the law of the 
wake to estimate boundary layer parameters from measured 
velocity histories.

The effects of flow stability conditions on the proper-
ties of boundary layers subjected to steep surface eleva-
tions were discussed in Loureiro and Silva Freire [122]. 
The results discuss the effects of the stratification on the 
speed-up factor, i.e., the maximum acceleration of the flow 
on hilltop, and on the heat up/down factor. The numerical 
simulation of turbulent flow over steep hills has been dis-
cussed in Loureiro et al. [123].

The mechanics of turbulent drag reduction over curved 
surfaces by riblets was studied in Loureiro and Silva Freire 
[124]. Four types of two-dimensional surfaces were studied 

based on the morphometric parameters that describe the 
body of a blue whale (Fig. 32). In general, for the whole 
range of Reynolds number that was considered, the riblet 
surfaces were shown to perform better than the smooth sur-
faces. For the higher Re’s, a higher Cd for the symmetric 
riblet surface (as compared to the smooth surface) was con-
sistently observed (Fig. 33).

The above discussion on the logarithmic law is strongly 
biased by my own experience on the subject. In preparing 
the paper, I took the decision of supporting most of the 
arguments on results obtained by one particular research 
group. Thus, the above review must not be seen as a ample 
review on the fundamentals of the logarithmic law, but 
rather on the results obtained by a small group of people 
that have dedicated part of their time to the investigation of 
wall turbulence.

This text has been specially prepared for the 35th anni-
versary issue of the Journal of the Brazilian Society of 
Mechanical Sciences and Engineering. The history of tur-
bulent research in Brazil from 1971 to 1996—another pre-
viously commissioned article by JBSMSE—can be found 
in Silva Freire et al. [125].
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