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The present work discusses the feasible and validity domains of unit-cell slug models. The models of Dukler and
Hubbard (Ind. Eng. Chem. Fund. 14 (4): 337-347, 1975) and Orell (Chem. Eng. Sci. 60 (5):1371-1381, 2005) are
particularly considered as reference models, for they are based on distinct formulation hypotheses. A parameter
sensitivity analysis is also carried out to assess the uncertainty in predicted slug length distributions. The work
further discusses a kinematic methodology for the estimation of slug length distributions, a problem of great
interest in the design and determination of the operational conditions of gas-liquid separators. The results are
validated through new experiments and the data of Ujang et al. (Int. J. Multiphase Flow 32 (5): 527-552, 2006).
The new experiments introduce data (including the pdf distributions) on pressure gradients, bubble lengths,
passage frequency and translational velocity of bubbles. Particle image velocimetry measurements furnish the
local mean velocity profiles in the continuous phase of the liquid slug and film.

1. Introduction

Slug flow is the prevalent flow pattern in many industrial applica-
tions. The complexity of slug flows naturally motivated the develop-
ment of mechanistic models from constraints imposed by physical laws
(mass and momentum balances) and some extra empirical correlations
(Nicklin et al., 1962; Dumitrescu, 1943; Davies and Taylor, 1950;
Wallis, 1969; Dukler and Hubbard, 1975; Nicholson et al., 1978).
Normally referred to as unit-cell models, these approximations predict
in a simplified but accurate manner the main hydrodynamic parameters
of the flow. In literature, the domain of validity of unit-cell models is
determined from experimental data or models specially developed to
predict flow pattern transition.

As mentioned in Taitel et al. (2000), the above models are very
useful for many conditions, but cases are often encountered for which a
solution does not exist. The work of Taitel et al. (2000) particularly
discusses the case of downward inclined pipes. Four limitations are
identified to model application, from both mathematical and physical
aspects. In fact, the model deficiencies identified in Taitel et al. (2000)
are even found for some gas and liquid flow rates typical of horizontal
flow.

The present work studies the mathematical and physical validity
domains of unit-cell horizontal slug flow models. The successful ap-
plication of a particular unit-cell model to flow conditions pertaining to
a validity domain naturally demands that all required mathematical
operations be justified. For example, fraction denominators and loga-
rithmic terms cannot respectively be zero or have a negative argument.
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Physical constraints imposed by the nature of flow parameters must
also be satisfied. Lengths and frequency, for instance, cannot be nega-
tive numbers.

Here, we discuss the interrelation between domains that are de-
termined from the independent methods — experiments and transition
theories — and domains that are determined purely from the require-
ment that mathematical operations be justified and physical parameters
be consistent with their definition. To avoid confusion, the former do-
mains are here called validity domains; the latter domains are called
feasible domains. In particular, we show that the validity domains ob-
tained through the independent classical approaches contain large re-
gions where some mathematical operations and physical conditions are
not justified. The implication is that models do not furnish solutions in
conditions where they are expected to be valid (from the classical point
of view) and this is a serious problem in the implementation of en-
gineering prediction software. Clearly, in many instances, models are
observed not to cover the entire validity domain predicted by experi-
ments and theories for pattern transition. The true workable domain is
therefore the intersection domain of the validity and feasible domains.

Two conceptually different unit-cell models are select for analysis.
The model of Dukler and Hubbard (1975) (D&H) takes into account the
shape of the large bubbles and uses a shedding rate relation for pre-
diction of the front propagation velocity, V;. The model of Orell (2005)
considers cylindrical bubbles and uses an input relation for V;.

In the model of Dukler and Hubbard (1975), the passage frequency
of unit cells () is a critical closure parameter. The model of Orell
(2005), on the other hand, does not require information on v,. However,
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Nomenclature

Vv velocity

v translational velocity

Vs superficial velocity

Vin mixture velocity

Vinmin minimum velocity for the Manolis correlation for slug
frequency

wL liquid mass flow rate

Re Reynolds number

Fr Froude number

B ratio between film velocity and slug velocity

g grouping of variables for D&H model

7 function for which the root must be found in the D&H
model

w* alternate grouping of variables for D&H model

g gravity

T time interval between slugs

1 length

D diameter

R liquid holdup

AP pressure drop in the unit cell

dP/dx pressure gradient along the pipe length

Con ratio between liquid flow rate from the film to the slug and
the liquid flow rate in the slug

n number of samples

Cy coefficient of variation

D, Kolmogorov-Smirnov statistic

X sample mean

SN sample standard deviation

Subscripts

G gas

L liquid

m mixture

u unit cell

s slug

f liquid film

fe liquid film just before pickup by a slug

Greek symbols

a level of significance for the calculation of the K-S test
statistics

p density

o standard deviation

v slug frequency

B tube inclination

6 angle between interface and centerline of tube

only prediction of the relative lengths of the liquid slug and unit cell,
Is/1,, is returned. The absolute value of [; (or [,,) is not provided by the
model. The implication is that if the model of Orell (2005) is to furnish
data on [, an extra closure relation needs to be considered. Of course,
since v, = VI;', the additional relation might be thought of as a re-
lation for ;. In other words, since V; is a fixed modeling parameter of
the model of Orell, the specification of [, is equivalent to the specifi-
cation of v, and vice-versa. The result is that, in fact, » may be inter-
preted as a critical closure parameter for both models, as long as [ is an
expected output.

Another question of great engineering relevance is: given a known
input distribution of v, with a certain coefficient of variation (c,(v;)),
which values of ¢, are returned by the unit-cell models to the other flow
parameters? Also, how do these values compare with the available
experimental data?

In fact, the answer to the above question is the one required by the
designers and operators of, e.g., gas-liquid separators. How does one get
distributions of the length of the liquid film, /s, and how reliable are
they? In the second part of the paper, a parameter sensitivity analysis is
carried out to answer this question. We show that for the model of
Dukler and Hubbard (1975) a value of c¢,(») = 0.6 corresponds to
¢, (AP/l,) = 0.11 and ¢, (/D) = 1.2. To assess how well a given data
set follows a specific distribution, the Kolmogorov-Smirnov test statistic
is used.

The specific question of obtaining distributions of v, and I is dis-
cussed from the point of view of evolution methods. The essence of
these models (see, e.g., Cook and Behnia (2000a)) is a single kinematic
wave equation that relates the velocities of the front and the rear of
liquid slugs with their own length, and hence determines the transla-
tional velocity of a bubble solely as a function of the length of the
downstream liquid slug. From a random distribution of slug lengths at
the inlet section, the models evaluate the evolution of the probability
distribution of [; at any given position. As a corollary, the models yield
distributions of v,.

Some authors (Ujang et al., 2006; Nydal et al., 1992; Van Hout
et al., 2001; Al-Safran et al., 2005) suggest the slug flow parameters I,
and v, to be well represented by log-normal distributions. Hence, other
relevant questions are: Do evolution models yield log-normal
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distributions for I, and v, ? Does an input log-normal distribution of v, to
a unit-cell model return a log-normal distribution to [, or the other flow
parameters?

To help answer all the above questions, a new set of experiments is
presented here. The flow conditions are defined through the combina-
tion of three liquid and three gas flow rates. Overall, nine flow condi-
tions are discussed. The new data furnishes distributions on v,, I, V; and
dP/dx, an information that is important for model validation. Particle
image velocimetry measurements furnish the local mean velocity pro-
files in the continuous phase of the liquid slug and film.

The present manuscript is structured in two parts. First, a study on
the feasible and validity domains is conducted (Sections 2 through 5).
The relevant aspects of the implementation of the unit cell models of
Dukler and Hubbard (1975) and Orell (2005) is presented in Section 2.
The evolution model of Cook and Behnia (2000a) is introduced in
Section 3. The results for the feasible and validity domains and their
comparison with flow pattern maps are shown in Sections 4 and 5, for
the models of D&H and Orell, respectively. In the second part (Sections
6 through 8), new experiments are introduced in Section 6. This data-
base, together with the experimental results of Ujang et al. (2006) are
used to study the sensitivity of the D&H model to input distributions in
Section 7. Slug flow predictions with evolution models are discussed in
Section 8. The work closes with some critical remarks in Section 9.

2. Unit-cell models for slug flow prediction

In the production and transportation of hydrocarbons in horizontal
and vertical pipelines, slug flow is certainly the dominant flow con-
figuration. Be it due to natural occurrence or to artificially introduced
enhancing production techniques, flow patterns resulting from a se-
quence of long bubbles followed by liquid slugs permeated by small
bubbles are largely encountered in the oil industry.

Unfortunately, the modeling of slug flow presents some serious
difficulties due to its chaotic features. Any casual observation of slug
flows shows that the characteristic lengths of the long bubbles and li-
quid slugs appear to be randomly distributed in time and space.

A classical manner of treating slug flow is to postulate the existence
of a typical cell that repeats itself moving down a pipe. Provided there
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exists a reference frame where the liquid and gas phases are considered
to travel with about the same velocity and to attain a fully developed
state, disregard of the flow randomness is justifiable to a certain point
(Fabre and Liné, 1992). A steady state hypothesis results in many
simplifications that can then be used to develop a less complicate — but
reliable — working model. The simplifying assumptions can give origin
to models where the cells have a single fixed length or models where a
stochastic distribution of the cell length is considered.

A theory of vertical slug flow was advanced by Nicklin et al. (1962)
after some early observations by Dumitrescu (1943) and Davies and
Taylor (1950). The theory basically discussed the motion of large
bubbles moving in vertical liquid streams.

Wallis (1969) was possibly the first to discuss horizontal and ver-
tical slug flows from the point of view of a unit cell. In his analysis, the
bubble and liquid phase dynamics were modelled so that expressions
for the void fraction and pressure drop became available. This work was
followed by a comprehensive model proposed by Dukler and Hubbard
(1975). Compared to the previous formulations, the model of D&H was
much more detailed. The authors discussed the conditions of slug flow,
its initiation and dissipation.

Nicholson et al. (1978) suggested improvements to the model of
Dukler and Hubbard (1975); in particular, new equations were pro-
posed for the average translational velocity of the unit cell and the li-
quid fraction in the slug, an input quantity.

More recently, unit cell models have been given more simplified
formulations. The work of Orell (2005), e.g., incorporates a modified
pressure loss term as suggested by Cook and Behnia (2000b). The effect
of gas entrainment in the slug on the wall shear stress is accounted for
with the introduction of an effective viscosity. This effect is carried over
to the definition of the Reynolds number employed in the evaluation of
the friction coefficient.

The models of Dukler and Hubbard (1975) and Orell (2005) were
chosen for discussion here due to their inherent differences in for-
mulation. In addition, the model of Dukler and Hubbard (1975) is
considerably more sophisticated from the mathematical point of view
so that the analysis on feasible domain, sensitivity and uncertainty is
naturally enriched.

In flow configurations with changes in slope (hilly terrain), the
distribution of slug length and the maximum slug length must be pre-
dicted through transient models. To that end, models that track the
front and back of individual slugs can be used to evaluate their char-
acteristic lengths. For details on this approach, refer to the models of Al-
Safran et al. (2004) and Zhang et al. (2003), which resort to the first
principles for flow description. The unsteady velocity behavior of newly
initiated slugs was investigated in Al-Safran et al. (2013).

2.1. Comments on flow pattern map and slug frequency models

The topology of the geometry of two-phase flows is normally ex-
pressed in terms of flow pattern maps. However, because there exists in
the literature some disagreement in regard to the terms that best de-
scribe any observed phase distribution, different flow maps can be
found by different authors. The flow pattern maps of Mandhane et al.
(1974) and Taitel and Dukler (1976) are typical examples (Fig. 1).

In the following we refer to the map of Mandhane et al. (1974) due
to its large acceptance in the literature.

Based on empirical and mechanistic arguments, different methods
to predict the slug frequency v, have been proposed by several authors.
An obvious problem with most formulations is the difficulty to in-
corporate all variables that mostly affect slug frequency, including slug
initiation mechanisms, the superficial velocities of the liquid and gas
phases, the pipe diameter and inclination, and the properties of the
fluids. Zabaras (2000) and Al-Safran, (2009) reviewed the correlations
of several authors and in the process proposed their own.

Here, three correlations are briefly introduced.

Heywood and Richardson (1979). The correlation of Heywood and
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Richardson (1979) was developed for air-water slug flows in a 42 mm
diameter pipe. The correlation is expressed in dimensional parameters
(SI units) and is given by

2.02

v = 0.036475 202
vo.\ D

V2 1.06
+ —’")
gb @

where Vs is the liquid superficial velocity, V;, is the mixture velocity, g
is the acceleration of gravity and D is the pipe diameter.

Manolis et al. (1995). The correlation of Manolis et al. (1995) in-
troduces a correction on the correlation of Gregory and Scott (1969) to
better represent low frequency slug flow. The equation in SI units can

be cast as
]1.8
where Vi, in = 5 ms™.

Zabaras (2000). The formulation of Gregory and Scott (1969) also
lays ground for the correlation of Zabaras (2000). Zabaras analized 339
data points to propose a correlation that incorporates the effects of pipe
slope. The correlation of Zabaras is expressed in English units and is
given by

1.2
v = 0.0226(@) [lg'j +
gD

143

3, = 0,0037 Ve [ Vmin * Vi
t . gD

Vin @)

1.2
Vm] [0.836 + 2.75sin%25(8)]

Vin 3

where f is the inclination angle measured from the horizontal.
2.2. The model of Dukler and Hubbard (1975)

The idealized slug model of Dukler and Hubbard (1975) consists of a
long bubble traveling over a liquid film that is followed by a liquid plug
with a strong mixing region at the front; the latter structure is referred
to in literature as the liquid slug (or simply “slug”). Since in the film
region pressure is essentially constant, pressure losses are confined to
the slug region where they can be considered to arise from two effects:
the acceleration of the slow moving liquid film to slug velocity and the
pressure loss required to overcome the wall shear stress in the main part
of the slug (Dukler and Hubbard, 1975).

The general configuration of the model of Dukler and Hubbard
(1975) is presented in Fig. 2, together with some of the relevant
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Fig. 1. The two-phase horizontal flow pattern maps of Mandhane et al. (1974)
and Taitel and Dukler (1976) for pipes with D = 0.05 m.
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Fig. 2. Unit cell model structure according to Dukler
and Hubbard (1975).
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parameters. For a complete description of the model, the reader is re-
ferred to the original source or alternatively to Bandeira et al. (2017). In
particular, the present notation is based on Bandeira et al. (2017). Note
that difficulties (to be discussed in the present contribution) found in
the implementation of the model of Dukler and Hubbard (1975) have
led authors to introduce the original formulation in different forms.
Here, we follow the original developments, as described in Bandeira
et al. (2017).

The system of equations introduced by Dukler and Hubbard (1975)
must be solved to determine I; and Ry, the liquid holdup of the film just
before pick-up. These equations, however, can be rearranged to result
in a single equation to &, (6 is the angle that subtends the liquid film;
see Dukler and Hubbard (1975)).

The final form of the equation to 6, is

Os
TR = [, W*©de - 7@ =0,

@
with
3y R? 1 %(7s;j:ns)sin%+sinzgcosg _ lcosﬁ
(e —sing )2 Fr 1 - cos 2772
27
w*() = o - (s_sms) ,
B(6 —sin e 26 2 .
0.0791(79 Res) B + 37 sing ©
and
%(6y) = Vs wL _ Qfe - sinefe
'fe -VD[R _ (sfe—sinefe)] PLAVs 27
t S 2
+ G R. — w — i
el 2 vtD' 6)

The feasible domain of the model of Dukler and Hubbard (1975) is
studied next in connection with parameter ¥(6p).

2.3. The model of Orell (2005)

The model of Orell (2005) is a simplification of the model in-
troduced by Taitel and Barnea (1990), which considers uniform film
thickness. The model also takes into account the increase of the ap-
parent viscosity in the liquid slug due to the presence of air bubbles.
The general configuration of the model together with some of the re-
levant parameters are shown in Fig. 3.

The details of the model can be obtained in Orell (2005) or else in
Bandeira et al. (2017). The model is based on a non-linear system of
equations that has to be solved for the variables: 6, V}, Vg, I;/1,. In fact,
the system of equations can be written in terms of 0, so that just one

transcendental equation needs to be solved numerically.

The model evaluates the pressure gradient directly, without the
need to specify the pressure drop per unit cell. As such, no information
about frequency or slug length is necessary.

3. Evolution model, the model of Cook and Behnia (2000a)

The model of Cook and Behnia (2000a) is based on the work of
Barnea and Taitel (1993). Both models determine the statistical dis-
tribution of slug lengths from an empirical expression that defines the
rate of collapse of short slugs as a function of their lengths. The models
of Barnea and Taitel (1993) and Cook and Behnia (2000a) differ
through the specification of distinct evolution laws. Cook and Behnia
(2000a) used their own experimental data whereas Barnea and Taitel
(1993) fitted the data of Moissis and Griffith (1962). The model is
purely evolutionary. Once the translational velocities of the front and
rear of randomly distributed slugs are assigned through the working
empirical expressions, the motion of the slug can be described through
a simple marching process. The models at no instant resort to the first
principles; thus, no dynamic equation of motion is solved.

The details of the model can be obtained directly from Cook and
Behnia (2000a). Basically, the evolution of a slug is described by the
displacement of the slug front (F) and rear (R) through propagation
equations. A slug is said to collapse as R approaches F and the number
of each slug behind it decreases by one (Cook and Behnia, 2000a). The
results of Barnea and Taitel (1993) and of Cook and Behnia (2000a)
show that for large enough distances from the entrance section, the
distribution of the lengths of the slugs is insensitive to the initial
random distribution.

4. Feasible domain of the Dukler and Hubbard (1975) model

The model of Dukler and Hubbard (1975) is examined so as to have
its feasible domain determined.

Of course, flow pattern maps only express the expected configura-
tion to be found in flows with specified gas and liquid superficial ve-
locities. They do not provide information on the passage interval of long
bubbles, which is an input parameter of great importance to mechan-
istic models.

Thus, as presented in literature, flow pattern maps are invariant
with respect to slug frequency. An implicit assumption in their con-
struction is that given the gas and liquid superficial velocities and the
pipe diameter and inclination, a certain slug frequency is fixed.
However, given the different formulations found in literature for v;, the
input data corresponding to a well defined point (location) in a given
flow pattern map may be associated to different values of v;, which may

/ / Fig. 3. Unit cell model structure according to Orell
J f s (2005).
o
V, © ° o V. © o
> s o
o o o .
°© o °o Vv, —> o 5 o o © ©° | o
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or may not result in justified mathematical operations. Indeed, the
feasible domain of the system of equations that compose the models
requires that all mathematical operations be justifiable and these op-
erations are sensitive to the specification of ;.

For the D&H model three non-conformities are observed:

1 Failure in finding a real root to Eq. (4), a mathematical constraint.

2 Zero or negative value to the liquid slug length: [; < 0, a physical
constraint.

3 Length of the mixing vortex region higher than the total length of
the liquid slug: I; < 1,,, a physical constraint.

The sensitivity of the feasible domain of the D&H model to changes
in v, is illustrated in Fig. 4 for two slug frequencies, v, = 0.1 and 10
s~ 1. This is a purely mathematical exercise, conceived to show how the
model responds to input datum on ;. In the region of elongated bubbles
the model accepts inputs that may vary an order of magnitude and still
furnishes feasible solutions. In the slug flow region the model may fail
against over predicted estimations of v, but returns output for under
predicted guesses. What Fig. 4 illustrates is the sensitivity of the feasible
domain to choices of v, obtained from the several available correlations.
Expressions that for a given flow condition yield a lower v, result in a
larger feasible domain.

The feasible domain of the D&H model with the input of v, given by
Eq. (3) is shown in Fig. 5. This figure also shows the distribution of the
non-conformities 1, 2, 3. The feasible domain includes large portions of
the regions of stratified and dispersed flows. However, a large portion
of experimentally observed slug flow region is out of the range of the
model due to non-conformities 2 and 3.

The behavior of the function 7(6y.), Eq. (4), for four flow conditions
is shown in Fig. 6. These conditions are representative of the region of
valid formulation (slug flow (a)), and the three typical regions where
roots cannot be found (the regions of stratified flow (b), dispersed flow
(c) and wavy flow (d)). In the dispersed flow region, 7(6) is always
positive, so that no root can be determined. In the regions of stratified
and wavy flows ¥ (6y) is always negative.

The sensitivity of the feasible domain to other slug flow frequency
correlations is shown in Fig. 7, where results are illustrated for the
correlations of Heywood and Richardson (1979) and Manolis et al.
(1995). All three feasible domains bear much likeness, but differences

=
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T T T T T 1
10 & W & @ @ ® @ + + +—=
E Dispersed flow /5
= 56 OO O PSS+ + + +
C ® o 00 p®d+ + + + /2
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g 01 ® @& 0 @ + + Annular
9 = & @ & + + + 3
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& + + + +
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o+ ov=01st T =
L N ]
0.001 & © Vv=10s" —— Mandhane etal. _|
Bol vl vl vl 4y i
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Vs [ms™]

Fig. 4. Comparison between the feasible domain of the model of Dukler and
Hubbard (1975) and the flow pattern map of Mandhane et al. (1974) for two
slug frequencies, v, = 0.1 and 10 s~ L
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are noticeable. The domain obtained through the correlation of Manolis
et al. (1995) is the largest. None of the correlations cover the entire slug
flow domain, they all fail for Vgg > 6 ms™.

5. Feasible domain of the Orell model

Even the simplified model of Orell (2005) suffers from some non-
conformities. In fact, the two identified non-conformities are related to
the length of the liquid slug and can be summarized as:

1 Liquid slug length greater than the unit cell length or negative: /1,
< 0 or Iy/l, > 1, two physical constraints.

The feasible domain of the Orell model is shown in Fig. 8. The top
left area of the region of elongated bubbles — much in the same way as
the D&H - is not covered by the model. However, and unlike the D&H
model, the following features are observed:

e In a large portion of the region of annular flow feasible results are
obtained.

® A less pronounced (as compared to the model of D&H) but still large
region of feasible solution is noted in the region of stratified flow.

Figs. 5 and 8 illustrate how different the feasible domain of models
can be depending on their constitutive hypotheses.

6. Experiments
6.1. Experimental facilities and instrumentation

To discuss the sensitivity of the Dukler and Hubbard (1975) model
to input distributions and the appropriateness of the Cook and Behnia
(2000a) model to generate distributions of v,, a new set of experiments
is presented here. As previously mentioned, distributions of v, [ and
results for AP are provided.

A general overview of the horizontal multiphase flow loop is pre-
sented in Fig. 9. The test facility consists of an acrylic pipe with total
length of 12m and internal diameter of 44.2 mm. A volumetric pump
was used to transport water at a constant flow rate. An air compressor
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Fig. 6. Behavior of the function #(6s.), Eq. (4), for the flow conditions: (a) slug flow, (b) stratified flow, (c) dispersed flow, (d) wavy flow.

(Schulz SRS 60) injected dry air into the system through a T-junction at
the pipe inlet. The liquid flow rate was controlled through an electro-
magnetic flow meter (Endress Hauser Promag 10P40), which has an
overall uncertainty of 0.5% of the reading. The gas flow rate was
measured with a vortex flow meter (Techmeter FLP04-G2NA) which
has an overall uncertainty of 3% of the reading. Absolute pressure
(Rosemount 800 PSI) and temperature (Siberius KT300) were measured
to determine the air properties at the flow condition. A differential
pressure transducer (Endress Hauser Deltabar PMD55), with an overall
uncertainty of 0.2% of the upper range limit, was used to measure the
pressure gradient along the pipe through a total of twenty pressure taps.
All experiments were performed at an ambient temperature of about

3
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22.0 °C. The superficial liquid and gas velocities varied in the respective
intervals [0.72, 1.81] ms™! and [0.2, 0.8] ms ™ L.

The observation sections were enclosed by rectangular acrylic
boxes; the space between the flat walls and the pipe was filled with
deionized water to minimize optical distortions.

The tested gas and liquid flow rates are shown in Table 1.

The characteristics of the dispersed and continuous phases of the
flow were determined through the Dantec Dynamics Shadow Sizer
System (SSS) and Particle Image Velocimetry (PIV). The present pro-
cedures are improved versions of the methodologies described in
Magalhaes et al. (2013) and Matamoros et al. (2014).

Bubble characteristics, including length, translational velocity and
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Fig. 7. Sensitivity of the feasible domain of the model of Dukler and Hubbard (1975) to different slug frequency correlations. (a) Heywood and Richardson (1979);

(b) Manolis et al. (1995).
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Fig. 8. Assessment of the feasible domain of the model of Orell (2005). Crosses:
valid region; circles: I;/l, < 0 or I/I, > 1.

frequency, were measured with the Shadow Sizer System. Images were
simultaneously acquired at Stations 1 and 2 (Fig. 9) through two
SpeedSense M310 cameras (1280 x 1024 pixels, 3260 fps) fitted with
lenses AF D Micro-Nikkor 60 mm f/2.8. Two constellation LED systems
were used with light diffusers to provide adequate background illumi-
nation. The image illumination and lens focus were adjusted to provide
a high contrast between the bubble contour and the background. The
size of the field of view was measured and related to the camera pixels
by a calibration procedure.

For system synchronization and image acquisition, the software
Dynamic Studio of Dantec Dynamics Inc. was used (version 2015a).
Image processing was made with a dedicated algorithm written in the
software Wolfram Mathematica™. A series of image processing opera-
tions, including subtraction of the mean background and binarization
were applied to make the contour of the bubbles sharply defined.
Bubble reconstruction was made with the tracking method described in
Matamoros et al. (2014). Two sets of 5000 images acquired at a rate of
100 Hz were obtained for the measurement of bubble statistics. The
contour detection algorithm was used to identify the successive posi-
tions of the bubble nose in a sequence of frames. The bubble velocity
was calculated by measuring the nose displacement along the field of
view at the corresponding elapsed time. Velocity was estimated from a
least-square fit. Considering each measured bubble velocity constant,
the evaluation of the time interval between the bubble nose and tail
furnishes the bubble length. The passage frequency of long bubbles was
given by the inverse of the elapsed time between subsequent detected

Journal of Petroleum Science and Engineering 169 (2018) 705-724

Table 1

Gas and liquid flow rates used in the experiments.
Experiment Vis[ms™] Vgs [ms™1]
T1 0.72 0.27
T2 0.72 0.49
T3 0.72 0.78
T4 1.27 0.22
TS 1.27 0.42
T6 1.27 0.68
T7 1.81 0.21
T8 1.81 0.43
T9 1.81 0.65

noses. A detailed description of the methodology used in the present
work can be found in Matamoros et al. (2014).

Measurement uncertainties have been evaluated according to the
procedure recommended by the Guide to the Expression of Uncertainty
in Measurement (JCGM, 2010). The combined standard uncertainty,
obtained from the square root of the sum of variances estimated from
sources of type A (aleatory) and type B (systematic), is multiplied by the
coverage factor to calculate the expanded or overall uncertainty. Since
the effective degrees of freedom is higher than 150, the coverage factor
chosen for the expression of an interval around the mean value that
expresses a 95% level of confidence was 1.96. The overall relative
uncertainty for the passage frequency, bubble velocity and bubble
length are 1.1%, 1.3% and 6.2%, respectively.

Simultaneous 2D PIV and Shadow Sizer Technique have been used
at Station 2, following the procedure introduced by Nogueira et al.
(2003). The continuous phase is seeded with fluorescent Rhodamine
particles, which scatter light a wavelength of around 590 nm. The LED
background illumination was covered with an orange diffuser in order
to shed light at approximately the same wavelength of the fluorescent
particles. A red filter is fitted in the camera lens to allow the passage of
wavelengths above 570 nm, blocking the green laser reflections emitted
at 532 nm.

The synchronization between the SpeedSense M310 camera, the Nd-
YAG double-pulsed laser and the LED is done so that each frame is
simultaneously exposed to both light sources. The acquired images thus
contain the seed particles and a well-defined bubble shape information.

6.2. Slug flow development length

The general flow pattern observed in the experiments is shown in
Fig. 10. The mixing caused by injection of air through the tee junction
results in flow patterns where many small bubbles remain dispersed in
the upper part of the liquid slug for high mixture velocities.

To investigate the degree of development of the flow for the several
gas and water flow rates, measurements were conducted at stations
located 4500 and 9000 mm away from the entrance (L/D = 100 and
200 respectively). For a given train of bubbles, their number, velocities
and lengths were assessed. The synchronized counting system considers

ortex i
4.5m 45m flowmeter Com/;i::ssor
(20) Pressure Taps —
e e POPOD | wagneic

H Station 2 H Station 1

flowmeter
=)
—

Water
Storage

N —>
N

Return Pipe

Volumetric Pump

Fig. 9. Schematic diagram of the multiphase flow loop.
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Fig. 11. Number of recorded bubbles at positions 4500 and 9000 mm down-
stream of the inlet, for five experimental conditions.

the estimated translational velocity of the bubbles and a correlation
algorithm. Fig. 11 shows the average number of registered bubbles at
both positions for five experimental conditions. Changes in the number
of bubbles were of the order of 7.1% (+3.6%). The flow was thus re-
latively stable at position 9000 mm.

The above results agree with the study of Ujang et al. (2006). The
pipe length and diameter for the experiments of Ujang et al. (2006)
were respectively 37,000 and 78 mm and the inlet conditions were so
controlled as to initiate slugs from stratified flows. In this case, the
accepted formation mechanism is wave growth. Once formed, the
growth, stabilization or reduction in size of a slug depends on the
balance between the amount of liquid picked up from the preceding
film and the amount of liquid shed at its rear. The superficial liquid and
gas velocities in the experiments of Ujang et al. (2006) ranged respec-
tively in the intervals [0.22, 0.61] ms ' and [2.27, 2.55] ms ™~ '. For most
conditions, a stable slug frequency was observed downstream of the
position L/D = 90. In some extreme conditions, stabilization was
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~
0.2

0.1

0 02 04 06 08 1
Iy [m]

1.2

1.4

Journal of Petroleum Science and Engineering 169 (2018) 705-724

Fig. 10. Air-water slug flow patterns for: (a) Vis = 0.72m/s
and Vg = 0.27 m/s, (b) Vs = 1.27 m/s and Vg5 = 0.22m/s,
(c) Vis = 1.81 m/s and Vs = 0.43m/s.

always obtained for L/D > 150. Note that, for the present experiments,
the high mixing caused by the air injection into the main pipe through a
T-junction shortens the required length for slug formation.

The distributions of the lengths and velocities of bubbles at the two
measuring positions are shown in Figs. 12 and 13. The reduction in the
number of bubbles between measuring positions is a result of bubble
coalescence, provoked by the existence of liquid slugs that are shorter than
the minimum stable length. The small number of coalescing bubbles
means that the distributions of long bubble lengths vary very little from
one position to the other. Figs. 12 and 13 show that the length and velocity
distributions are almost identical for all conditions. The conclusion is that
the flow is very near to an equilibrium (stationary) condition.

6.3. Global flow parameters: dP/dx, l;, v, and V;

Fig. 14 showns the pressure gradient, film length, passage frequency
of bubbles and translational velocity for all tested conditions. The fol-
lowing trends (some of them evident) are readily observed:

—_

. The increase of V5 or Vs increases dP/dx as expected.

. The increase of Vi s decreases I;. The increase in Vs increases ;.

3. The increase of V;5 increases v,. The increase in Vs has little effect
on .

4. V; increases with increasing Vs or Vgs.

N

Fig. 14 is important, since it shows the quantitative behavior of the
most important flow parameters. The maximum bubble and liquid slug
lengths observed were respectively 1.45 and 0.94 m (for different flow
conditions, T1 to T9).

For the sake for completeness, the local mean velocities of the
continuous phase in the slug and film regions are shown in Fig. 15.

7. Sensitivity of the Dukler and Hubbard (1975) model

The response of the model of Dukler and Hubbard (1975) to input
frequency distributions is discussed next. In the present section, the
analysis is focused on the influence that the input frequency distribu-
tion exerts on the predicted distributions furnished by the model, e.g.,
the length of the liquid slug (I;) and the pressure gradient.

05 T | T | T | T | T | T | T
L (b) Experiment T3 -1
04 - Station 1 _
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B —— Gaussian distribution |
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S~ - -]
0.2
0.1
0
0 02 04 06 08 1 12 14

[;[m]

Fig. 12. The distribution of the lengths of bubbles at positions 4500 and 9000 mm for conditions T1 and T3.
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Fig. 13. The distribution of the velocities of bubbles at positions 4500 and 9000 mm for conditions T1 and T3.

In addition, this section also investigates the influence of the input
coefficient of variance on the dispersion of the resulting calculated
variables. With this respect, the mean, the variance and the coefficient
of variance of a given data set were evaluated, respectively, through the

relations:
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According to Taitel and Barnea (1990), the available experimental
data support the notion that the average length of liquid slugs is in-
sensitive to the gas and liquid superficial velocities. In horizontal flows,
the average length of liquid slugs varies between 12 and 40 pipe dia-
meters, whereas in vertical flow this range changes to 8-25 (Nicholson
et al., 1978). Many authors (see, e.g., Nydal et al. (1992), Van Hout
et al. (2001) and Al-Safran et al. (2005)) note that the distribution of
the liquid slug lengths is skewed and follow a log-normal distribution.

Al-Safran, (2016) suggests a Poisson probability distribution to de-
scribe the passage frequency of slugs in horizontal pipes. Ujang et al.
(2006) observed that a Poisson distribution can be used to correlate the
process of slug initiation. However, once slugs reach a developed state,
the slug lengths and frequency are best represented by a log-normal
distribution.

The typical pdf distributions used in the description of liquid slug
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Fig. 14. Total pressure gradient (dP/dx), film length (I;), passage frequency of bubbles (v,) and translational velocity (V;) for all tested conditions.
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Fig. 15. Local mean velocity profiles in the continuous phase of the slug and film. Experimental conditions according to Table 1.

Table 2
PDF distributions used in the description of liquid slug lengths.
PDF Parameters Reference
Log-normal 7(]nx—;,1)2 u, o Van Hout et al. (2001),
PR 202 Brill et al. (1981),
Nydal et al. (1992)
Inverse Gaussian 12 A (x—p)? u, A Dhulesia et al. (1991),
L) exp 2x Al-Safran et al. (2005)
23
Gamma B %= lexp=X/B a, B Nieckele et al. (2013)

I'(a)

lengths are shown in Table 2.

To decide how well a given data set follows a specific distribution,
the Kolmogorov-Smirnov test was used. The Kolmogorov-Smirnov test
statistic is defined by

D, = max|F (x) — F,(x)|. (10)
If F (x) is the theoretical population cumulative distribution and F, (x) is
the observed cumulative step-function of a sample, then the distribution
of this supremum is known and is independent of F(x), if F(x) is
continuous (Massey, 1951).

The critical value, D, (n), depends on the sample size (n) and on the
level of significance (a) such that the probability P[ max
|F,(x) — F(x)| > D;(n)] = a. At the 95% confidence level (@ = 0.05)
and large sample sizes (n > 35), the critical value is 1.36//n. If the test
statistic (D,) is smaller than the critical value for a given level of sig-
nificance, the hypothesis that the true distribution is F(x) is not re-
jected. D, (n) can be considered as a margin surrounding the theoretical
distribution. If the distance between the observed and the theoretical
distribution is larger than this margin at any point (D, > D,(n)), the
null hypothesis that samples come from F (x) is rejected.
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Fig. 16. Distributions of v, (present experiments).
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Table 3

Journal of Petroleum Science and Engineering 169 (2018) 705-724

Kolmogorov-Smirnov test statistics of the fitted distributions to v [Hz] (present experiments).

Exp. Cond. v Kolmogorov-Smirnov Test
Vis (ms™ 1) Vas (ms™ 1) n o cy Log-normal Normal Gamma Inverse Gaussian
0.72 0.27 1.06 0.36 0.34 0.06 0.11 0.08 0.06
0.72 0.50 1.25 0.58 0.47 0.07 0.15 0.10 0.08
0.72 0.78 1.41 0.61 0.43 0.07 0.15 0.10 0.08
1.27 0.22 3.36 1.69 0.50 0.07 0.16 0.10 0.07
1.27 0.42 3.38 1.29 0.38 0.06 0.12 0.08 0.06
1.27 0.68 3.44 1.37 0.40 0.05 0.08 0.06 0.05
1.81 0.21 4.86 1.97 0.41 0.06 0.13 0.08 0.06
1.81 0.43 5.37 1.90 0.35 0.05 0.10 0.07 0.05
1.81 0.65 5.03 2.73 0.54 0.07 0.18 0.10 0.08
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Fig. 17. Best-fitted distributions of [;/D: experiments and predictions (D&H model) at x = 9m from the inlet position.

7.1. Sensitivity of the Dukler and Hubbard (1975) model to input

distributions of v,

The present experimental data cover eight different conditions with
superficial velocities ranging from Vs = 0.72 ms™ to 1.81 ms™ and Vg
=0.21 ms™ to 0.78 ms™. The measured input frequencies (x = 9 m) are

715

shown in the histograms of Fig. 16. In fitted distributions, the con-
tinuous line indicates the best fitted distribution, whereas the dashed
and dot-dashed lines denote the second and third distribution that were
also not rejected by the Kolmogorov-Smirnov test.

An assessment of the goodness-of-fit for four types of distribution is
shown in Table 3. The distributions that were not rejected at the 5%
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Table 4
Comparison between the experimental values of the mean, standard deviation
and coefficient of variance of slug length data (I;/D) and predicted values (D&H
model).

Exp. Cond. Exp. Is/D Predicted ly/D from D&H

Vis (ms™)  Vos ms™Y) 4oy Gep Coep  Hpy oH Coppr
0.72 0.27 1345 526 039 1225 7.57 0.62
0.72 0.50 11.02 5.81 0.53 11.05 7.65 0.69
0.72 0.78 9.60 4.55 0.47 10.48 6.71 0.64
1.27 0.22 7.02 3.58 0.51 7.85 5.01 0.64
1.27 0.42 7.13 341 048 780 5.12 0.66
1.27 0.68 6.54 3.52 0.54 8.67 5.57 0.64
1.81 0.21 6.49 3.60 0.55 9.63 5.17 0.54
1.81 0.43 6.03 3.02 050 825 4.77 0.58

level of significance are highlighted in bold cases.

Fig. 16 and Table 3 show that both the Lognormal and the Inverse
Gaussian distributions are very similar. Since the statistics calculated
for the Inverse Gaussian distribution always present lower values, as
well as higher probability levels (not shown here), it is the one that best
fits the presently obtained experimental data for v,.

Fig. 17 shows the output distributions of I;/D obtained from the
model of Dukler and Hubbard (1975) compared with the present ex-
perimental data. The input data to the model are the pipe diameter, the
flow conditions and the passage frequency of slugs (obtained directly
from the experimental data).

Results for the mean, standard deviation and coefficient of variance
of the experimental values of /D are shown in Table 4, as compared
with the values obtained from the D&H model. In general, the predicted
values of I;/D show a percentage error relative to the experiments of
18%. The predicted values also overestimate o and ¢, by 47% and 27%
respectively.

The bold numbers in Table 5 illustrate the distributions that best fit
the experimental and predicted (D&H model) histograms of [;/D.

The measured values were best represented by Normal and Gamma
distributions. For low mixture velocities, the Normal distribution seems
to be the more appropriate, whereas for high mixture velocities the
distributions follow a Gamma distribution behavior. Values predicted
through the D&H model follow a different behavior. In this case, and for
most of the experimental conditions, the histograms are best re-
presented by a Lognormal distribution. Concerning the high superficial
velocities, distributions are best fitted by a Gamma distribution.

Predicted values of AP are shown in Fig. 18. Results for dP/dx follow
the same trend and for this reason are not shown here. Statistics for the
fitted distributions are shown in Table 6. These results show that esti-
mations of dP and dP/dx can be well represented through Lognormal or
Inverse Gaussian distributions, much the same as the distributions of v,
used for the inlet condition of the D&H model (Fig. 16). As previously
observed, no significant difference can be noted between the Lognormal
and Inverse Gaussian behaviors.

Table 5

Journal of Petroleum Science and Engineering 169 (2018) 705-724

7.2. Sensitivity of the Dukler and Hubbard (1975) model to input data from
Ujang et al. (2006)

The experiments of Ujang et al. (2006) are used for a further and
independent assessment of the sensitivity of the D&H model to input
data of v,. The tests were carried out for air-water flow in a pipe with
37 m in length and internal diameter of 0.078 m. Five different base
flow conditions were studied, with superficial velocities ranging in the
intervals Vg = 0.22 ms™ t0 0.61ms™ and Vg = 2.27 ms™! to 2.55 ms™.
The experiments of Ujang et al. (2006) were particularly selected for
they include data on both distributions of v and ;. The works of Van
Hout et al. (2001) and Cook and Behnia (2000a) do not present data on
the distribution of v,.

The present comparison was made against the conditions defined in
Fig. 19. The input frequency distributions were taken directly from the
parameters of the log-normal distribution provided in the original work
from data at positions x = 0 and 30 m.

The returned output values of I;/D, dP and dP/dx are presented in
Fig. 19, where the lines represent the distributions that were not re-
jected at the 5% level based on the Kolmogorov-Smirnov test.

Table 7 presents data for the mean, standard deviation and coeffi-
cient of variance from the log-normal experimental distribution in
comparison to analogous values obtained from the predictions of the
Dukler and Hubbard (1975) model. Typically, the calculated values of
I;/D show a small percentage error relative to the experiments of the
order of 1.5%. The unit cell model also furnished a standard deviation
of the predicted [;/D that was, on average, 2.3 times higher than the
experimental results, while the coefficient of variance exceeded the
experimental values by the same amount.

Regarding the mean values of I;/D, the unit cell model has provided
better agreement with the experimental data of Ujang et al. (2006) than
with the present experimental results. On the other hand, the dataset of
Ujang et al. (2006) resulted in much larger values of the predicted
standard deviation and coefficients of variance (see Table 4).

The statistics for the Kolmogorov-Smirnov test of the fitted dis-
tributions of predicted values of I;/D, dP and dP/dx are shown in
Table 8. The predicted lengths of liquid slugs follow a Log-normal
distribution, but a Gamma distribution has also shown good agree-
ment for two out of three experimental conditions. Distributions of
dP and dP/dx are also satisfactorily represented by either Log-normal
or Inverse-Gaussian distributions. Fig. 19 shows that only small dif-
ferences can be noted between Log-normal and Inverse-Gaussian
distributions. The behavior of the Gamma distributions is observed in
Fig. 19b, ¢, d, f, g.

7.3. Sensitivity of the Dukler and Hubbard (1975) model to the input
coefficient of variance c,

The behavior of both ¢, (AP/l,) and c,(l;/D) (as predicted through
the D&H model) for a varying c,(v;) is shown in Fig. 20. Results show
that both parameters vary linearly with c,(v;). However, changes in

Kolmogorov-Smirnov test statistics of the fitted experimental distributions of [;/D in comparison to results obtained through the D&H model.

Exp. Cond. K-S test, fit of exp. Is/D K-S test, fit of D&H model

Vis (ms™1) Vgs (ms™ 1) Log-normal Normal Gamma Inverse Gaussian Log-normal Normal Gamma Inverse Gaussian
0.72 0.27 0.19 0.14 0.18 0.22 0.07 0.14 0.07 0.07

0.72 0.50 0.17 0.09 0.13 0.24 0.06 0.16 0.10 0.06

0.72 0.78 0.17 0.09 0.15 0.20 0.07 0.11 0.06 0.09

1.27 0.22 0.08 0.09 0.05 0.09 0.07 0.10 0.06 0.08

1.27 0.42 0.08 0.07 0.08 0.10 0.07 0.11 0.06 0.08

1.27 0.68 0.07 0.10 0.04 0.10 0.03 0.11 0.05 0.03

1.81 0.21 0.08 0.08 0.05 0.11 0.11 0.06 0.08 0.13

1.81 0.43 0.08 0.08 0.06 0.10 0.04 0.09 0.03 0.05
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Fig. 18. Distributions of dP (model of D&H) at x = 9 m from the inlet position (present experiments).

Table 6

Kolmogorov-Smirnov test statistic of the fitted distributions to the pressure change and pressure gradient estimated from the D&H model.

Exp. Cond. K-S test, dP from D&H K-S test, dP/dx from D&H

Vis (ms™1) Vos (ms™ 1) Log-normal Normal Gamma Inverse Gaussian Log-normal Normal Gamma Inverse Gaussian
0.72 0.27 0.10 0.14 0.11 0.10 0.08 0.15 0.10 0.08

0.72 0.50 0.12 0.15 0.12 0.12 0.08 0.11 0.08 0.08

0.72 0.78 0.06 0.10 0.07 0.06 0.11 0.14 0.11 0.11

1.27 0.22 0.07 0.10 0.08 0.08 0.11 0.16 0.11 0.11

1.27 0.42 0.06 0.12 0.09 0.06 0.10 0.14 0.11 0.10

1.27 0.68 0.05 0.10 0.06 0.05 0.06 0.09 0.06 0.06

1.81 0.21 0.07 0.07 0.05 0.08 0.17 0.22 0.18 0.17

1.81 0.43 0.02 0.08 0.04 0.03 0.07 0.10 0.07 0.07

The distributions that were not rejected at the 5% level of significance are highlighted in bold cases.

¢, (v,) are specially relevant to predictions of I;/D. A coefficient of var-
iation of 0.6 for v, corresponds to a c, of 0.11 for AP/l,. On the other
hand, for the same ¢, (v;) (= 0.6), a value of 1.2 is found for c,(l;/D).
Thus, relatively large variations on the prediction of v, have a small
effect on the determination of AP/I, but a large effect on I;/D.

The present experiments and the data of Ujang et al. (2006) tend to
corroborate this finding (Fig. 21). Despite the large scatter in the data,
the coefficient of variance of [/D is consistently higher than the
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coefficient of variance of AP/I, for a given v,. According to the ex-
periments, a c¢,(»)= 0.6 corresponds to c,(AP/l,)= 0.64 (present) and
0.25 (Ujang et al., 2006) and c¢,(l;/D)= 0.77 (present) and 1.0 (Ujang
et al., 2006).

8. Slug flow predictions with evolution models

The equation of Cook and Behnia (2000a) is investigated in this
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Fig. 19. Histograms (D&H model) obtained through input Log-normal distributions of Ujang et al. (2006): I;/D, dP e dP/dx at x = 30 m. Lines denote the fitted
distributions to the predicted data.

Table 7 Table 8
Comparison between the experimental data of Ujang et al. (2006) for the mean, Kolmogorov-Smirnov test statistics for I;/D, dP and dP/dx distributions ob-
standard deviation and coefficient of variance of the slug length data (I;/D) and tained by the D&H model with input v, distributions based on the data of Ujang
the corresponding predicted values by the D&H model. et al. (2006).

Exp. Cond. (Is/D)exp (Is/D)p&H Exp. Cond. K-S test, I;/D from D&H

-1 -1 -1 -1 = .
Vis (ms™ ") Vos (ms™ ") HNexp OLNexp Crexp MeNpsr GNPy Cupy Vis(ms™") Vgs (ms™') Log-normal Normal Gamma Inverse Gaussian

0.61 2.55 3.22 0.44 0.14 273 0.91 0.33 g'gi 421.22 g':g g'f; 8'32 g';;
0.61 4.64 3.17 0.33 0.10  3.47 1.12 0.32 041 936 0.10 0.08 0.07 013
0.41 2.36 3.24 0.41 0.13  3.29 0.56 0.17 : : : : : :
Exp. Cond. K-S test, dP from D&H
section. The analysis considers the evolution of mean values and stan- 0.61 255 0.17 0.22 0.17 0.18
dard deviation of liquid slug lengths (I;/D) and time intervals between 0.61 4.64 0.07 0.12 0.09 0.07
subsequent slugs (T). The data of Ujang et al. (2006) and the present 0.41 2.36 0.06 0.07 0.06 0.06
data are used for model validation.
. ) . . . . Exp. Cond. K-S test, dP/dx from D&H
About 10,000 unit cells are considered in the simulations. The time
step is 0.005s. A convergence test showed that an increase in the 0.61 2.55 0.15 0.12 0.13 0.15
number of cells or a decrease in the time step resulted in a variation of 0.61 4.64 0.09 0.12 0.10 0.09
0.41 2.36 0.08 0.11 0.09 0.08

less than 1% in the mean length of the liquid slugs.
The model of Cook and Behnia (2000a) is observed to be extremely
sensitive to the choice of the bubble propagation velocity relation. In

The distributions that were not rejected at the 5% level of significance are
highlighted in bold cases.
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fact, the sensitivity of this important closure parameter is known to be
deficiently discussed in literature.

Fig. 22 shows a comparison between the mean and the root-mean
square values of the liquid slug lengths and time interval between slugs
obtained from the Cook and Behnia (2000a) model and the data of
Ujang et al. (2006).

One clear tendency of the computations is to smoothly increase the
slug lengths along the distance from the inlet. For the flow conditions of
Vis = 0. 61ms ™ !and Vg = 2.55ms~ ' and 4.64 ms ™, the mean relative

error between predictions and experimental results was 23% and 18%,
respectively. The lower liquid velocity condition provided a mean re-
lative error of 35.5%. Fig. 22a shows that up to 10 m, the experimental
and the numerical data are relatively close. However, at the last posi-
tion (x = 30m) the difference between experiments and numerical
prediction were as high as 46%.

The standard deviation of predicted values of I;/D are shown in
Fig. 22b. The experimental data present a nearly linear growth along
the pipe length. This tendency is not predicted by the Cook and Behnia
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Fig. 22. Evolution of the mean and the root-mean square values of the liquid slug lengths, I;/D, and of the time interval between slugs, T, obtained from the Cook and

Behnia (2000a) model in comparison to the data of Ujang et al. (2006).

(2000a) model, which shows a smooth growth of o (l;/D) up to 23 m,
followed by a slight decrease at x = 30 m, where relative errors are as
high as 67%.

Due to the merging process, and as expected, the experiments show
that the time interval between slugs (T) increases with the downstream
distance and eventually reaches a stable state (Fig. 22¢). The predicted
behavior follows the same trend, but relative errors are of the order of
70%. The standard deviation of T shows an almost constant value along
the pipe length (Fig. 22d). Theoretical predictions tend to increase
linearly with distance from the pipe inlet.

The above discussion is further illustrated with an analysis of the
experimental distributions of v, obtained in the present work (Fig. 23).
The overall agreement between the theoretical predictions and the
experimental data is reasonable, as shown also in Table 9. Agreement of
theory with the experimental data is poor for the low liquid velocity
conditions. For the other experimental conditions, predicted mean va-
lues of v, lie within 15% of the experimental data.

Fig. 23 also shows the suggested distributions to the values of v,
obtained through the model of C&B. The statistics for the distributions
that were not rejected at the 5% level based on the Kolmogorov-
Smirnov test are highlighted in bold cases in Table 10. Note that the C&
B model correctly predicts the behavior of v according to Log-normal or
Inverse Gaussian distributions.

Fig. 24 compares distributions of /D obtained from the model of C
&B with the present experimental data. Despite the clear changes in I;/D
with the experimental conditions, the predictions showed insensitivity
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with changes in the input gas and liquid superficial velocities. The
model of Cook and Behnia (2000a) tends to furnish /D = 13 for all
present experimental conditions, as illustrated in Table 11. The pre-
dicted coefficient of variance for [;/D is approximately 22% smaller that
the experimental value.

The statistics for the distributions of [;/D that were not rejected at
the 5% level based on the Kolmogorov-Smirnov test are highlighted
in bold cases in Table 12. Differently from the Dukler and Hubbard
model, the equation of Cook and Behnia (2000a) provided estimates
for the slug length distributions that followed either a Normal or
Gamma distributions. The results are in good agreement with ex-
perimental results, as shown in Table 5. In summary, although the
equation of Cook and Behnia does not correctly predicts the mean
value of slug lengths, it does reflect the correct behavior of [/D
distribution.

The above results suggest that the C&B model may be used to
generate input distributions of T (= ;') to be used in unit-cell models.
On the other hand, the percentage error of I;/D found with a directly
application of the model of Cook and Behnia (2000a) is 77%.

Results on predictions of the mean values of v, [/D and dP/dx are
consolidated in Fig. 25. The general agreement with the data for the
predictions of v, (through C&B model) is very good (Fig. 25a). The in-
crease in Vs for a fixed Vis always results in a decrease of [;/D. How-
ever, the model of C&B is not capable of capturing this change. The
model tends to furnish the same value of I;/D for the several experi-
mental conditions. Computations based on the D&H model, however,
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Fig. 23. Distributions of v, according to the model of Cook and Behnia (2000a) against the present experimental data.

Table 9

Comparison between the experimental values of the mean, standard deviation
and coefficient of variance of v, and the corresponding predicted values by the
model of Cook and Behnia (2000a).

Exp. Cond v (present data) v from Cook and Behnia (2000a)
Vis s Vos (Ms™)  fpy  Oep  Cop  He ocs Cocp
0.72 0.27 1.06 0.36 0.34 2.20 0.89 0.41
0.72 0.50 1.25 0.58 0.47 2.12 0.84 0.40
0.72 0.78 1.41 0.61 0.43 2.03 0.78 0.38
1.27 0.22 3.36 1.69 0.50 3.73 1.71 0.46
1.27 0.42 3.38 1.29 0.38 3.67 1.48 0.40
1.27 0.68 3.44 1.37 0.40 3.60 1.39 0.39
1.81 0.21 4.86 1.97 041 5.67 3.65 0.64
1.81 0.43 5.37 1.90 0.35 5.14 2.27 0.44

tend to follow the changes (Fig. 25b). Results on pressure change are
shown in Fig. 25c. The model of C&B excessively over predicts the
experimental data, for all gas flow rates. The model of D&H performs
well.
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Table 10

Kolmogorov-Smirnov test statistics for the fitted distributions to v; estimated

from the C&B model.

Exp. Cond. v from C&B

Vis (ms™')  Vgs (ms™!) Log-normal Normal Gamma Inverse Gaussian
0.72 0.27 0.09 0.15 0.11 0.09

0.72 0.50 0.07 0.15 0.10 0.08

0.72 0.78 0.09 0.14 0.11 0.09

1.27 0.22 0.10 0.18 0.12 0.10

1.27 0.42 0.12 0.19 0.14 0.12

1.27 0.68 0.09 0.16 0.12 0.10

1.81 0.21 0.15 0.25 0.19 0.17

1.81 0.43 0.09 0.18 0.12 0.10

9. Final remarks

The present work shows how a distinction between the physical and
feasible domains is important in the numerical implementation of
models. Models that are expected to be applicable to certain conditions,
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Fig. 24. Distributions of [;/D according to the model of C&B against the present experimental data.
Table 12

Comparison between the experimental values of the mean, standard deviation
and coefficient of variance of the slug length data (I;/D) and the corresponding
predicted values by the C&B model.

Kolmogorov-Smirnov test statistics for the fitted distributions of the slug length
(I;/D) as estimated from the C&B model.

Exp. Cond. I;/D from C&B.
Exp. Cond Is/D (present data) Is/D from C&B

Vis (ms™)  Vgs (ms™!) Log-normal Normal Gamma Inverse Gaussian
Vis (ms™1)  Vgs (ms™Y) gy, Oexp Crexp Ucp OcB Cucp

0.72 0.27 0.13 0.05 0.09 0.20
0.72 0.27 1345 526 039 1292 497 0.38 0.72 0.50 0.14 0.04 0.10 0.18
0.72 0.50 11.02 581 053 1272 497 0.39 0.72 0.78 0.13 0.05 0.09 0.21
0.72 0.78 9.60 455 047 1261 494 0.39 1.27 0.22 0.11 0.04 0.07 0.14
1.27 0.22 7.02 358 051 1332 511  0.38 1.27 0.42 0.13 0.04 0.09 0.16
1.27 0.42 7.13 341 048 1272 467 0.37 127 0.68 0.10 0.05 0.08 0.11
1.27 0.68 6.54 352 054 1272 478 0.38 1.81 0.21 0.17 0.05 0.13 0.24
1.81 0.21 6.49 360 055 1282 515 0.0 181 0.43 0.11 0.03 0.08 0.14
1.81 0.43 6.03 302 050  13.06 490 0.38

may not be so due to some unjustifiable mathematical operation. The
model of Dukler and Hubbard (1975) was shown not to furnish math-
ematical solutions for flows with Vgg > 6 ms™.

The slug flow models of Cook and Behnia (2000a) and Dukler and
Hubbard (1975) can be combined to provide predictions on slug length
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distributions. The combination of these approaches avoids the need to
resort to an empirical expression for v,. The idea is to use the evolution
model of Cook and Behnia (2000a) to generate a frequency distribution
to be used as an input parameter in the mechanistic model of Dukler
and Hubbard (1975). The predicted distributions of pressure drop and
slug length are shown to be a good match to experimental data.



G.F.N. Gongalves et al.

Journal of Petroleum Science and Engineering 169 (2018) 705-724

8 LI LI LI LI
- l I l . 18 T 1T | LI I LI I LI
X Expil=023mls N _
- . X Exps Ve =023 mis A Exp; ¥ =045mis
=< Cook and Behnia (2000)
- _ 16 = - Dp&H975) A D&H(1975) —
6 Exp: Vs = 045 ms _ | =< C&B(2000) =/ C&B(2000) -
-l Cook and Behnia (2000)
T O Exp:ln=070mis 1 14 = " ]
= : -&- Cook and Behnia (2000) : " B e 7
=4[ Ja ]
- | 4
> 10 —
- _ 8=  TE--omoTTT —
| . - O ExpiVy=070mis & -
| 3 _ 6 | o paays x
| (a) _ | -9  C&B(2000) (b) 1
AN T T T N T T O /R T T T I
0.4 0.8 1.2 1.6 2 0.4 0.8 1.2 1.6 2
Vs [m/s] Vs [m/s]
4000 T I LI I LI I LI
I~ X ExpiVe=023mis T
I~ ¢  D&H(1975) .
I =< Cc&B(2000) N
3000 — a Exp.; Vg = 045 mis S
— [ -a D& (975) o T
g ™ =& C&B(2000) e -1
= - v S -
& O EwpmoToms
— 2000 — -0 D&H(1975) -
..§ L g PY-Na—
‘3\~ =& caB o) -
< C 7
1000 — —
- (C) -
0 L1 Lo v v by 0y
0.4 0.8 1.2 1.6 2
Vs [m/s]

Fig. 25. Comparison with the present experimental data of predictions of v, I;/D and dP/dx.
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