OPEN ACCESS

Mathematica tools for uncertainty analysis

To cite this article: M D Mikhailov and V Y Aibe 2015 J. Phys.: Conf. Ser. 575012042

View the article online for updates and enhancements.

Related content

Semiconductor Integrated Optics for Switching Light: Mathematica programs appendix C Ironside

Science and Computing with Raspberry Pi: Setting up your system B R Kent

Science and Computing with Raspberry Pi: Physics and astronomy B R Kent

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Mathematica tools for uncertainty analysis

M D Mikhailov, V Y Aibe
Inmetro, Fluid Dynamics Metrology, Rio de Janeiro, Brazil
E-mail: dinam@inmetro.gov.br

Abstract

Some functions of the author's Mathematica 9 package are presented. Links are given to the author's interactive demonstrations. Mathematica supports 143 types of statistical distribution covering not only metrology but almost all statistical areas. The Supplement 1 to the ISO GUM mentions that analytical methods are ideal ones, but assume they are applicable only in simple cases, and recommends Monte Carlo method. In contrast, this paper presents Mathematica functions that can explore a multitude of methods in order to find analytical, numerical, or statistical results using (usually) one million random variates.

1. Introduction

The GUM Guide [1] provides a well-known framework for assessment and evaluation of uncertainties based on the law of propagation of uncertainty. This guide has generated the appearance of a great number of computer systems and calculators dedicated in helping estimate the uncertainty of measurements. Typing the key "uncertainty calculator" in Google gives back about 2,460,000 results. Wikipedia alone describes 18 uncertainty propagation software systems [2].
The authors of the present work have previously devised an uncertainty calculus based on the GUM in Mathematica 6 [3]. An object $x \pm \Delta x$ called uncertainty number was defined. After assuming $\Delta x / x \ll 1$ the terms $\Delta \mathrm{x}$ were neglected in relational operations $(<,=,>)$. Our Mathematica rules transform one expression of independent uncertainty numbers into single uncertainty number. Later on we were able to extend these rules to cover also fully dependent uncertainty numbers. Special cases of the rules we used in the interactive demonstrations [4, 5, 6, and 7].
The GUM approach [1] is only exact for linear models, since it is based on the first order Taylor expansion, neglecting higher order terms. Thus direct application of the GUM rules in nonlinear models can potentially give quite misleading results. In order to account for non-linear scenarios, GUM allows for techniques other than the law of propagation of uncertainty (ref. [1], section G.1.5). The Supplement 1 to the GUM [8] recommends propagation of distributions, which can be applied in non-linear problems. In this Supplement, it is mentioned that analytical methods are ideal, but only viable in simple cases. Because of this, the Supplement recommends the Monte-Carlo method.
In this paper we continue our previous work [3] by presenting a new Mathematica functions able to compute symbolically or numerically the propagation of statistical distributions, thereby extending our uncertainty calculus into the non-linear domain, at the same time avoiding the limitations present in the GUM approach. Interactive examples using this newly developed package are available on-line in Computable Document Format (CDF) files [9]. There users can interactively compare the exact uncertainties versus GUM uncertainties for Sin and Cos function [10]. The free Mathematica Player [11] is needed to evaluate the interactive tools [$3,4,5,6,7,9,10$].
Mathematica support 143 statistical distributions covered different research areas such as Actuarial

Science, Finance, Metrology, Risk, Reliability etc. From these distributions, there are many ways to define new, user-derived distributions that behave just like any other built-in distribution. Recently, the authors have published a quick, interactive reference guide to the logical relationships obeyed by the statistical parameters of the built-in Mathematica distributions [12], and the percentile plots of 78 continuous statistical distributions [13].
All functions, input and output lines bellow are written in the standard for Mathematica Currier font.

2. Objectives

This paper aims is the comparison of results obtained by original Mathematica functions based on propagation of uncertainty and propagation of distributions.
Mathematica use NormalDistribution $[\mu, \sigma$] for the Gaussian distribution with mean μ and standard deviation σ. Since almost all Mathematica built-in objects are full English names beginning with capital letters, we follow this convention for our package functions as well. The functions demonstrated are: UncertainCalculus, GUM, CoverageInterval, and Measurand.

3. UncertainCalculus

The first version of uncertain calculus is demonstrated at ENCIT 2008 [3]. The function UncertainCalculus[case] evaluate input line with expression including uncertain numbers like $\mu \pm \sigma$ (PlusMinus $[\mu, \sigma]$). Similarly to GUM function case $=1$ activate the rule for independent variables and $\boldsymbol{c a s e}=3$ activate a rule for fully correlated variables. The case $=\mathbf{0}$ deactivate UncertainCalculus. The UncertainCalculus [1] activate the rule for independent variables.
Then the following input line gives the corresponding output lines.
c1 $(\mu 1 \pm \sigma 1)+c 2(\mu 2 \pm \sigma 2)$
$\left(c_{1} \mu_{1}+c_{2} \mu_{2}\right) \pm \sqrt{c_{1}^{2} \sigma_{1}^{2}+c_{2}^{2} \sigma_{2}^{2}}$
Eqs 1
In case of detectable error, like UncertainCalculus [2] the warning message appears.
The UncertainCalculus [3] activate the rule for fully correlated variables.
Then the following input line gives the corresponding output lines.
c1 $(\mu 1 \pm \sigma 1)+c 2(\mu 2 \pm \sigma 2)$
$\left(\mathrm{c}_{1} \mu_{1}+\mathrm{c}_{2} \mu_{2}\right) \pm\left(\begin{array}{lll}\mathrm{c}_{1} & \sigma_{1}+\mathrm{c}_{2} & \sigma_{2}\end{array}\right)$
For one variable independent and fully correlated variables rules give the same results.
Next examples evaluate two nonlinear functions
$(\mu \pm \sigma)^{\wedge 2}$
$\mu^{2} \pm 2 \mu \sigma$
Eqs 3
$\operatorname{Sin}[\mu \pm \sigma]$
$\operatorname{Sin}[\mu] \pm \sigma \operatorname{Cos}[\mu]$
Eqs 4
Finally, the UncertainCalculus [0] deactivate the uncertain calculus.

4. GUM

The function GUM implements the formulas given in [1].
GUM [expr, $\mathrm{x}==\mu \pm \sigma$, case] or GUM [expr, $\{\mathrm{x} 1==\mu 1 \pm \sigma 1, \ldots, \mathrm{xn}==\mu \mathrm{n} \pm \sigma \mathrm{n}\}$, case]
gives first order series approximation for expectation \pm standard deviation of expr.
Mathematica use lhs==rhs to denote equation, while $\operatorname{lhs}=r h s$ to evaluate rhs and assign the result to lhs.
case $=1$ or IdentityMatrix[n] (independent variables).
case $=2$ nonlinear expr (more series terms included in case 1).
case $=3$ or nx n constant matrix with elements 1 (fully correlated variables).
case $=\mathrm{nxn}$ symmetric matrix with main diagonal 1 and elements in the closed interval -1 to 1 .

$$
\mu^{2} \pm 2 \quad \mu \sigma
$$

$$
\text { Eqs } 7
$$

$$
\operatorname{GUM}[\operatorname{Sin}[\mathbf{x}], \mathbf{x}==\mu \pm \sigma, 1]
$$

$$
\operatorname{Sin}[\mu] \pm \sigma \operatorname{Cos}[\mu]
$$

The uncertain calculus (Eqs 1 to Eqs 4), and GUM (Eqs 5 to Eqs 8) gives the same results.
The uncertain calculus could not use the correlation matrix R, where $0 \leq \rho \leq 1$.

$$
R=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

Eqs 9
GUM [c1 $\mathrm{x} 1+\mathrm{c} 2 \mathrm{x} 2,\{\mathrm{x} 1==\mu 1 \pm \sigma 1, \mathrm{x} 2==\mu 2 \pm \sigma 2\}, \mathrm{R}]$
$\left(\begin{array}{lllllllll}c_{1} & \mu_{1}+c_{2} & \mu_{2}\end{array}\right) \pm \sqrt{ }\left(c_{1}{ }^{2} \quad \sigma_{1}^{2}+2 \quad c_{1} c_{2} \quad \rho \quad \sigma_{1} \quad \sigma_{2}+\sigma_{1}{ }^{2} \quad \sigma_{2}{ }^{2}\right)$
Eqs 10
The solution given by Eqs 5 and Eqs 6 are special cases of Eqs 10 for $\rho=0$ and $\rho=1$, respectivelly.
For the non-linear measurand $\mathbf{x}^{\wedge} 2, \operatorname{Sin}[\mathbf{x}]$, and $\operatorname{Cos}[\mathbf{x}]$ the results are
GUM [$\left.x^{\wedge} 2, x==\mu \pm \sigma, 2\right]$
$\mu^{2} \pm \sqrt{4 \mu^{2} \sigma^{2}+2 \sigma^{2}}$
Eqs 11
FullSimplify[GUM[Sin[x], $\mathbf{x}==\mu \pm \sigma, 2]]$
$\operatorname{Sin}[\mu] \pm \sqrt{\sigma^{2} \cdot \operatorname{Cos}[\mu]^{2}-\frac{1}{4} \cdot \sigma^{4} \cdot(1+3 \cdot \operatorname{Cos}[2 \mu])}$
Eqs 12
FullSimplify[GUM[Cos[x], $\mathbf{x}==\mu \pm \sigma, 2]]$
$\operatorname{Cos}[\mu] \pm \sqrt{\frac{1}{4} \cdot \sigma^{4} \cdot(-1+3 \cdot \operatorname{Cos}[2 \mu])+\sigma^{2} \cdot \operatorname{Sin}[\mu]^{2}}$
Eqs 13

5. Uncertainty

The Uncertainty function propagate distributions to find the exact results analytically, numerically, or statistically.
Uncertainty[expr,case] in domain of symbols, rationals, or reals attempt to calculate the uncertainty (expectation \pm sandard deviation) of expr.
Uncertainty[expr,case,n] in domain of reals calculate uncertainty of expr by using n pseudoradom variates.
The argument case specify statistical distributions of the variables as in the Mathematica function Expectation.
Uncertainty[c1 x1 + c2 x2,
\{x1 \approx NormalDistribution [$\mu 1, \sigma 1$, ,
$x 2 \approx$ NormalDistribution[$\mu 2$, $\sigma 2]\}]$
$\left(c_{1} \mu_{1}+c_{2} \mu_{2}\right) \pm \sqrt{c_{1}^{2} \sigma_{1}^{2}+c_{2}^{2} \sigma_{2}^{2}}$
Eqs 14
MatrixForm[$\Xi=$ MultinormalCovarianceMatrix[\{ $\sigma 1, \sigma 2\}$]]
$\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \\ \sigma_{1} \sigma_{2} & \sigma_{2}^{2}\end{array}\right)$
Eqs 15
PowerExpand[Simplify[Uncertainty[c1 x1 + c2 x2,

$$
\begin{aligned}
& \text { GUM[c1 } x 1+c 2 x 2,\{x 1==\mu 1 \pm \sigma 1, x 2==\mu 2 \pm \sigma 2\}, 1] \\
& \left(c_{1} \mu_{1}+c_{2} \mu_{2}\right) \pm \sqrt{c_{1}^{2} \sigma_{1}^{2}+c_{2}^{2} \sigma_{2}^{2}} \\
& \text { GUM[c1 } \mathrm{x} 1+\mathrm{c} 2 \mathrm{x} 2,\{\mathrm{x} 1==\mu 1 \pm \sigma 1, \mathrm{x} 2==\mu 2 \pm \sigma 2\}, 3] \\
& \left(\begin{array}{lll}
\mathrm{C}_{1} & \mu_{1}+\mathrm{c}_{2} & \mu_{2}
\end{array}\right) \pm\left(\begin{array}{lll}
\mathrm{c}_{1} & \sigma_{1}+\mathrm{c}_{2} & \sigma_{2}
\end{array}\right) \\
& \operatorname{GUM}\left[x^{\wedge} 2, x==\mu \pm \sigma, 1\right] \\
& \text { Eqs } 5
\end{aligned}
$$

$\{\mathbf{x 1}, \mathrm{x} 2\} \approx \mathrm{MultinormalDistribution}[\{\mu 1, \mu 2\}, ~ \Xi]]]]$

$\left(\begin{array}{lll}\mathrm{c}_{1} & \mu_{1}+\mathrm{c}_{2} & \mu_{2}\end{array}\right) \pm\left(\begin{array}{lll}\mathrm{c}_{1} & \sigma_{1}+\mathrm{C}_{2} & \sigma_{2}\end{array}\right)$
PowerExpand[Simplify[Uncertainty[c1 x1 +c2 x2,

$$
\{x 1, x 2\} \approx \text { MultinormalDistribution }[\{\mu 1, \mu 2\}, ~: R]]]]
$$

$\left(c_{1} \mu 1+c_{2} \quad \mu_{2}\right) \pm \sqrt{ }\left(c_{1}^{2} \sigma_{1}^{2}+2 \quad c_{1} \quad c_{2} \quad \rho \quad \sigma_{1} \quad \sigma_{2}+c_{2}^{2} \quad \sigma_{2}^{2}\right)$
Eqs 17
Since the measurand is linear the GUM solutions Eqs 5, Eqs 6, and Eqs10 coincide with Eqs14, Eqs16, and Eqs17.
For the non-linear measurand $\mathbf{x \wedge} 2, \operatorname{Sin}[x]$, and $\operatorname{Cos}[\mathbf{x}]$ the results are
Uncertainty $\left[x^{\wedge} 2, x \approx\right.$ NormalDistribution $[\mu, \sigma]$] /.
Sqrt[a_] Sqrt[b_] :> Sqrt[Expand[a b]]
$\left(\mu^{2}+\sigma^{2}\right) \pm \sqrt{4 \mu^{2} \sigma^{2}+2 \sigma^{4}}$
Eqs 18

The exact analitical solutions for $\operatorname{Sin}[\mathbf{x}$] and $\operatorname{Cos}[\mathbf{x}$] needs more time measured in second by the function Timing.

```
Timing[Uncertainty[Sin[x], x \approx NormalDistribution[ }\mu,\sigma]]/
    Sqrt[x_] :> Sqrt[FullSimplify[ExpToTrig[x]]] /.
    (x_ + Exp[y_]) :> Exp[y] (1 + Exp[-y] x)]
{213.986572,e\mp@subsup{e}{}{-\frac{\mp@subsup{\sigma}{}{2}}{2}}\cdot\operatorname{Sin}[\mu]\pm\frac{1}{\sqrt{}{2}}\cdot\sqrt{}{(1-\mp@subsup{e}{}{-\mp@subsup{\sigma}{}{2}})(1+\mp@subsup{e}{}{-\mp@subsup{\sigma}{}{2}}\cdot\operatorname{Cos}[2\mu])}}
```

Timing[Uncertainty[Cos[x], $x \approx$ NormalDistribution[$\mu, \sigma]$] .
Sqrt[x_] :> Sqrt[FullSimplify[ExpToTrig[x]]] /.
$\left.\left(x_{1}+\operatorname{Exp}\left[y_{_}\right]\right):>\operatorname{Exp}[y](1+\operatorname{Exp}[-y] x)\right]$
$\left\{142.647314, e^{-\frac{\sigma^{2}}{2}} \cdot \operatorname{Cos}[\mu] \pm \frac{1}{\sqrt{2}} \cdot \sqrt{\left(1-e^{-\sigma^{2}}\right)\left(1-e^{-\sigma^{2}} \cdot \operatorname{Cos}[2 \mu]\right)}\right\}$
Eqs 20
The exact results for $\mathbf{x}^{\wedge} \mathbf{2}, \operatorname{Sin}[\mathbf{x}]$, and $\operatorname{Cos}[\mathbf{x}]$ obtained by Uncertainty function (Eqs 18, Eqs 19, and Eqs 20) correspond to (Eqs 11, Eqs 12 and Eqs 13) obtained by GUM function.
Finally for a nonlinear measurand we generate 5 times 1 million random variates and extract the mean and standard deviation from the obtained data. The speed of computation is because Mathematica use a package array that permitted to do manipulations at once.
Timing[TableForm[Table[Uncertainty[x1^2 + x2^3,
$\{x 1 \approx$ NormalDistribution[10, 0.1], $\mathbf{x} 2 \approx$ NormalDistribution[5,0.2]\}, 10^6], \{5\}]]]
225.627 ± 15.2012
225.632 ± 15.1982
$\{2.059213,225.579 \pm 15.1832\}$,
Eqs 21
225.598 ± 15.1781
225.6士15.1789

The exact numerical result is:
Uncertainty[x1^2 $+x \mathbf{2 ヘ}^{\wedge}$,
$\{x 1 \approx$ NormalDistribution[10, 0.1],

```
x2 \approx NormalDistribution[5, 0.2]}]
```

```
225.61 \pm 15.1803
```


6. CoverageInterval

CoverageInterval [expr, case,q] evaluate CoverageInterval [expr, case, (1q) $/ 2$, ($1+q$) $/ 2$]

CoverageInterval[expr,case,q,n] evaluate CoverageInterval[expr,case,(1q) $/ 2$, ($1+\mathrm{q}$) $/ 2, \mathrm{n}$]

CoverageInterval [expr, case, $\{q 1, q 2\}$] attempt to calculate coverage interval from $q 1$ to q2,
where $0<q 1<q 2<1$ and $q 1+q 2==1$
CoverageInterval [expr, case, $\{q 1, q 2\}, n]$ calculate coverage interval from $q 1$ to $q 2$ by using n pseudoradom variates.
The argument case specifies statistical distributions of the variables as in the Mathematica function Expectation.
The function ToInterval transform the uncertainty given by Eqs 17 as:
ToInterval[Eqs17]
Interval[\{ $\mathrm{c}_{1} \mu_{1}+\mathrm{C}_{2} \mu_{2}-\sqrt{ }\left(\mathrm{c}_{1}^{2} \sigma_{1}^{2}+2 \mathrm{c}_{1} \mathrm{C}_{2} \rho \sigma_{1} \sigma_{2}+\mathrm{c}_{2}^{2} \sigma_{2}^{2}\right)$,
$\left.\left.\mathrm{c}_{1} \mu_{1}+\mathrm{c}_{2} \mu_{2}+\sqrt{ }\left(\mathrm{c}_{1}{ }^{2} \sigma_{1}{ }^{2}+2 \mathrm{c}_{1} \mathrm{c}_{2} \rho \sigma_{1} \sigma_{2}+\mathrm{c}_{2}{ }^{2} \sigma_{2}{ }^{2}\right)\right\}\right], \quad$ Eqs 23
For the same problem the function CoverageInterval gives
 $\{\mathrm{x} 1, \mathrm{x} 2\} \approx$ MultinormalDistribution $[\{\mu 1, \mu 2\}, \mathrm{ER}], \mathrm{q}], 0<\mathrm{q}<1]$]
Interval[\{ $\mathrm{C}_{1} \mu 1+\mathrm{c}_{2} \mu_{2}-\sqrt{2} \mathrm{c}_{1}{ }^{2} \sigma_{1}{ }^{2}+2 \mathrm{c}_{1} \mathrm{C}_{2} \rho \sigma_{1} \sigma_{2}+\mathrm{C}_{2}{ }^{2} \sigma_{2}{ }^{2}$) InverseErfc [1-q], $c_{1} \mu 1+c_{2} \mu_{2}-\sqrt{2} V\left(c_{1}^{2} \sigma_{1}^{2}+2 c_{1} c_{2} \rho \sigma_{1} \sigma_{2}+c_{2}^{2} \sigma_{2}^{2}\right)$ InverseErfc [1+q]\}], Eqs 24
We like to find such a parameter q that transform Eqs 24 in Eqs 23
FullSimplify[Solve[Eqs23[[1, 2]] == Eqs24[[1, 2]], q]][[1, 1]] $q \rightarrow E r f[1 / \sqrt{ } 2]$
The obtained probability q is exact and could be computed numerically with any number of digits N[\%, 12]
$q \rightarrow 0.682689492137$
Eqs 25
The following example shows that exact numerical solution spends more time that random variate method with a million variate.

```
Timing[CoverageInterval[
```

$\mathbf{x}^{\wedge} 2, \mathbf{x} \approx$ NormalDistribution[10, 0.1], 0.95]]
\{7.503648, Interval[\{96.1185, 103.958\}]\}

7. Feasible Region

In the domain of symbols, the function Uncertainty obtain exact solution for uncertainty of the measurand $\operatorname{Exp}\left[\mathbf{x}^{\wedge} 2\right.$], when \mathbf{x} is normally distributed with mean μ, and standard deviation σ.
The exact solution is [15]:
$\frac{e^{\frac{2 \mu^{2}}{1-2 \sigma^{2}}}}{\sqrt{1-2 \sigma^{2}}} \pm \sqrt{\frac{e^{\frac{2 \mu^{2}}{1-4 \sigma^{2}}}}{\sqrt{1-4 \sigma^{2}}}-\frac{e^{\frac{2 \mu^{2}}{1-2 \sigma^{2}}}}{1-2 \sigma^{2}}}$
For the value used in [14] $\mu=0$, and $\sigma=1$ the obtained solution becomes $-i \pm \sqrt{1 \cdot \sqrt{3}}$, where $i=\sqrt{\cdot 1}$. For this reason "Monte Carlo techniques is computationally problematic" [14]
The full analysis of the exact solution is not object of the present notebook. In addition to the wellknown restriction $\sigma>0$, we take two more restrictions. Than we Reduce function finds the following feasible region:
Reduce $[\{\sigma>0,1-2 \sigma 2>0,1-4 \quad \sigma 2>0\}, \sigma]$,
$0<\sigma<1 / 2$,
Eqs 27
In the domain of Rationals, the function Uncertainty needs about 2 second to obtain uncertainty of $\operatorname{Exp}\left[\mathbf{x}^{\wedge} 2\right.$], when \mathbf{x} is normally distributed with mean 1 , and standard deviation $1 / 10$.

$$
\begin{aligned}
& \text { Timing[Uncertainty[Exp[x^2], } x \approx \text { NormalDistribution }[1,1 / 10]] \text {] } \\
& \left\{1.562500, \frac{5}{7} \sqrt{2} \cdot e^{\frac{50}{49}} \pm \sqrt{-\frac{50 \cdot e^{\frac{100}{49}}}{49}+\frac{5 \cdot e^{\frac{25}{12}}}{2 \sqrt{6}}}\right\}
\end{aligned}
$$

Since the result is also in the domain of Rationals it could be transformed in Reals with arbitrary number of digits.
Next line show 20 digits:

```
2.8024933887978839525 土 0.58552102828175616088
```

Timing[TableForm [
Table[\{Uncertainty[Exp[x^2],
$\mathbf{x} \approx$ NormalDistribution [1., .1], 10^6]\}, \{5\}]]]

```
            2.80168\pm0.58508
            2.80251\pm0.58524
{0.468750, 2.80227\pm0.585468}
2.80199\pm0.586149
2.80262\pm0.585053
```

Eqs 29

For the values $\boldsymbol{\mu}=\mathbf{0}$, and $\boldsymbol{\sigma}=\mathbf{1}$ used by Bruce Christianson and Maurice Cox the solution is complex number and Uncertainty function return the input line after 327 seconds.
Finally we use different number of random variates to obtain completely non convergent results

For UnitSetep function the feasible regions of the results are built-in Mathematica.

```
Uncertainty[UnitStep[x - a], x \approx UniformDistribution[{2, m}]]
```

$$
\left(\begin{array}{lll}
1 & a!2 \& \& m & 2 \\
\frac{a \cdot m}{2 \cdot m} & a, & 2 \& \& a \cdot m
\end{array}\right): \sqrt{\left[\begin{array}{ll}
\frac{2 a \cdot a^{2} \cdot 2 m+a m}{2 \cdot m} & a \\
0 & \text { True }
\end{array}\right): \& \& a \cdot m} 0
$$

Eqs 31

8. Acknowledgments

The authors are thankful to the Inmetro - National Institute of Metrology, Quality and Technology for the financial support to this research through a CNPq Research Fellowship - Edital MCT/ CNPq / Inmetro $n^{\circ} 059 / 2010$ - PROMETRO Processo $N^{\circ} 563061 / 2010-3$. This work is a contribution of the INMETRO and is not subject to copyright in the Brazil.

9. References

[1] JCGM 100:2008 - GUM 1995 with minor corrections
http://www.bipm.org/en/publications/guides/gum.html
[2]. Uncertainty propagation software
http://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
[3]. V Y Aibe and M D Mikhailov, Uncertainty Calculus in Metrology, Proceedings of ENCIT 2008, 12th Brazilian Congress of Thermal Engineering and Sciences, Belo Horizonte, MG, November 1014, 2008
http://repositorios.inmetro.gov.br/handle/10926/448
[4]. V Y Aibe, M D Mikhailov,
http://demonstrations.wolfram.com/SolvingMatrixSystemsWithRealIntervalOrUncertainElements/ [5]. V Y Aibe, M D Mikhailov, http://demonstrations.wolfram.com/SolvingALinearSystemWithUncertainCoefficients/ [6]. V Y Aibe, M D Mikhailov, http://demonstrations.wolfram.com/AreaPerimeterAndDiagonalOfARectangleWithUncertainSides/ [7]. V Y Aibe, M D Mikhailov,
http://demonstrations.wolfram.com/FitInterpolationOrPolynomialInterpolationInUncertainCalculus/ [8]. JCGM 101:2008 Supplement 1 to the GUM
http://www.sci.utah.edu/~kpotter/Library/Papers/jcgm:2008:PDMC/
[9]. V Y Aibe and M D Mikhailov, Uncertainty and UncertaintyGUM Mathematica functions, http://repositorios.inmetro.gov.br/handle/10926/1898
[10]. M D Mikhailov and V Y Aibe.
http://demonstrations.wolfram.com/GUMVersus
ExactUncertaintyOfSinXAndCosXWhenXIsNormallyDistrib/
[11]. M D Mikhailov and V Y Aibe.
. http://www.wolfram.com/cdf-player/
[12]. M D Mikhailov and V Y Aibe.
http://demonstrations.wolfram.com/LogicalExpressionForAssumptionsOnParametersInMathematicasS
ym/
[13]. M D Mikhailov, V Y Aibe, and I Yasuda
http://demonstrations.wolfram.com/PercentilesOfContinuousProbabilityDistributions
[14]. Bruce Christianson and Maurice Cox, Automatic propagation of uncertainties,
In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors,
Automatic Differentiation: Applications, Theory, and Implementations,
Lecture Notes in Computational Science and Engineering, pages 47-58, Springer, 2005.
[15] I Yasuda, M D Mikhailov and V Y Aibe, New Mathematica Uncertainty Analysis Tools, Proceedings of Flomeko 2013, 17th International Flow Measurement Conference, Paris - France, November 24-26, 2013.

