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In this work, we studied the transient combined convection and radiation of multilayer spherical media with volumetric heat
generation, extending the previous work on the particular case of a spherical body subjected to radiative cooling. The proposed
lumped models were obtained through two-point Hermite approximations for the average temperature and heat flux in each layer.
For the average temperature, the plain trapezoidal rule (𝐻0,0 approximation) was employed in all layers, except for the innermost
layer, where the second-order two-side corrected trapezoidal rule (𝐻2,1 approximation) was utilized. For the heat flux, the plain
trapezoidal rule (𝐻0,0 approximation) was employed for all the layers.The transient heat conduction in a TRISO-coated fuel particle
being composed of five layers (namely, fuel kernel, buffer of porous carbon, inner pyrocarbon, silicon carbide, and outer pyrocarbon)
was analyzed using the proposed lumpedmodels, the results of whichwere verified by comparisonwith the finite difference solution
of the original distributed parameter model. Parametric studies were conducted to examine the effects of the dimensionless heat
generation rate, the radiation-conduction parameter, and the Biot number on the temporal variations of the average temperatures.

1. Introduction

Due to additional advantage of combining the goodmechan-
ical properties and high thermal performance of different
layers, multilayer structures have found widely applications
in various technological areas, such as automotive, space,
chemical, civil, and nuclear industries. Therefore, one of
the considerations for the design of multilayer structures is
to accurately and efficiently predict the temporal variation
of the temperature of each layer. For instance, the thermal
analysis of the triple-isotropic (TRISO) coated fuel particles
consisting of fuel kernel (mainlyUO2), porous graphite buffer
layer, inner dense pyrolytic carbon (IPyC) layer, SiC layer,
and outer dense pyrolytic carbon (OPyC) layer is essential for
safe and economic operation of high temperature gas-cooled
reactors (HTGR) [1–3].

In various weight-saving and impact-property demand-
ing applications, one often employsmultilayer spherical com-
posites as advanced structural components. Many analytical
and numerical approaches have been proposed to obtain the

transient thermal response of multilayer spherical media.
Özisik [4] gave a detailed review of one-dimensional multi-
layer heat conduction problems, mainly focusing on orthog-
onal expansions by using Greens functions and Laplace
transform techniques. By means of the transfer function
method, Virseda and Pinazo [5] established a methodology
to determine heat flux and inner/outer temperatures for
spherical solid multilayer products. de Monte [6] derived a
“natural” analytical approach for solving transient tempera-
ture response of multilayer composite spheres. Chen et al. [7]
introduced the frequency-domain regression method to cal-
culate the thermal response factors and the conduction trans-
fer function coefficients of multilayer spherical structures.
Ramadan [8] presented a semianalytical solution procedure
for transient heat transfer in composite mediums consisting
of multilayers within the framework of dual phase lag model,
the solutions of which can be applicable to the classical
Fourier heat diffusion, hyperbolic heat conduction, phonon-
electron interaction, and phonon scatteringmodels.With the
separation of variables and the recursive Thomas algorithm,
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Norouzi et al. [9] provided an exact analytical solution for
steady conductive heat transfer in multilayer spherical fiber
reinforced composite laminates. By introducing the Laplace
transform and an approximate inverse Laplace transform, Lu
and Viljanen [10] presented an analytical approach to heat
conduction in a layered sphere subject to a time-dependent
temperature change. Singh et al. [11] and Jain et al. [12]
proposed a closed form analytical double-series solution for
the multidimensional unsteady heat conduction problem in
polar coordinates with multiple layers in the radial direction.
As an extension of the previous work, Jain et al. [13] presented
an analytical series solution for transient boundary-value
problem of heat conduction in 𝑟-𝜃 spherical coordinates,
which is applicable in spherical or part-spherical multilayer
geometries such as spherical cone, hemisphere, spherical
wedge, and full sphere. Singh et al. [14] presented an approach
based on the finite integral transform method to solve the
asymmetric heat conduction problem in amultilayer annulus
with time-dependent boundary conditions and heat sources.

In this work, we present improved lumped models for
transient combined convective and radiative cooling of mul-
tilayer spherical media, which is a more general case for
heat conduction problem of spherical structures, extending
the previous work on the particular case of a spherical
body subjected to radiative cooling [16]. The lumped model
approach is useful to simplify otherwise complex differential
heat equation, which treats each layer as a single lump with a
single temperature. Although comprehensive computational
techniques such as finite difference, finite volume, and finite
element methods can be applied to solve distributed param-
eter formulations, the lumped model involving fewer state
variables and consequently less equations to be solved is
usually preferred by engineers to predict and control the
system behavior. The proposed lumped models are obtained
through two-point Hermite approximations for the average
temperature and heat flux in each layer [17, 18].This approach
has been shown to be efficient in a great variety of multilayer
applications [19–24]. For the average temperature, the plain
trapezoidal rule (𝐻0,0 approximation) is employed in all
layers, except for the innermost layer, where the second-order
two-side corrected trapezoidal rule (𝐻2,1 approximation) is
utilized. For the heat flux, the plain trapezoidal rule (𝐻0,0
approximation) is employed for all the layers. The transient
heat conduction in a TRISO-coated fuel particle is analyzed
using the proposed lumped models, the results of which are
verified by comparison with the finite difference solution
of the original distributed parameter model. A parameter
study is then performed to investigate the effects of the heat
generation rate, the radiation-conduction parameter, and the
Biot number on the time-temperature history of each layer in
the TRISO particle.

2. Mathematical Formulation

Consider one-dimensional transient heat conduction inmul-
tilayer spherical composite shells consisting of 𝑁 concentric
layers in spherical coordinates, subjected to convective heat
transfer at the inner side and combined convective and radia-
tive heat transfer at the outer side, as shown in Figure 1. The
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Figure 1: Schematic illustration of cross-sectional view of 𝑁-layer
spherical media.

layers are labeled as 1 to 𝑁 from the innermost layer to the
superficial layer. Let 𝑟 be the coordinate perpendicular to the
layers, 𝑟𝑖, 𝑖 = 1, 2, . . . , 𝑁 represent its value at the inner surface
of each layer, and 𝑟𝑁+1 be the coordinate value at the outer
surface of 𝑁th layer. It is assumed that the thermophysical
properties of the layers are homogeneous, isotropic, and
independent of the temperature. The volumetric rate of heat
generation in 𝑖th layer is 𝑔𝑖(𝑥, 𝑡). The adjacent layers are
assumed to be in perfect thermal contact. Initially, all the
layers are at a specified uniform temperature 𝑇0. Convective
heat transfer occurs at the inner boundary surface 𝑟 = 𝑟1
and the outer boundary surface 𝑟 = 𝑟𝑁+1, with constant heat
transfer coefficients ℎ1 and ℎ𝑁+1, to environmental fluidswith
constant temperatures 𝑇∞. Besides, a constant radiation sink
temperature 𝑇𝑠 is specified at the outer boundary surface.

The mathematical formulation of the one-dimensional
transient heat conduction problem is given by

𝜕𝑇𝑖𝜕𝑡 = 𝛼𝑖𝑟2 𝜕𝜕𝑟 (𝑟2 𝜕𝑇𝑖𝜕𝑟 ) + 𝑔𝑖𝜌𝑖𝑐𝑝𝑖 ,
in 𝑟𝑖 < 𝑟 < 𝑟𝑖+1, 𝑖 = 1, 2, . . . , 𝑁, for 𝑡 > 0,

(1)

with the following boundary and interface conditions:

−𝑘1 𝜕𝑇1𝜕𝑟 = ℎ1 (𝑇∞ − 𝑇1) , at 𝑟 = 𝑟1, for 𝑡 > 0, (2)

𝑇𝑖 = 𝑇𝑖+1,
at 𝑟 = 𝑟𝑖+1, 𝑖 = 1, 2, . . . , 𝑁 − 1, for 𝑡 > 0, (3)

𝑘𝑖 𝜕𝑇𝑖𝜕𝑟 = 𝑘𝑖+1 𝜕𝑇𝑖+1𝜕𝑟 ,
at 𝑟 = 𝑟𝑖+1, 𝑖 = 1, 2, . . . , 𝑁 − 1, for 𝑡 > 0,

(4)

−𝑘𝑁𝜕𝑇𝑁𝜕𝑟 = ℎ𝑁+1 (𝑇𝑁 − 𝑇∞) + 𝜖𝜎 (𝑇4𝑁 − 𝑇4𝑠 ) ,
at 𝑟 = 𝑟𝑁+1, for 𝑡 > 0,

(5)
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and the initial conditions for each layer

𝑇𝑖 = 𝑇0, in 𝑟𝑖 < 𝑟 < 𝑟𝑖+1, 𝑖 = 1, 2, . . . , 𝑁, at 𝑡 = 0, (6)

where 𝑇𝑖(𝑥, 𝑡) is the temperature in the 𝑖th layer, 𝑡 is the time,𝛼𝑖 (= 𝑘𝑖/𝜌𝑖𝑐𝑝𝑖) is the thermal diffusivity, 𝑘𝑖 is the thermal
conductivity, 𝜌𝑖 is the density, 𝑐𝑝𝑖 is the specific heat, 𝜖 is the
surface emissivity, and 𝜎 is the Stefan-Boltzmann constant.

It should be noted that in general the environmental fluid
temperature 𝑇∞ differs from the radiation sink temperature𝑇𝑠. It is convenient to introduce the adiabatic surface temper-
ature 𝑇𝑎, defined by

ℎ𝑁+1 (𝑇𝑎 − 𝑇∞) + 𝜖𝜎 (𝑇4𝑎 − 𝑇4𝑠 ) = 0. (7)

The boundary condition (5) can be rewritten with use of the
adiabatic surface temperature

− 𝑘𝑁𝜕𝑇𝑁𝜕𝑟 = ℎ𝑁+1 (𝑇𝑁 − 𝑇𝑎) + 𝜖𝜎 (𝑇4𝑁 − 𝑇4𝑎) ,
at 𝑟 = 𝑟𝑁+1, for 𝑡 > 0.

(8)

Themathematical formulation given by the system of (1)–
(4), (6), and (8) can now be expressed in dimensionless form
as follows:

𝜕𝜃𝑖𝜕𝜏 = 𝛿𝑖𝜂2 𝜕𝜕𝜂 (𝜂2 𝜕𝜃𝑖𝜕𝜂 ) + 𝛿𝑖𝜅𝑖Φ𝑖,
in 𝜂𝑖 < 𝜂 < 𝜂𝑖+1, 𝑖 = 1, 2, . . . , 𝑁, for 𝜏 > 0,

(9)

−𝜅1 𝜕𝜃1𝜕𝜂 = Bi1 (𝜃∞ − 𝜃1) , at 𝜂 = 𝜂1, for 𝜏 > 0, (10)

−𝜅𝑁𝜕𝜃𝑁𝜕𝜂 = Bi𝑁+1 (𝜃𝑁 − 𝜃𝑎) + 𝑁rc (𝜃4𝑁 − 𝜃4𝑎) ,
at 𝜂 = 𝜂𝑁+1, for 𝜏 > 0,

(11)

𝜃𝑖 = 𝜃𝑖+1,
at 𝜂 = 𝜂𝑖+1, 𝑖 = 1, 2, . . . , 𝑁 − 1, for 𝜏 > 0, (12)

𝜅𝑖 𝜕𝜃𝑖𝜕𝜂 = 𝜅𝑖+1 𝜕𝜃𝑖+1𝜕𝜂 ,
at 𝜂 = 𝜂𝑖+1, 𝑖 = 1, 2, . . . , 𝑁 − 1, for 𝜏 > 0,

(13)

𝜃𝑖 = 1,
in 𝜂𝑖 < 𝜂 < 𝜂𝑖+1, 𝑖 = 1, 2, . . . , 𝑁, at 𝜏 = 0, (14)

where the dimensionless parameters are defined by

𝜃 = 𝑇𝑖𝑇0 , (15a)

𝜏 = 𝛼ref 𝑡𝑟2ref , (15b)

𝜂 = 𝑟𝑟ref , (15c)

𝛿𝑖 = 𝛼𝑖𝛼ref , (15d)

𝜅𝑖 = 𝑘𝑖𝑘ref , (15e)

Φ𝑖 = 𝑟2ref𝑔𝑖𝑘ref𝑇0 , (15f)

𝜂𝑖 = 𝑟𝑖𝑟ref , (15g)

Bi1 = ℎ1𝑟ref𝑘ref , (15h)

Bi𝑁+1 = ℎ𝑁+1𝑟ref𝑘ref , (15i)

𝑁rc = 𝜖𝜎𝑟ref𝑇
3
0𝑘ref . (15j)

Let 𝜆𝑖 represent the dimensionless thickness for each layer,𝜆𝑖 = (𝑟𝑖+1−𝑟𝑖)/𝑟ref , 𝑖 = 1, 2, . . . , 𝑁, where the reference length𝑟ref is chosen as the total thickness of composite shells, 𝑟𝑁+1 −𝑟1; hence, we have
𝑁∑
𝑖=1

𝜆𝑖 = 1. (16)

The reference thermal conductivity and diffusivity are taken
as those of any layer, for example, the first layer, 𝑘ref = 𝑘1 and𝛼ref = 𝛼1. It can be seen that the problem is governed by the
following dimensionless parameters, Bi1, Bi𝑁+1,𝑁rc, 𝛿𝑖, 𝜅𝑖, 𝜆𝑖,𝜃∞, and 𝜃𝑎, 𝑖 = 1, 2, . . . , 𝑁. The radiation-conduction param-
eter, 𝑁rc that governs the radiative cooling, is conceptually
analog to the Biot numbers, Bi1 and Bi𝑁+1, which are the
governing parameters for an equivalent transient convective
cooling.

3. Lumped Models

Let us introduce the spatially average dimensionless temper-
ature of the 𝑖th layer as follows:

𝜃av𝑖 (𝜏) = 3𝜂3𝑖+1 − 𝜂3𝑖 ∫
𝜂𝑖+1

𝜂𝑖

𝜂2𝜃𝑖 (𝜂, 𝜏) d𝜂,
𝑖 = 1, 2, . . . , 𝑁,

(17)

which is obtained by ∫𝜂𝑖+1
𝜂𝑖

4𝜋𝜂2𝜃𝑖(𝜂, 𝜏)d𝜂 over (4/3)𝜋(𝜂3𝑖+1 −𝜂3𝑖 ). Operate (9) by (3/(𝜂3𝑖+1 − 𝜂3𝑖 )) ∫𝜂𝑖+1𝜂𝑖 𝜂2d𝜂 and use the
definition of average temperatures, (17); we have

d𝜃av𝑖 (𝜏)
d𝜏 = 3𝛿𝑖𝜂3𝑖+1 − 𝜂3𝑖 [𝜂

2
𝑖+1

𝜕𝜃𝑖 (𝜂, 𝜏)𝜕𝜂
𝜂=𝜂𝑖+1

− 𝜂2𝑖 𝜕𝜃𝑖 (𝜂, 𝜏)𝜕𝜂
𝜂=𝜂𝑖] +

𝛿𝑖𝜅𝑖𝐺𝑖 (𝜏) , 𝑖 = 1, 2, . . . , 𝑁,
(18)

where the heat source term is defined as

𝐺𝑖 (𝜏) = 3𝜂3𝑖+1 − 𝜂3𝑖 ∫
𝜂𝑖+1

𝜂𝑖

𝜂2Φ𝑖 (𝜂, 𝜏) d𝜂. (19)
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Equations (18) are an equivalent integrodifferential formu-
lation of the original mathematical model, (9), with no
approximation involved.

In classical lumped-differential analysis, the boundary
temperatures are assumed to be the same as the average
temperatures. The approach is limited to low Biot numbers.
In an attempt to enhance the approximation approach of
the classical lumped model, we develop improved lumped
models by providing better relations between the bound-
ary temperatures and the average temperatures, based on
Hermite-type approximations for integrals that define the
average temperatures and the heat fluxes. The general Her-
mite approximation for an integral, based on the values of
the integrand and its derivatives at the integration limits, is
written in the following form [18]:

∫𝑏
𝑎
𝑦 (𝑥) d𝑥 ≅ 𝛼∑

]=0
𝐶]𝑦(]) (𝑎) +

𝛽∑
]=0
𝐷]𝑦(]) (𝑏) , (20)

where 𝑦(𝑥) and its derivatives 𝑦(])(𝑥) are defined for all 𝑥 ∈(𝑎, 𝑏). It is assumed that the numerical values of 𝑦(])(𝑎) for
] = 0, 1, . . . , 𝛼 and 𝑦(])(𝑏) for ] = 0, 1, . . . , 𝛽 are available. The
general expression for the𝐻𝛼,𝛽 approximation is given by

∫𝑏
𝑎
𝑦 (𝑥) d𝑥 = 𝛼∑

]=0
𝐶] (𝛼, 𝛽) ℎ]+1𝑦(]) (𝑎)

+ 𝛽∑
]=0
𝐶] (𝛽, 𝛼) (−1)] ℎ]+1𝑦(]) (𝑏)

+ 𝑂 (ℎ𝛼+𝛽+3) ,

(21)

where ℎ = 𝑏 − 𝑎 and
𝐶] (𝛼, 𝛽) = (𝛼 + 1)! (𝛼 + 𝛽 + 1 − ])!

(] + 1)! (𝑎 − ])! (𝛼 + 𝛽 + 2)! . (22)

We first employ the plain trapezoidal rule to the integrals
of both average temperatures for 𝑖 = 2, 3, . . . , 𝑁 and average
heat fluxes for 𝑖 = 1, 2, . . . , 𝑁 (𝐻0,0/𝐻0,0 approximation), in
the form

𝜃av𝑖 (𝜏) ≅ 3 (𝜂𝑖+1 − 𝜂𝑖)2 (𝜂3𝑖+1 − 𝜂3𝑖 ) [𝜂
2
𝑖 𝜃𝑖 (𝜂, 𝜏)𝜂=𝜂𝑖

+ 𝜂2𝑖+1𝜃𝑖 (𝜂, 𝜏)𝜂=𝜂𝑖+1] , 𝑖 = 2, 3, . . . , 𝑁,
∫𝜂𝑖+1
𝜂𝑖

𝜕𝜃𝑖 (𝜂, 𝜏)𝜕𝜂 d𝜂 = 𝜃𝑖 (𝜂, 𝜏)𝜂=𝜂𝑖+1 − 𝜃𝑖 (𝜂, 𝜏)𝜂=𝜂𝑖
≅ 𝜂𝑖+1 − 𝜂𝑖2 [ 𝜕𝜃𝑖𝜕𝜂

𝜂=𝜂𝑖 +
𝜕𝜃𝑖𝜕𝜂
𝜂=𝜂𝑖+1] ,

𝑖 = 1, 2, . . . , 𝑁.

(23)

Now, note that, for the average temperature of the innermost
layer, if 𝐻0,0 or 𝐻1,0 approximation is employed, the average
temperature is expressed by one term only (𝜃1(𝜂, 𝜏)|𝜂=𝜂2),

which will bring the calculation error. Therefore, applying𝐻2,1 approximation to the integral of the definition of the
average temperature of the innermost layer and supposing
that we are studying a compact sphere (𝜂1 = 0), we have

𝜃av1 (𝜏) = 3𝜂32 − 𝜂31 ∫
𝜂2

𝜂1

𝜂2𝜃1 (𝜂, 𝜏)
= 110𝜃1 (𝜂, 𝜏)

𝜂=0 +
910𝜃1 (𝜂, 𝜏)

𝜂=𝜂2
− 320𝜂2

𝜕𝜃1 (𝜂, 𝜏)𝜕𝜂
𝜂=𝜂2 .

(24)

Analytical solution of the 4𝑁 unknowns 𝜃𝑖|𝜂=𝜂𝑖 , 𝜃𝑖|𝜂=𝜂𝑖+1 ,(𝜕𝜃𝑖/𝜕𝜂)|𝜂=𝜂𝑖 , and (𝜕𝜃𝑖/𝜕𝜂)|𝜂=𝜂𝑖+1 , 𝑖 = 1, 2, . . . , 𝑁, can be read-
ily obtained from a closed system of (10)–(13) and (23)-(24)
by using symbolic computation software such asMathematica
and then used to close the ordinary differential equations (18)
for the average temperatures 𝜃av𝑖, 𝑖 = 1, 2, . . . , 𝑁, to be solved
with the initial condition

𝜃av𝑖 (𝜏)𝜏=0 = 1, 𝑖 = 1, 2, . . . , 𝑁. (25)

4. Numerical Results and Discussions

As a typical thermal analysis problem of the multilayer
spherical media, the temperature transients of the TRISO-
coated fuel particles are often paid attention to due to their
importance for design decision and safety assessment of
the high temperature gas-cooled reactor. In this section,
the verification of the proposed lumped models and the
parametric study for the temperature transients of the TRISO
particle are presented.

4.1. Verification of the Solution. Transient heat conduction
in 5-layer TRISO-coated gas-reactor particle fuel with com-
bined convective and radiative cooling is analyzed to illustrate
the applicability of the proposed lumped models. To demon-
strate the validity and accuracy of the proposed approach,
the solutions of the lumped model with Φ𝑖 = 0 and 𝑁rc =0 are presented in graphical forms in comparison with a
reference finite difference solution of the original distributed
model, (9)–(14). Based on the convergence analysis of the
finite difference discretization, the initial boundary-value
problem defined by (9)–(14) is solved by using an implicit
finite difference method, with 10-node mesh in spatial dis-
cretization for each layer and a dimensionless time step of
0.001. After the finite difference solution is obtained at each
time step, the trapezoidal rule is used to integrate numerically
the temperature in space to obtain the spatially average
temperature. The thermal conductivities, the densities, the
specific heat, and the geometries of the TRISO particle are
shown in Table 1 [15], where 𝜙UO2 is the diameter of the UO2
kernel and 𝑒Buf , 𝑒IPyC, 𝑒SiC, and 𝑒OPyC are the thicknesses of
the buffer, the IPyC, the SiC, and theOPyC layer, respectively.
The Biot number at the outer surface is specified to be 1.2,
while the dimensionless environmental fluid temperature 𝜃∞
and the dimensionless adiabatic surface temperature 𝜃𝑎 are
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Figure 2: Comparison between the dimensionless transient temperature predicted by lumped model and the FD solution for each layer in
the TRISO particle.

0.2.The initial boundary-value problemdefined by (9)–(14) is
solved by using an implicit finite differencemethod.The good
agreement can be found for the calculated averaged transient
temperatures of each layer in the TRISO particle including
UO2 kernel, buffer layer, IPyC layer, SiC layer, and OPyC
layer, as shown in Figure 2.

4.2. Parametric Study. In this section, using the feasible ap-
proach, different values of the dimensionless heat generation
rate Φ1, the radiation-conduction parameter 𝑁rc, and the
Biot number Bi are chosen to assess their effects on the
temperature history of each layer in the TRISO particle.
Other parameters including the thermal conductivities, the
densities, the specific heat, the geometries, the environmental
fluid temperature, the adiabatic surface temperature, and the
initial temperature are the same as those employed in the
previous section.

Table 1: Physical parameters of the TRISO particle [15].

𝑘UO2 W/mK 2.23 𝑘Buf W/mK 40
𝑘IPyC W/mK 40 𝑘SiC W/mK 91.4
𝑘OPyC W/mK 40 𝜌UO2 g/cm3 10.4
𝜌Buf g/cm3 1.05 𝜌IPyC g/cm3 1.9
𝜌SiC g/cm3 3.18 𝜌OPyC g/cm3 1.9
𝑐𝑝UO2 J/kg K 350 𝑐𝑝Buf J/kg K 720
𝑐𝑝IPyC J/kg K 720 𝑐𝑝SiC J/kg K 620
𝑐𝑝OPyC J/kg K 720 𝜙UO2 𝜇m 350
𝑒Buf 𝜇m 95 𝑒IPyC 𝜇m 40
𝑒SiC 𝜇m 35 𝑒OPyC 𝜇m 40

4.2.1. The Effect of the Heat Generation Rate. The temporal
variations of the average temperatures predicted by the
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Figure 3: Temporal variations of the average temperatures predicted by the lumped model for different Φ1.

lumped model are shown in Figure 3, where the dimen-
sionless heat generation rate Φ1 = 4.0, 8.0, 12.0, and 16.0,
respectively.The radiation-conduction parameter𝑁rc is equal
to 5.0, and the Biot number Bi is specified to be 3.0. It can
be observed that as the time increases, the transient average
temperature for each layer in the TRISO particle decreases
and approaches the steady-state conditions at around 𝜏 = 0.2,
which descends to 0.30, 0.40, 0.50, and 0.60, respectively. At
a certain time, the temperature of the UO2 kernel is always
higher than the other four layers no matter the transient or
steady-state phases in the cooling of the TRISO particle. In
addition, the temperature in theUO2 layer becomes higher as

the heat generation rate grows for both the transient stage and
the steady stage, while the temperatures in the other layers do
not obviously change.

4.2.2. The Effect of the Radiation-Conduction Parameter. The
radiation-conduction parameter,𝑁rc, is one of the governing
parameters for convective cooling. The temporal variations
of the average temperatures predicted by the lumped model
are shown in Figure 4, where the dimensionless radiation-
conduction parameter𝑁rc = 5.0, 10.0, 15.0, and 20.0, respec-
tively.The heat generation rateΦ1 is equal to 6.0, and the Biot
number Bi is specified to be 3.0. For each case, the transient
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Figure 4: Temporal variations of the average temperatures predicted by the lumped model for different𝑁rc.

average temperature of all the layers decreases with the time.
The higher 𝑁rc causes the transient average temperature to
be lower, but the effect on 𝜃av of each layer is not quite
remarkable as the one of the heat generation rate.

4.2.3. The Effect of the Biot Number. The Biot number reflects
the relation between convective and conductive flux. The
temporal variations of the average temperatures predicted by
the lumped model are shown in Figure 5, where the Biot
number Bi = 3.0, 6.0, 9.0, and 12.0, respectively. The heat
generation rate Φ1 is equal to 6.0, and the dimensionless

radiation-conduction parameter 𝑁rc is specified to be 8.0.
It can be seen from the history of the transient average
temperature calculated that increasing the value of Bi leads
to a decrease in temperature of all the layers.

5. Conclusions

Based on two-point Hermite approximations for integrals,
improved lumped parameter models are developed for the
transient combined convective and radiative cooling of mul-
tilayer spherical media. Considering the TRISO particle as an
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Figure 5: Temporal variations of the average temperatures predicted by the lumped model for different Bi.

example, 𝐻2,1 approximation is employed for the innermost
layer, while 𝐻0,0 approximation is used for the other layers.
The parametric studies show that as the time increases, the
transient average temperature for each layer in the TRISO
particle decreases and approaches the steady-state conditions.
In addition, increasing the values of 𝑁rc and Bi leads to a
decrease in the transient average temperature of all the layers.
The proposed approach is verified by comparing the results
with the finite difference solutions. The study shows that the
proposed improved lumped model approach can be utilized
as an effective analytical tool for the transient temperature
behavior of multilayer spherical media.
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