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Progress on the analysis of the mass transport phenomena in a membraneless redox flow battery with
porous electrodes in flow-by configuration is here reported. A species transport model for a typical redox
reactant interacting with a porous electrode is proposed. A hybrid numerical-analytical solution is
obtained through the Generalized Integral Transform Technique (GITT), adopting a single domain formu-
lation that includes both the porous and pure fluid regions. The influence of the Reynolds number and the
thickness of the electrode on the parameters of interest is theoretically examined. The importance of con-
sidering the simultaneous development of flow and mass transport is analyzed, and the presence of the
transversal convective flux of species proves to have a significant role on the generation of current inside
the electrode. A scaling of the limiting current density with �Re0.41 is demonstrated and some physical
conclusions are drawn. Guidelines for the prevention of crossover are also offered, with increasing
Reynolds number and decreasing relative thickness of the electrode having a positive effect, as far as
avoiding the mixed potentials effects is concerned. The physical insights attained through the present
analysis should add to the efforts in achieving membraneless redox flow batteries with performances
comparable to membrane-based devices of similar size.

� 2018 Published by Elsevier Ltd.
1. Introduction

The challenge posed by climate change urged the rapid devel-
opment of renewable energy sources, such as wind and solar. How-
ever, the intermittency associated with these power sources
prevent the complete substitution of less environmental-friendly
alternatives. In this context, the availability of efficient energy stor-
age technologies is crucial to allow the reduction of emissions of
certain pollutants from fossil fuels [1,2]. The redox flow battery
(RFB) has been under development over the last three decades as
an attractive energy storage option [3–5]. The main advantage of
this concept is the decoupling of the energy and power densities,
with the former being mainly determined by the size of the storage
tanks, and the latter being mostly associated with the size of the
battery itself. Moreover, deep charge-discharge cycles are possible
without damaging the components, which contrasts with solid-
state batteries [6].
Besides the large-scale electrical energy storage, new usages for
RFBs could arise from the miniaturization and decentralization of
individual cells towards specific needs in different fields. The
resulting diversification of applications could help RFBs attain
lower costs, increasing the likelihood of its widespread usage [7].
One example where the use of RFBs would be a good fit is in elec-
tronics. The idea is to use flow battery technology for power deliv-
ery to the different electronic components. In fact, a fusing function
of the well-studied heat removal [8,9] and power delivery for data
centers has been proposed [10] and demonstrated [11]. The basic
concept is the use of the flux of electrolytes for both cooling and
as energy source for individual electronic components, reducing
the number of power connections and total wiring length. The per-
spective is the overall improvement of the energy efficiency and
making more space available for logical connections in data centers
[10].

Two strategies can be employed in the miniaturization of RFBs.
The first consists in maintaining the constructive characteristics of
large scale RFBs, solely reducing the size of its components, which
has been successfully applied before [11,12]. The second one takes
advantage of the laminar flow regime in channels with small cross-
sections to limit the mixture of electrolytes at the interface
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Nomenclature

c concentration
u longitudinal velocity component
v transversal velocity component
r nabla operator: @

@x ;
@
@y ;

@
@z

� �
h half of the channel height
hp thickness of the porous layer
L� channel length
Re Reynolds number
Da Darcy number
Pe Péclét number
Sc Schmidt number
uf fully developed velocity profile
cin entry concentration profile
xo dimensionless channel length
wp relative thickness of the porous electrode
df diameter of the pore or the fiber of the electrode
a specific area of the electrode
km mass transfer coefficient
M eigenfunction truncation order
N concentration truncation order

Greek letters
r = df =h
e porosity of the electrode
b, t eigenvalues corresponding to eigenfunctions w and n,

respectively
w eigenfunction for the concentration
n auxiliary eigenfunction
d Kronecker delta

Subscripts and superscripts
i, j, k order of eigenquantities for the concentration and

velocity vector
m, n order of auxiliary eigenquantities
� normalized eigenfunction
� dimensional quantity
T transpose
b bulk quantity
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between them, enabling the removal of the membrane in RFBs and
fuel cells [13–15]. The so-called membraneless co-laminar flow
cells are simpler and cheaper to manufacture in comparison with
membrane-based ones with similar size, mainly due to the absence
of the costly ion-selective membrane [16]. However, membrane-
less RFBs suffer from low Reynolds diffusion-limited mass trans-
port, severely limiting the overall performance of these devices.
Several strategies have been reported for increasing the mass
transport performance of membraneless flow cells, from the use
of porous carbon electrodes [15,17–19], to the employment of
chaotic mixers [20–22]. Disrupting the diffusion-limited transport
has the critical side-effect of doing the same to the interface
between the two electrolytes, making crossover and mixed poten-
tial phenomena more likely. Addressing the two aforementioned
issues together strongly benefits the overall performance of mem-
braneless flow cells, leading to a maximum power density of 0.925
W/cm2 recently reported in the literature [23]. This power density
is on the same order magnitude to the ones attained with
membrane-based microfluidic RFBs [11,12]. Nevertheless, basic
understanding of the transport phenomena in membraneless co-
laminar flow cells is still lacking, especially for the ones employing
porous carbon electrodes.

Experimental assessment of the performance of RFBs with dif-
ferent configurations and sizes can be quite cumbersome and
expensive. For this reason, a few numerical simulation efforts have
been made to simulate flow cells in both membrane-based [24,25]
and membraneless [26,27] systems. The availability of versatile
discrete numerical methods such as finite elements and finite vol-
umes has enabled the evaluation of the performance of RFBs. On
the other hand, analytical methods provide valuable physical
insights, low cost solutions to any prescribed accuracy, and bench-
mark results for the verification of numerical codes. The value of
analytically-based methods has been recognized before in the con-
text of RFBs, with a boundary layer analysis of a membraneless
hydrogen-bromine flow battery [28,29]. However, analytical meth-
ods are usually restricted to linear problems in regular geometries,
which severely limits their applicability. With the intent of extend-
ing the use of analytical methods beyond these limitations, the so-
called hybrid analytical-numerical methods were proposed.
Amongst such hybrid methods, the Generalized Integral Transform
Technique (GITT) [30–34] is here highlighted. The GITT was shown
to be a fairly general technique, being demonstrated in the solution
of various classes of diffusion and convection-diffusion problems,
such as with moving boundaries, non-linear source terms, hetero-
geneous media, complex geometries, etc. The main advantages of
this method are the automatic error control and mild increase in
computational cost with the addition of independent variables. A
complete description and broad review of the technique can be
found in some compilations published over the years [30–34].

Within the GITT framework, a new strategy for treating prob-
lems in heterogeneous media with complex geometries, known
as the single domain formulation, has been under development
[35–40] and was recently applied to the solution of heterogeneous
channel flow governed by the Navier-Stokes equations [41].
Instead of treating the different domains with separate partial dif-
ferential models coupled through their common boundaries, the
single domain formulation proposes a single set of equations in
which the coupling between the different media is accomplished
through abrupt variations of the physical properties and source
terms. The reduced complexity that follows offers far-reaching
possibilities for the application of the GITT in classes of problems
once mostly dominated by purely numerical approaches.

The present work advances the theoretical analysis and physical
understanding of the mass transport phenomena within the scope
of membraneless redox flow batteries. A simple case of a cell with
flow-by configuration using porous electrodes is analyzed. Both
analytical and hybrids solutions to the involved partial differential
models for different flow conditions are presented, and critical
comparisons are offered. The role of the Reynolds number and
the thickness of the electrode on the prevention of crossover is
analyzed. The scaling of the dimensionless limiting current density
with the Reynolds number and the physical interpretation of this
quantity are assessed. Additionally, the dependence of the limiting
current with the length of the electrode is examined and some
design recommendations are offered.
2. Formulation and solution methodology

2.1. Fluid flow model

Fig. 1 depicts the physical situation involving the hydrodynamic
and mass transport simultaneous development along a parallel
plate channel partially filled with porous media. A Cartesian coor-



Fig. 1. Schematic representation of the mass transport problem in a parallel plate
channel partially filled with porous media. Mixture zone illustrated by white
dashed line.
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dinate system is conveniently positioned on the centerline of the
channel. The flow direction and its uniformity are indicated by
the arrows positioned at the entry of the channel. The red color
represents the zone with significant electrolyte presence, with
the inverse being true for the blue colored zone, in which the pres-
ence of electrolyte becomes negligible. The region delimited by the
white dashed lines developing from the origin of the Cartesian
coordinate system represents the zone affected by the diffusion
of the electrolyte to the oppose side, in a phenomenon called cross-
over. The thickness of this zone at the outlet of the channel (hm) is
particularly important and is indicated in Fig. 1 together with other
dimensions of interest. The presence of impermeable walls and the
location of the porous media positioned in a transversally symmet-
rical manner are also highlighted.

The fluid flow is modeled in two ways, depending on the med-
ium under consideration. For the free fluid, it is used standard
steady-state continuity and Navier-Stokes equations for incom-
pressible flow with constant physical properties. Within the por-
ous electrodes, the Darcy equation with the Brinkman correction
was deemed the appropriate model. Nevertheless, the single
domain formulation allows for the unification of these two fluid
flow models, differentiating them through spatially variable phys-
ical properties. The resulting governing equations for the fluid flow,
in dimensionless form, are shown below:

r � u ¼ 0 ð1Þ

qðu � rÞu ¼ �rpþ 4
Re

r � ½lru� � 4c
ReDa

u ð2Þ

where u is the dimensionless velocity vector,r is the dimensionless
nabla operator, q is the dimensionless density, p is the dimension-
less pressure field, l is the dimensionless dynamic viscosity, Re is
the Reynolds number based on the hydraulic diameter, and Da is
the Darcy number.

The dimensionless quantities can be obtained from the respec-
tive dimensional quantities through the following expressions:

u ¼ u�

u0
;r ¼ hr�;q ¼ q�

q0
;p ¼ p�

q0u
2
0

; ð3:a-dÞ

l ¼ l�

l0
; Re ¼ 4q0u0h

l0
;Da ¼ j

h2 ð3:e-gÞ

where u� is the velocity vector, u0 is the uniform entry longitudinal
velocity component,r� is the nabla operator, q� is the density, q0 is
the fluid density, p� is the pressure field, l� is the viscosity, l0 is the
fluid viscosity, and j is the permeability of the porous medium.

Let Vf and Vp be the control volumes corresponding to the free
fluid and the porous media, respectively. The spatially variable
physical properties are defined as follows:

q ¼ 1; in Vf

0; in Vp

�
ð4Þ

l ¼ 1; in Vf

1=e; in Vp

�
ð5Þ

c ¼ 0; in Vf

1; in Vp

�
ð6Þ

where e is the porosity of the porous medium.
In the entry of the free fluid region, a uniform velocity profile is

imposed. In the remaining entry section and at the wall contour a
null velocity vector boundary condition is used. At the outlet, a
fully developed velocity profile, uf , is assumed.

A new methodology for obtaining the solution of the fluid flow
through integral transforms in this physical situation was recently
reported [41]. In that work, the velocity vector was decomposed on
a base flow and on an infinite number of fundamental vortices,
which translates into the following expression:

uðx; yÞ ¼ uf ðyÞ þ
X1
i¼1

r� ½�/iðxÞUiðyÞ� ð7:aÞ

where

uf ðyÞ ¼ uf ðyÞ 0 0½ �T ð7:bÞ

UiðyÞ ¼ 0 0 ~uiðyÞ½ �T ð7:cÞ
For a complete description of the solution methodology and of

the algorithm developed for the solution of the fluid flow under
the conditions herein described, we refer the reader to Ref. [41].

2.2. Species transport model

The model chosen to represent the physical situation of Fig. 1 is
the steady-state two-dimensional convection-diffusion of diluted
species with constant molecular diffusivities. A source term is
included to represent the electrochemical reactions within the por-
ous electrode. Two situations are considered here. The first one is
that the flow is fully developed since the entry, and only the deple-
tion boundary layers are developing. In the second situation, as
depicted in Fig. 1, simultaneousdevelopment is exploredwithveloc-
ity vector field being determined with themethodology of Ref. [41].
To avoid the complications associated with the solution of different
partial differential models for each sub-domain of a heterogeneous
medium coupled by their common boundaries, the single domain
formulation is employed also for the mass transport model.

Regarding the boundary conditions, at the entry, a concentra-
tion profile varying with the transversal coordinate is imposed.
In the zones indicated as walls at the top and the bottom of
Fig. 1, impermeable wall boundary conditions are applied. Consid-
ering the invariance of the concentration profile with the longitu-
dinal coordinate under fully developed conditions, a boundary
condition with null concentration gradient is proposed at a longi-
tudinal position tending to infinity.

The above described model assumes the following mathemati-
cal form for the Cartesian coordinate system of Fig. 1:

uðx; yÞ @c
@x

þ vðx; yÞ @c
@y

¼ 4
Pe

DðyÞ @
2c

@x2
þ @

@y
DðyÞ @c

@y

� �( )
þ Sðx; yÞ

ð8:aÞ
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with inlet and outlet boundary conditions given by:

cð0; yÞ ¼ cinðyÞ; @c
@x

����
x!1

¼ 0 ð8:b; cÞ

and remaining boundary conditions given by:

@c
@y

����
y¼�1

¼ 0;
@c
@y

����
y¼1

¼ 0 ð8:d; eÞ

where u is the dimensionless longitudinal velocity component, v is
the dimensionless transversal velocity component, c is the dimen-
sionless concentration, D is the dimensionless diffusivity, Pe is the
Péclét number, and S is the source term related to the electrochem-
ical reactions.

The dimensional quantities can be obtained from their dimen-
sionless counterparts in the following way:

x ¼ x�

h
; y ¼ y�

h
ð9:a;bÞ

u ¼ u
u0

; v ¼ v
u0

; c ¼ c�

c0
ð9:c-eÞ

D ¼ D�

D0
; Pe ¼ ReSc ¼ 4u0h

D0
ð9:f ; gÞ

where c0 is the uniform electrolyte concentration imposed in the
region indicated with red arrows in Fig. 1, c� is the dimensional con-
centration, D0 is the electrolyte diffusivity, and Sc is the Schmidt
number (l0=ðq0D0Þ).

Following the single domain formulation strategy, applying the
Bruggeman effective diffusivity model [42], and defining the entry
concentration profile in accordance with Fig. 1, we then have,

DðyÞ ¼ 1; �1þwp 6 y 6 1�wp

e1:5; y < �1þwp or y > 1�wp

�
ð10:aÞ

cinðyÞ ¼
1; 0 6 y 6 1�wp

0; y < 0 or y > 1�wp

�
ð10:bÞ

where wp is the ratio between the thickness of the electrode (hp in
Fig. 1) and half of the channel width (h in Fig. 1), henceforth referred
as relative electrode thickness.

In this work, the velocity components shall be defined in two
different ways. In the first formulation, under fully developed flow
conditions, the velocity vector must be equal to uf , as defined in Eq.
(7.b). The result is shown below:

uðx; yÞ ¼ uf ðyÞ ð11:aÞ

vðx; yÞ ¼ 0 ð11:bÞ
For the case involving simultaneous development, the expan-

sion of the curl operator at Eq. (7.a) with respect to the Cartesian
coordinate system of Fig. 1 is carried out, resulting in:

uðx; yÞ ¼ uf ðyÞ þ
X1
i¼1

�/iðxÞd
~ui

dy
ð12:aÞ

vðx; yÞ ¼ �
X1
i¼1

d�/i

dx
~uiðyÞ ð12:bÞ

The source term is built upon the assumption that the elec-
trolyte consumption occurs at a rate that is proportional to the dif-
ference between the concentrations of the bulk of the fluid and at
the reactive surfaces. To analyze the performance from a mass
transport perspective only and to drop the need to introduce com-
plicated models for the electrochemical reaction kinetics, the lim-
iting current conditions are here employed. In other words, it is
assumed that the timescale for the electrochemical reactions is a
lot smaller than the timescale for the transport of electrolytes to
the reactive surfaces, allowing the imposition of a null concentra-
tion at the active areas of the porous electrodes [28]. Therefore, the
source term can be written as [24,25,27]:

Sðx; yÞ ¼ �ahkmfðyÞcðx; yÞ ð13:aÞ
with,

fðyÞ ¼ 1; in 1�wp 6 y 6 1
0; in � 1 < y < 1�wp

�
ð13:bÞ

where a is the specific area of the active surfaces of the porous elec-
trodes and km is the dimensionless mass transfer coefficient.

Assuming the mass transport within the porous electrode
occurs mainly through diffusion, neglecting the convective effects
over the fibers or pores of the electrode, the mass transfer coeffi-
cient can be determined using the following expression [24,25]:

k�m ¼ D0

df
ð14Þ

where k�m is the dimensional mass transfer coefficient and df is the
diameter of the fibers or the pores of the electrode. Defining,

km ¼ k�m
u0

ð15Þ

we then have,

km ¼ 4
rPe

ð16Þ

where r is the ratio between the diameter of the fiber or the pore of
the electrode, df , and half the channel height, h.

One last simplification is possible realizing that the Péclét num-
ber, for the conditions to be tested in this work (see Section 2.7), is
fairly high, mainly due to the Schmidt numbers on the order of
�100. This fact allows the neglection of the longitudinal diffusion
effects, eliminating the need to impose the boundary condition,
as previously discussed, in terms of the invariance of the concen-
tration profile as the longitudinal coordinate tends to infinity.
Hence, the simplified partial differential model becomes:

u
@c
@x

þ v @c
@y

¼ 4
Pe

@

@y
DðyÞ @c

@y

� �
� ah
r

fðyÞcðx; yÞ
� �

ð17:aÞ

with entry condition given by:

cð0; yÞ ¼ cinðyÞ ð17:bÞ
and the remaining boundary conditions given by:

@c
@y

����
y¼�1

¼ 0;
@c
@y

����
y¼1

¼ 0 ð17:c;dÞ
2.3. Eigenvalue problem

Substituting the fully developed velocity components of Eqs.
(11.a,b) into Eq. (17.a) and applying the method of separation of
variables, the following Sturm-Liouville eigenvalue problem is
obtained [30–34]:

d
dy

DðyÞdwi

dy

� �
þ b2

i uf ðyÞ � ah
r

fðyÞ
� �

wiðyÞ ¼ 0 ð18:aÞ

with boundary conditions and normalization given by:

dwi

dy

����
y¼�1

¼ 0;
dwi

dy

����
y¼1

¼ 0 ð18:b; cÞ
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~wiðyÞ ¼ wiðyÞffiffiffiffiffiffiffiffi
Nw;i

p ; Nw;i ¼
Z 1

�1
uf ðyÞwiðyÞ2dy ð18:d; eÞ

The solution of the eigenvalue problem shown above bears the
following orthogonality property:Z 1

�1
uf ðyÞ~wiðyÞ~wjðyÞdy ¼ dij ð19Þ

With the help of the orthogonality property, a transform-
inverse pair can be formed, as follows:

�ciðxÞ ¼
Z 1

�1
uf ðyÞ~wiðyÞcðx; yÞdy ð20:aÞ

cðx; yÞ ¼
X1
i¼1

�ciðxÞ~wiðyÞ ð20:bÞ

The impossibility to obtain analytical solutions for Eqs. (18.a-e)
brings the need of a hybrid solution methodology to the eigenvalue
problem. The GITT itself is chosen to perform the solution of the
eigenvalue problem here proposed. Before proceeding with the
integral transformation of Eq. (18.a), a simpler eigenvalue problem
must be proposed, whose solution shall serve as a basis for expand-
ing the eigenfunction wi. The simplest amongst the Sturm-Liouville
eigenvalue problems is selected, as shown below:

d2nm

dy2
þ t2mnmðyÞ ¼ 0 ð21:aÞ

with boundary conditions and normalization given by:

dnm
dy

����
y¼�1

¼ 0;
dnm
dy

����
y¼1

¼ 0 ð21:b; cÞ

~nmðyÞ ¼ nmðyÞffiffiffiffiffiffiffiffiffi
Nn;m

p ; Nn;m ¼
Z 1

�1
n2mðyÞdy ð21:d; eÞ

The eigenvalue problem of Eqs. (21.a-c) admits analytical solu-
tion in the form,

~nmðyÞ ¼ 1=
ffiffiffi
2

p
; for m ¼ 1

cos ðm� 1Þp yþ1
2


 �
; for m > 1

(
ð22Þ

The eigenfunction defined by the expression in Eq. (22) has the
following orthogonality property:Z 1

�1

~nmðyÞ~nnðyÞdy ¼ dmn ð23Þ

Following the GITT formalism, a transform-inverse pair is then
formed for the eigenfunction wi:

�wi;m ¼
Z 1

�1

~nmðyÞwiðyÞdy ð24:aÞ

wiðyÞ ¼
X1
m¼1

�wi;m
~nmðyÞ ð24:bÞ

Operating Eq. (18.a) with
R 1
�1

~nmðyÞ dy, substituting the inverse
formula of Eq. (24.b), and using integration by parts to avoid
derivatives involving discontinuous functions, the algebraic eigen-
value problem below results:

ðP þ b2
i QÞ�wi ¼ 0 ð25:aÞ

�wi ¼ f�wi;mg;P ¼ fPmng;Q ¼ fQmng ð25:b-dÞ
with integral coefficients given by,
Pmn ¼ �
Z 1

�1
DðyÞd

~nm
dy

d~nn
dy

þ ah
r

fðyÞ~nmðyÞ~nnðyÞ
" #

dy ð25:eÞ

Qmn ¼
Z 1

�1
uf ðyÞ~nmðyÞ~nnðyÞdy ð25:fÞ

The numerical values for the integral coefficients of Eqs. (25.e,f)
are calculated using analytically obtained formulae employing
mixed symbolic-numerical routines built-in Mathematica v. 10.4
platform [43]. To obtain the solution to the algebraic eigenvalue
problem of Eqs. (25.a-f), truncation to a finite order M is needed.
Robust numerical routines available in the software Mathematica
v. 10.4 [43] are then used to carry out the calculations of the eigen-
values and the corresponding eigenvectors. Finally, the eigenvec-
tors are fed into the inverse formula of Eq. (24.b) to obtain the
eigenfunctions wi.

2.4. Transformed problem

Applying the operator
R 1
�1

~wiðyÞ dy to Eq. (17.a), rearranging,
employing integration by parts when necessary, using Eq. (18.a),
and, finally, substituting the inverse formula of Eq. (20.b) into
the results, the transformed system of ordinary differential equa-
tions below is obtained:

X1
j¼1

AijðxÞd
�cj
dx

þ BijðxÞ�cjðxÞ
� �

þ 4b2
i

Pe
�ciðxÞ ¼ 0 ð26:aÞ

with integral coefficients given by:

AijðxÞ ¼
Z 1

�1
uðx; yÞ~wiðyÞ~wjðyÞdy ð26:bÞ

BijðxÞ ¼
Z 1

�1
vðx; yÞ~wiðyÞd

~wj

dy
dy ð26:cÞ

The entry condition must be transformed in a similar way.

Operating Eq. (17.b) with
R 1
�1 uf ðyÞ~wiðyÞ dy, it is then obtained:

�cið0Þ ¼ �cin;i ¼
Z 1

�1
uf ðyÞ~wiðyÞcinðyÞdy ð27Þ

For the analysis in this work, two flow conditions are consid-
ered. In the first, the flow is assumed to be fully developed and
the velocity components are given by Eqs. (11.a,b). Substituting
both equations into Eqs. (26.b,c) and employing the orthogonality
property of Eq. (19), the following decoupled transformed system
results:

d�ci
dx

þ 4b2
i

Pe
�ciðxÞ ¼ 0 ð28Þ

The transformed system of Eq. (28), together with the entry
condition of Eq. (27), lead to a simple analytical solution in the
form:

�ciðxÞ ¼ �cin;i exp �4b2
i

Pe
x

 !
ð29Þ

In the case with simultaneous development, the velocity com-
ponents are given by Eqs. (12.a,b). Substituting those expressions
into Eqs. (26.b,c) and rearranging, the transformed problem
becomes:

X1
j¼1

AijðxÞd
�cj
dx

þ BijðxÞ�cjðxÞ
� �

þ 4b2
i

Pe
�ciðxÞ ¼ 0 ð30:aÞ

with entry condition given by:
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�cið0Þ ¼ �cin;i ð30:bÞ
and integral coefficients given by:

AijðxÞ ¼ dij þ
X1
k¼1

Z 1

�1

~wiðyÞ~wjðyÞd
~uk

dy
dy

� �
�/kðxÞ ð30:cÞ

BijðxÞ ¼ �
X1
k¼1

Z 1

�1

~wiðyÞd
~wj

dy
~ukðyÞdy

( )
d�/k

dx
ð30:dÞ
2.5. Bulk concentration and limiting current density

With the consumption of electrolytes at the porous electrode, a
quantity capable of measuring the amount of reactants still avail-
able for the electrochemical reactions would be convenient. The
bulk concentration can have this role by establishing an average
weighted by the longitudinal velocity component for each position
x, allowing a direct evaluation of the portion of electrolytes fed into
the cell that gets carried along with the flow. Mathematically,

cbðxÞ ¼
R 1
�1 uðx; yÞcðx; yÞdyR 1

�1 uðx; yÞdy
ð31Þ

Invoking the mass conservation principle, the following must be
true:Z 1

�1
uðx; yÞdy ¼ 2ð1�wpÞ ð32Þ

The general expression for the bulk concentration then
becomes:

cbðxÞ ¼ 1
2ð1�wpÞ

Z 1

�1
uðx; yÞcðx; yÞdy ð33Þ

Due to the dependency on the longitudinal component of the
velocity vector, the bulk concentration is also subject to the two
hydrodynamic development cases studied in this work. Applying
the fully developed velocity profile from Eq. (11.a), substituting
the inverse formula of Eq. (20.b), and employing the solution to
the transformed problem for this case (Eq. (29)), we then have,

cbðxÞ ¼ 1
2ð1�wpÞ

X1
i¼1

�cin;igi exp �4b2
i

Pe
x

 !
ð34:aÞ

with integral coefficient given by:

gi ¼
Z 1

�1
uf ðyÞ~wiðyÞdy ð34:bÞ

For the more general case, involving the simultaneous develop-
ment of the velocity and concentration profiles, the longitudinal
velocity component of Eq. (12.a) is substituted into Eq. (33), fol-
lowed by the use of the inverse formula of Eq. (20.b). The result
is shown below:

cbðxÞ ¼ 1
2ð1�wpÞ

X1
i¼1

gi�ciðxÞ þ
X1
k¼1

X1
i¼1

qik
�/kðxÞ�ciðxÞ

( )
ð35:aÞ

with integral coefficients given by:

gi ¼
Z 1

�1
uf ðyÞ~wiðyÞdy; qik ¼

Z 1

�1

~wi
d~uk

dy
dy ð35:b; cÞ

The instantaneous consumption of the electrolytes upon con-
tact with the reactive surfaces of the porous electrodes has been
assumed in the modeling process. Therefore, the electrical current
obtained from the results of this work is the limiting current itself.
Amongst the modeled quantities, the one that bears relation to the
reaction rates is the source term S. The relation between the source
term and the limiting current is determined through the integra-
tion of S along a volume of variable length, x0, and occupying the
whole cross-section of the electrode at the top of Fig. 1. The limit-
ing current density is then obtained with the normalization of the
result of the integration by the footprint of the cell (the product of
the width in z -direction and the variable length of the electrode).
The expression for the limiting current density is the following:

i�limðx0Þ ¼
nFu0c0

x0

Z x0

0

Z 1

1�wp

4
Pe

ah
r

cðx; yÞdydx ð36Þ

where i�lim is the dimensional limiting current density, n is the num-
ber of electrons involved in the electrochemical reactions, F is Fara-
day’s constant (96,485 C/mol), and x0 is the length of the electrode
considered in the calculation of the limiting current.

In order to assure the generality of the analysis, a definition for
a dimensionless current density is needed. Defining,

ilim ¼ i�lim
nFc0u0

ð37Þ

one then has,

ilimðx0Þ ¼ 1
x0

Z x0

0

Z 1

1�wp

4
Pe

ah
r

cðx; yÞdydx ð38Þ

where ilim is the dimensionless limiting current density.

Employing the operator 1
x0
R x0

0

R 1
�1 dydx on Eq. (17.a), knowing

the transversal velocity component is zero at the walls, using the
boundary conditions of Eq. (17.c,d), the definition of Eq. (13.b),
and the expression for the bulk concentration of Eq. (33), it results,

1
x0

Z x0

0

Z 1

1�wp

4
Pe

ah
r

cðx; yÞdydx ¼ 2ð1�wpÞ
x0

½cbð0Þ � cbðx0Þ� ð39Þ

Therefore, the limiting current density can be written as:

ilimðx0Þ ¼ 2ð1�wpÞ
x0

½cbð0Þ � cbðx0Þ� ð40Þ

The relation between the bulk concentration and the dimen-
sionless limiting current density of Eq. (40) demonstrates that
the latter is a direct measure of the average depletion of the elec-
trolytes as the flow advances along the parallel plate channel.

2.6. Solution procedure

The velocity components for both the fully developed and the
simultaneous development cases, as mentioned before, are
obtained with the GITT methodology described elsewhere [41].
Due to the independence of the flow equations from the results
of the mass transport analysis, the velocity vector field is obtained
in a prior step to the solution of the model for the species
transport.

Before proceeding with the solution of the transformed prob-
lem, numerical values for the integral coefficients at the entry con-
dition and the system of ordinary differential equations itself must
be available. Substituting the inverse formula for the eigenfunction
of Eq. (24.b) into the integral coefficients of Eqs. (27) and (30.c,d),
and rearranging the summations, integrals involving the simpler
eigenfunction ~nm arise. The integrals in terms of the simpler eigen-
functions can be easily evaluated from general formulae analyti-
cally obtained with symbolic computation routines present in the
software Mathematica v. 10.4 [43].

The transformed systems for both the solution of the eigenvalue
problem and the species transport model involve an infinite num-
ber of equations and dependent variables. Due to the impossibility
of solving such infinite systems, both sets of equations must be
truncated. The final truncation order of each one is directly gov-
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erned by how many terms are included in the summations of Eqs.
(20.b) and (24.b). In this work, the number of terms used in the
eigenfunction expansions are N and M for the concentration and
the eigenfunction wi, respectively. These two truncation orders
are the only parameters to be monitored as far as convergence is
concerned.

The system of ordinary differential equations, whose solution
must be used to obtain the concentration from the eigenfunction
expansion of Eq. (20.b), is solved in two different ways. The trans-
formed system for the fully developed velocity profile case has an
analytical solution, which was presented in Eq. (29). For the case
involving simultaneous development, the transformed system is
solved through numerical routines for initial value problems. For
the results of this work, the Gear method, implemented in the
built-in function NDSolve of the software Mathematica v. 10.4 [43]
was employed. After the transformed potentials �ci are obtained,
the concentration is easily obtained through Eq. (20.b), with the
summation truncated to an order N.

2.7. Test cases

At first, the influence of the Reynolds number upon the cross-
over phenomenon and the limiting current density scaling is inves-
tigated. Furthermore, a comparison of the results for the two flow
development situations is performed in terms of both the concen-
tration profiles and limiting current density.

The relative thickness of the porous electrode is also varied.
Three different values for wp are used along the cases studied.
The effects of the relative thickness on the region affected by the
crossover at the centerline of the channel are investigated. More-
over, the variation of the limiting current density with wp is
analyzed.

Table 1 summarizes the cases studied and the remainder of the
required parameters, with typical values for membraneless RFBs,
which are fixed throughout the simulated cases.
3. Results and discussion

3.1. Eigenvalue problem

Before proceeding with the analysis of the results for the trans-
port of the species, the eigenfunctions must have the convergence
assured. Amongst the parameters that vary along the test cases,
only the relative thickness of the electrode, wp, has influence over
the eigenvalue problem of Eqs. (18.a-e). Tables 2a–2c show the
evolution of the last five eigenvalues used in the eigenfunction
expansion for the concentration in each case with the truncation
order M. The reason why only the last five eigenvalues are pre-
sented is the observation, based on previously published results
[36,41], that their convergence is general slower than that of the
earlier ones. All three values for the relative thickness specified
on Table 1 are considered. Convergence to at least five significant
digits is observed throughout Tables 2a–2c.
Table 1
Definition of the fixed parameters and of the test cases (varying Re and wp) for the
analysis of membraneless RFBs in flow-by configuration.

Parameter Value Test case Re wp

e 0.8 1 5 0.5
Da 0.002 2 10 0.5
xo 10 3 25 0.5
r 0.02 4 50 0.5
ah 26.67 5 100 0.5
Sc 200 6 50 0.25

7 50 0.75
3.2. Effects of the Reynolds number

Prior to the analysis of the results for the dimensionless concen-
tration and related quantities, a verification of the concentrations
convergence behavior must be carried out. Tables 3a–3c show
the values of the bulk concentration for five selected longitudinal
positions as a function of the truncation order N. Three Reynolds
numbers are selected from the test cases of Table 1. Only the con-
vergence for the simultaneous development flow case is verified.
The analytical solution of a decoupled transformed system for
the fully developed flow case warrants faster convergence rates
than for the simultaneous development case [30–33]. Convergence
to at least three significant digits is observed for all three Reynolds
numbers here analyzed.

Enough separation between the electrolytes and the electrode
on the opposite side to the one they were injected is crucial to
attain good operation with membraneless RFBs. Undesired contact
of any electrolyte with the wrong electrode, known as crossover,
can cause mixed potentials and severe loss of performance [13–
15]. Therefore, a careful analysis of the mixture zone at the inter-
face between the two solutions at the centerline of the channel is
carried out. Fig. 2a–c show the contour plots for the dimensionless
concentration for three different Reynolds numbers (Re = 5, 25,
100) and a relative thickness of the electrode equal to 0.5, assum-
ing the simultaneous development flow condition. These graphs
allow for a general overview of the concentration behavior over
the whole domain. For a Reynolds number equal to 5, a significant
amount of electrolyte is driven towards the electrode on the oppo-
site side. This situation is not present for the other two Reynolds
number studied, with the case of Re = 100 showing a separation
clearly larger amongst the cases depicted in Fig. 2.a-c. This behav-
ior was expected, since smaller Reynolds number implicates higher
residence times, which gives the transversal diffusion more time to
occur. At the electrode adjacent to the electrolyte flow, Fig. 2.a-c
show small protrusions near the entrance of the channel, increas-
ing in size with higher Reynolds number. Such fact is an indication
that the increase in the Reynolds number encourages a more sig-
nificant portion of fluid rich in electrolytes to enter the porous
electrode, with the protrusions being a direct result of transversal
convective flux of species, included in the simultaneous develop-
ment flow case. The remainder of the region of the electrode adja-
cent to the flow of electrolytes consumes the reactants that
manage to penetrate into the porous medium almost entirely.

Fig. 3a–c show the mixture zone more clearly by presenting the
dimensionless concentration profiles at the outlet of the channel
for three selected Reynolds numbers and a relative electrode thick-
ness of 0.5. Fig. 3.a corroborates the conclusion drawn from the
contour plot of Fig. 2.a, showing that, for Re = 5, a significant
amount of electrolyte reaches the electrode on the opposite side,
increasing the possibility of occurrence of mixed potentials. For
Re = 100, the separation is guaranteed, with almost null concentra-
tions at the surroundings of the interface between free fluid and
the electrode positioned at the opposite side to which the elec-
trolytes were injected. The Re = 25 case presents a somewhat inter-
mediate behavior, with the moving front of the mixture zone
approximately halfway between the centerline of the channel
and the interface of the free fluid with the electrode. A comparison
between the concentration profiles at the outlet of the channel for
the simultaneous development (indicated as ‘‘SD” in Fig. 3a–c) and
fully developed (indicated as ‘‘FD” in Fig. 3a–c) flow cases are also
offered in Fig. 3a–c. The agreement between the twomodels for the
velocity vector is perfect to the graph scale for this longitudinal
position, indicating that the flow development is no longer impor-
tant in evaluating the dimensionless concentration profile at the
outlet of the channel.



Table 2a
Convergence of the last five eigenvalues used in the eigenfunction expansion for the concentration in each case. wp ¼ 0:25.

b41 b42 b43 b44 b45

M = 100 84.225 86.301 88.374 90.444 92.511
M = 105 84.225 86.301 88.373 90.444 92.510
M = 110 84.225 86.300 88.373 90.443 92.510
M = 115 84.224 86.300 88.373 90.443 92.510
M = 120 84.224 86.300 88.373 90.443 92.510
M = 125 84.224 86.300 88.373 90.443 92.509
M = 130 84.224 86.300 88.372 90.442 92.509

Table 2b
Convergence of the last five eigenvalues used in the eigenfunction expansion for the concentration in each case. wp ¼ 0:5.

b51 b52 b53 b54 b55

M = 110 146.714 149.701 153.820 157.445 163.149
M = 115 146.175 149.045 151.936 155.367 158.637
M = 120 146.161 148.902 151.695 154.539 157.619
M = 125 146.157 148.895 151.673 154.496 157.348
M = 130 146.156 148.895 151.673 154.490 157.338
M = 135 146.155 148.894 151.672 154.489 157.337
M = 140 146.154 148.893 151.672 154.489 157.337

Table 2c
Convergence of the last five eigenvalues used in the eigenfunction expansion for the concentration in each case. wp ¼ 0:75.

b36 b37 b38 b39 b40

M = 125 157.401 161.039 164.036 166.323 168.365
M = 130 157.400 161.038 164.034 166.322 168.356
M = 135 157.399 161.038 164.033 166.322 168.355
M = 140 157.398 161.036 164.033 166.321 168.354
M = 145 157.396 161.035 164.032 166.320 168.353
M = 150 157.395 161.035 164.032 166.320 168.352
M = 155 157.395 161.034 164.031 166.320 168.352

Table 3a
Convergence of the eigenfunction expansion for the dimensionless bulk concentration for Re ¼ 5 and five different longitudinal positions.

x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

N = 5 0.449 0.454 0.457 0.454 0.451
N = 10 0.474 0.471 0.466 0.460 0.455
N = 15 0.481 0.474 0.467 0.460 0.455
N = 20 0.483 0.476 0.467 0.460 0.455
N = 25 0.483 0.476 0.467 0.460 0.455

Table 3b
Convergence of the eigenfunction expansion for the dimensionless bulk concentration for Re ¼ 25 and five different longitudinal positions.

x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

N = 20 0.485 0.482 0.479 0.477 0.476
N = 25 0.487 0.483 0.480 0.477 0.476
N = 30 0.487 0.483 0.480 0.477 0.476
N = 35 0.487 0.484 0.480 0.477 0.476
N = 40 0.488 0.484 0.480 0.477 0.476

Table 3c
Convergence of the eigenfunction expansion for the dimensionless bulk concentration for Re ¼ 100 and five different longitudinal positions.

x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

N = 35 0.489 0.485 0.482 0.481 0.481
N = 40 0.489 0.486 0.483 0.482 0.481
N = 45 0.489 0.487 0.483 0.482 0.481
N = 50 0.489 0.488 0.484 0.483 0.481
N = 55 0.489 0.488 0.485 0.483 0.481
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Fig. 2. Contour plots for the dimensionless concentration for three different
Reynolds numbers and a relative thickness of the electrode equal to 0.5. (a) Re = 5;
(b) Re = 25; (c) Re = 100. The simultaneous development flow condition was used in
these results. Light green horizontal lines indicate the position of the interfaces
between free fluid and the porous media.

Fig. 3. Dimensionless concentration profiles at the outlet of the channel for three
different Reynolds numbers and a relative thickness of the electrode equal to 0.5. (a)
Re = 5; (b) Re = 25; (c) Re = 100. Results for the fully developed flow case (named
‘‘FD”) are included. Light green vertical lines indicate the position of the interfaces
between free fluid and the porous media.
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Fig. 4a illustrates the variation of the dimensionless limiting
current density with the electrode length for three different Rey-
nolds numbers and relative thickness of the electrode equal to
0.5 under simultaneously developing flow conditions (filled sym-
bols). Optimum lengths for the maximum current density are iden-
tified. At the region immediately after the entry, there is no
significant amount of electrolytes within the electrode, and no cur-
rent can be generated. As the length of the electrode is increased,
the electrolytes reach the reactive surfaces of the electrode
through both transversal diffusion and convection, and a current
starts to form. This current has relatively high magnitudes, since
the bulk concentration of electrolytes is still close to that initially
provided and the difference from the concentration at the active
sites of the electrode (zero in this work) is near the maximum pos-
sible value. For larger lengths, the depletion of electrolytes starts to
gain prominence, decreasing the reaction rates and, consequently,
the obtained current densities. Even though the total current gen-
eration continues to grow, the current density, being a measure of
the average current generation along the domain, tends to
decrease, which explains the behavior of all curves in Fig. 4a. More-
over, still in Fig. 4a, results obtained with the fully developed flow
condition are included (unfilled symbols). As expected, little differ-
ence is noticed for longer electrodes, in comparison to the results
for a simultaneous development flow condition. However, shorter
electrodes implicate considerably larger deviations between the
curves for the two flow conditions used in this work, including a
significant shift on the optimum lengths for maximum limiting
current density. The values for the limiting current density under
simultaneous development flow condition are persistently higher
for all electrode lengths studied, due to the presence of the
transversal convective flux providing fresh reactants to the reac-
tion sites, especially near the entry of the channel.

Fig. 4b presents in a double-log plot a comparison of the scaling
of the dimensionless limiting current density with the Reynolds



Fig. 4. Influence of the Reynolds number on the dimensionless limiting current density for a relative thickness of the electrode equal to 0.5. (a) Comparison of the variation of
dimensionless limiting current density with the length of the electrode for a fully developed flow (unfilled symbols) and for simultaneous development (filled symbols) for
three different Reynolds numbers. (b) Scaling of the limiting current density with the Reynolds number for fully developed flow (named ‘‘FD”) and simultaneous development
(named ‘‘SD”).

Table 4a
Convergence of the dimensionless bulk concentration for wp ¼ 0:25 and five different longitudinal positions.

x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

N = 25 0.488 0.488 0.488 0.489 0.489
N = 30 0.490 0.489 0.489 0.489 0.489
N = 35 0.491 0.489 0.489 0.489 0.488
N = 40 0.491 0.490 0.489 0.489 0.488
N = 45 0.492 0.490 0.489 0.489 0.488

Table 4b
Convergence of the dimensionless bulk concentration for wp ¼ 0:5 and five different longitudinal positions.

x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

N = 35 0.488 0.485 0.482 0.480 0.479
N = 40 0.489 0.485 0.482 0.480 0.479
N = 45 0.489 0.486 0.482 0.480 0.479
N = 50 0.489 0.487 0.482 0.480 0.479
N = 55 0.489 0.487 0.482 0.481 0.479

Table 4c
Convergence of the dimensionless bulk concentration for wp ¼ 0:75 and five different longitudinal positions.

x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

N = 20 0.476 0.465 0.446 0.434 0.426
N = 25 0.477 0.470 0.452 0.439 0.429
N = 30 0.477 0.472 0.454 0.440 0.430
N = 35 0.477 0.472 0.455 0.440 0.430
N = 40 0.477 0.472 0.455 0.441 0.430
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number between the cases with simultaneously developing flow
(named ‘‘SD”) and fully developed flow (named ‘‘FD”) for a channel
with dimensional length equal to 10 and relative thickness of the
electrode equal to 0.5. Both curves are fitted to simulated data
obtained for five different Reynolds numbers (Re = 5, 10, 25, 50,
100). The decrease in the dimensionless limiting current density
with the Reynolds number is consistent with the previously noted
interpretation of this quantity as a measure of the conversion of
electrolytes along the channel. The higher the Reynolds number,
less time the electrolytes spend inside the channel and, therefore,
less time for the electrolytes to enter the electrode and suffer elec-
trochemical reactions, decreasing the conversion. On the other
hand, the limiting current density in its dimensional form is
obtained from the dimensionless current density through the mul-
tiplication by a term directly proportional to the Reynolds number.
Hence, the scaling shown in Fig. 4.b must be interpreted as a devi-
ation, imposed by mass-transport-related deficiencies, of the
dimensional limiting current density from the ideal linear scaling.
The scaling of the dimensional limiting current density predicted
then becomes �Re0.41 and �Re0.36 for the simultaneous develop-
ment and fully developed flow conditions, respectively. The fact
that the scaling is higher than�Re0.33 typical of membraneless flow
cells with flat electrodes [28], underscores the benefits of the use of
porous electrodes formass transport enhancement in these devices.



Fig. 5. Contour plots for the dimensionless concentration for three different relative
thicknesses of the electrode and Reynolds equal to 50. (a) wp = 0.25; (b) wp = 0.5; (c)
wp = 0.75. The simultaneous development flow condition was used in these results.
Light green horizontal lines indicate the position of the interfaces between free fluid
and the porous media.

Fig. 6. Dimensionless concentration profiles at the outlet of the channel for three
different relative thicknesses of the electrode and Reynolds number equal to 50. (a)
wp = 0.25; (b) wp = 0.5; (c) wp = 0.75. Results for the fully developed flow case
(named ‘‘FD”) are included. Light green vertical lines indicate the position of the
interfaces between free fluid and the porous media.
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3.3. Effects of the relative thickness

The convergence of the dimensionless concentration, this time
for the cases varying the relative thickness of the electrode, are first
evaluated. For a Reynolds number equal to 50, three relative thick-
nesses are tested and the values for the concentration in selected
longitudinal positions are obtained for ascending truncation order
N, until certain criteria are satisfied. Tables 4a–4c summarize the
results for the bulk concentration for the simultaneous develop-
ment flow case, again considered to be the most critical situation.
Convergence to three significant digits is attained for all three
thicknesses for the truncation orders here indicated.

The need for an evaluation of the separation between the elec-
trolyte and the electrode on the opposite side is the same as the
one previously done with varying Reynolds number. Fig. 5a–c
depict the contour plots of dimensionless concentration for three
different relative thicknesses of the electrode defined in Table 1
and for a Reynolds number equal to 50. For the case with elec-
trodes occupying a quarter of the channel, the separation remains
satisfactory for the conditions studied. The same seems to be the
case for electrodes occupying half of the channel, with the contour
corresponding to a dimensionless concentration equal to 0.1 suffi-
ciently apart from the interface between free fluid and the porous
electrode on the opposite side of the one where the electrolytes are
injected. Lastly, the case with electrodes occupying 75% of the
channel has the smallest separation between the electrolyte and
the electrode, with the contour equivalent to a dimensionless con-
centration of 0.1 almost touching the porous medium at the bot-
tom. Such behavior is expected, since the increase of the
proportion of the channel occupied by the porous electrodes
reduces the space available for the free fluid. This fact decreases
the transversal distance that the convection-diffusion mechanism
must overcome in order to reach the electrode on the opposite
side, facilitating the appearance of the mixed potentials
phenomenon.



Fig. 7. Influence of the relative thickness of the electrode on the dimensionless
limiting current density for a Reynolds number equal to 50. Comparison of the
variation of dimensionless limiting current density with the length of the electrode
for a fully developed flow (unfilled symbols) and for simultaneous development
(filled symbols) for three different relative thicknesses.
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Fig. 6a–c show the influence of the relative thickness of the
electrode on the mixture zone in more detail through concentra-
tion profiles at the outlet of the channel. The conclusions taken
from Fig. 5.a-c remain valid. The mixture zone front with signifi-
cant concentration of electrolytes is capable of reaching the porous
electrode on the opposite side to the one where the reactants are
injected, for the case with relative thickness of 0.75. Such large
thickness of the electrode becomes, for the conditions analyzed,
inadequate for the prevention of the crossover and the associated
phenomenon of mixed potentials. The other two thicknesses show
a satisfactory separation of the electrolyte from the electrode at the
bottom of Fig. 1, with the case in which the porous media occupy
half of the channel showing an intermediate behavior.

Fig. 7 depicts the variation of the dimensionless limiting current
density with the length of the electrode. Optimum lengths for max-
imum current densities are identified, being especially prominent
for the results with the simultaneous development flow condition
(filled symbols). The reasons for this phenomenon are the same
already explored in Section 3.2. The results for the case with fully
developed flow conditions (unfilled symbols) are almost insensi-
tive to changes in the relative thickness of the electrodes for the
situation studied. This behavior does not repeat itself for the simul-
taneous development results, highlighting the importance of con-
sidering the evolution of the velocity vector field along the
channel. The simultaneous development flow conditions are par-
ticularly important for electrodes occupying 75% of the channel,
case in which, even for longer electrodes, the difference between
the current densities obtained with the two velocity vectors is very
significant. Comparing the dimensionless limiting current density
for different relative thickness of the porous media, becomes clear
the increase in the conversion of the electrolyte with increasing
thickness of the electrode. This allows for a conclusion that shorter,
on the vicinity of the optimum length, and bulkier electrodes,
though not thick enough to compromise the separation of the elec-
trolytes, are beneficial from the point-of-view of mass transport
only.

4. Conclusions

A theoretical analysis of the mass transport in a membraneless
RFB in flow-by configuration employing porous electrodes in con-
ditions of mass-transport-limitation was conducted. The method-
ology successfully employed in the solution of the governing
equations was the Generalized Integral Transform Technique
(GITT) with a single domain formulation strategy.
The analysis of the crossover dependency on the Reynolds num-
ber show that smaller values of Reynolds render inadequate sepa-
ration between the electrolyte and the electrode on the opposite
side, due to larger residence times inside the channel. This problem
vanishes at the higher Reynolds number studied. As for the relative
thickness of the electrode, an increase in its value had a negative
effect on crossover prevention.

Optimum lengths for the electrode were identified for the max-
imum limiting current density in both analysis with varying Rey-
nolds number and relative thickness of the electrode. The
importance of the simultaneous flow development was demon-
strated in a comparison with the current densities obtained under
fully developed flow conditions.

The exponent of the scaling of the dimensionless limiting cur-
rent density was identified as a deviation from the ideal linear scal-
ing for the dimensional current density. Such deviation was due to
mass-transport-related deficiencies, preventing the attainment of
full conversion. The scaling obtained for the conditions studied
was �Re0.41, which contrasts with �Re1/3 reported for flat elec-
trodes [28], demonstrating the efficacy of the use of porous elec-
trodes for the mitigation of mass transport limitations.
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