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Single domain integral transform analysis of natural
convection in cavities partially filled with heat generating
porous medium

Kleber Marques Lisboaa, Jian Sub, and Renato Machado Cottaa�
aLaboratory of Nano- and Microfluidics and Microsystems, LabMEMS, Mechanical Engineering Department,
POLI & COPPE, Interdisciplinary Nucleus for Social Development—NIDES/CT, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brazil; bNuclear Engineering Department and Nanoengineering Department, COPPE,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

ABSTRACT
An analysis of natural convection within a rectangular cavity partially filled
with a heat-generating porous medium is carried out through the
Generalized Integral Transform Technique (GITT), in which the laminar flow
and energy equations are solved with automatic error control. A single
domain reformulation strategy is adopted to rewrite the governing equa-
tions within the fluid and the porous medium as a single heterogeneous
medium formulation, with spatially variable physical properties and source
terms that account for the abrupt transition of the two regions. This funda-
mental study is motivated by the analysis of wet storage of spent nuclear
fuel elements with passive cooling of the pool and physical conclusions
are drawn from the hybrid numerical-analytical solution. Increases in the
Rayleigh number with constant internal heat generation are found to lower
the maximum temperature within the cavity. Moreover, decreasing the
aspect ratio also has positive effects on the cooling of the cavity.
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1. Introduction

Heat and fluid flow phenomena in partially porous heterogeneous media still pose challenges in
both mathematical modeling and solution methodology towards their accurate simulation [1, 2].
Reliable models for both the bulk of the porous medium and its interface with a fluid layer must
be employed. The most straightforward model is considered to be the use of the classical Darcy
model and the Navier–Stokes equations in the porous and fluid regions, respectively, coupled by
a semi-empirical velocity jump boundary condition at the interface [3–5]. Another approach
involves the inclusion of the Brinkman correction [6] into the Darcy model using the volume
averaging technique [7–9]. The presence of a second order term allows for the employment of
continuity boundary conditions for both stress and velocity vectors at the interface between por-
ous and fluid regions. The equivalency between the two formulations has been reported previ-
ously in the literature, provided that the adopted slip coefficient be proportional to the square
root of the effective viscosity [10].
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Despite the ubiquitous presence of purely numerical schemes for the solution of partial differ-
ential equations, analytical solutions are still needed for benchmarking and low-cost, arbitrarily
precise calculations. Nevertheless, analytical methods are usually restricted to linear problems in
regular geometries, which severely limits their applicability. In this context, the so-called hybrid
numerical-analytical methods were proposed, as a means to enable the extension of analytical
techniques to applications once dominated by finite elements and finite volumes analyses. Among
the hybrid techniques devised over the years, the Generalized Integral Transform Technique
(GITT) has proven to be a fairly general approach, enabling the solution of problems with mov-
ing boundaries, in irregular domains, with nonlinear boundary conditions and source terms, etc.
By analytically treating all but one independent variable, the GITT enables automatic error con-
trol of the solution of partial differential equations. More complete descriptions of the theory and
of the applications of the GITT can be found in several reference works [11–16]. The GITT has
proven to be suitable to solve natural convection models in fluid filled cavities [17–19], adjacent
fluid and porous layers [20, 21], and in cavities completely filled with porous media [22–24].
Other applications involving the integral transform solution of the Navier–Stokes equations in
both primitive variables [25] and streamfunction-only [26–30] formulations are also read-
ily available.

Recent developments in the GITT extended its applicability to complex configurations, once
solvable essentially by purely numerical approaches. The so-called single domain formulation
strategy allows for a more straightforward treatment of models involving heterogeneous media
and complex geometries by the introduction of abruptly spatially varying physical properties
and source terms [31–37]. Then, the associated eigenvalue problem carries the information on
the space variable coefficients, which account for the transition at the various interfaces
between different materials or geometric regions. This approach has been recently extended to
the solution of the Navier–Stokes equations in heterogeneous media, with a successful applica-
tion to both laminar internal flow and forced convection in a duct partially filled with porous
media [38, 39].

Nomenclature

Bi Biot number
cp specific heat at constant pressure
Da Darcy number
h half of the cavity height
kef effective conductivity
ks dimensionless heat conductivity of

the solid
M eigenfunction truncation order
N truncation order
Pr Prandtl number
Ra Rayleigh number
S0 volumetric heat generation
T temperature
T1 ambient temperature
u velocity vector
v transversal velocity component
r nabla operator: ð @@x ; @

@y ;
@
@zÞ

Greek letters
d Kronecker delta
e porosity

j permeability
k;x; g; r eigenvalues corresponding to u, X, f,

and n
�/ transformed potential for the vel-

ocity vector
u; f Eigenfunctions
U base vector
v aspect ratio
X; n auxiliary eigenfunctions

Subscripts and superscripts
i; j; o; l; q order of eigenquantities
m; n; r; s order of auxiliary eigenquantities
� normalized eigenfunction
� dimensional quantity
T transpose
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The present application was motivated by the wet storage of spent nuclear fuel elements and
the passive cooling of the storage pool. The events leading to the Fukushima Daiichi accident
have urged the nuclear engineering community to develop passive alternatives to remove the
decay heat from nuclear fuel elements [40]. Among the facilities affected by the regulation that
followed, the spent fuel pool (SFP) is here highlighted. In the absence of electrical power, the
constant supply of fresh water from the active cooling system of the SFP stops, increasing the
likelihood of reaction between the cladding of the fuel elements and water due to elevated tem-
peratures [41, 42]. Such an event could potentially expose the radioactive material with harmful
consequences. To overcome these difficulties, heat pipes have been proposed as an effective pas-
sive heat removal system [43, 44]. In fact, a heat pipes system for SFP is already in operation in a
Nuclear Power Plant at G€osgen, Switzerland [45]. However, basic understanding of the effects of
the heat pipes in the natural convection within SFPs is still lacking.

The direct numerical analysis of the nuclear fuel elements in SFPs can be quite cumbersome.
To avoid such complications, a porous medium model is usually applied allowing for precise and
computationally effective solutions to be obtained for intricate problems involving nuclear fuel
elements. In this context, advances on the understanding of the effects of a passive cooling sys-
tem on a SFP are here pursued. The GITT with single domain formulation is employed in the
solution of the partial differential equations involved, whilst a finite element analysis (FEA) is
carried out for co-verification purposes. A possible approach for this problem consists of the
establishment of two different models for each layer, coupled by their common boundary.
However, a more straightforward approach has been recently demonstrated for flow and mass
transfer between porous and fluid layers [38, 39]. Instead of treating each region separately, the
single domain formulation mentioned above proposes a unique set of equations with abruptly
varying physical properties to represent the transition between the different media. Besides the
gain in computational time, the analytical pretreatment of the problem is greatly simplified,
which renders the single domain formulation strategy particularly symbiotic with the GITT
approach. The effects of the dimensionless temperature of the phase change refrigerant, of the
Rayleigh number, and of the aspect ratio of the SFP are here investigated. Physical insights are
drawn and some design directives are proposed, aiming at reduced maximum temperature within
the cavity.

2. Formulation and solution methodology

2.1. Fluid flow model

Figure 1 depicts the physical situation under consideration for the fluid flow model. A rectangular
cavity is partially filled with a water saturated porous medium representing the nuclear fuel ele-
ments, in accordance with the approach employed in previous works [41–43]. The remainder of
the cavity is occupied by a layer of fluid. In the present illustration of the methodology, the por-
ous and fluid layers fill half of the cavity each. A Cartesian coordinate system is included at the
midpoint of the left vertical side of the cavity to facilitate the understanding of the model.
Furthermore, some dimensions of interest are presented in Figure 1.

The fluid layer is assumed as an incompressible, steady-state, laminar flow of a Newtonian
fluid with constant physical properties. The continuity and Navier–Stokes equations are
deemed the appropriate model for this region. In addition, a buoyancy term with the
Boussinesq approximation is included. In other words, the fluid density is considered to be
constant except in the body forces term, in which a linearized compressibility relation is
used. As for the porous layer, a Darcy model with a first order Brinkman correction is
employed [6, 7]. The presence of the Brinkman correction allows the imposition of continuity
boundary conditions for the velocity, normal stress, and tangential stress vectors at the
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interface between the fluid and porous layers [8, 9, 20, 21]. Thus, the fluid flow model can
be written in dimensionless form as:

r � u ¼ 0 (1)

q u � rð Þu ¼ �rpþr � lru½ �� c
Da

uþ Ra
8Pr

Tey (2)

where u is the dimensionless velocity vector, ey is the unitary vector in the y-direction, r is the
dimensionless nabla operator, q is the dimensionless density, p is the dimensionless pressure, l is
the dimensionless dynamic viscosity, T is the dimensionless temperature, Ra is the Rayleigh num-
ber based on the height of the cavity, Pr is the Prandtl number, and Da is the Darcy number.
The dimensionless quantities are obtained from their dimensional counterparts in the following
way:

u ¼ q0h
u�

l0
; r ¼ hr�; q ¼ q�

q0
; p ¼ q0h

2 p�

l02
; T ¼ l0cp

T��T1
h2S0

(3a-e)

l ¼ l�

l0
; Ra ¼ 8q0gbS0h

5

l02cpa0
; Pr ¼ l0

q0a0
; Da ¼ j

h2
(3f-i)

where u� is the velocity vector, r� is the nabla operator, q� is the density, q0 is the fluid density,
p� is the pressure, T is the temperature, T1 is a reference temperature, l� is the viscosity, l0 is
the fluid viscosity, cp is the specific heat, a0 is the thermal diffusivity, b is the volumetric expan-
sion coefficient, S0 is a characteristic volumetric heat generation rate of the nuclear fuel elements,
j is the permeability of the porous medium, and g is the gravitational acceleration.

In accordance with the single domain formulation, the physical properties of Eq. (2) vary
abruptly across the interfaces between different media. Let Vf and Vp be the regions occupied by
the fluid and porous layers, respectively. Employing the effective viscosity [7–9], neglecting the
inertial terms within the porous medium, and disregarding the dissipative term in the fluid layer,
the following definitions are adopted:

Figure 1. Schematic representation of the rectangular cavity partially filled with a porous medium generating heat and repre-
senting the spent nuclear fuel elements.
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q ¼ 1; in Vf

0; in Vp

�
(4)

l ¼ 1; in Vf

1=e; in Vp

�
(5)

c ¼ 0; in Vf

1; in Vp

�
(6)

where e is the porosity of the porous medium.
To complete the modeling for the fluid flow, a set of boundary conditions must be established.

The Brinkman viscous correction allows for the imposition of no-slip boundary conditions at the
four walls surrounding both the fluid and porous layers. At the interface between the two layers,
the single domain formulation automatically imposes continuity of the velocity vector and of the
normal and tangential stresses. Mathematically,

u 0; yð Þ ¼ 0; u 2v; yð Þ ¼ 0
u x;�1ð Þ ¼ 0; u x; 1ð Þ ¼ 0

(7a-d)

2.2. Heat transfer model

The energy equation with constant thermophysical properties and constant heat generation rate,
only within the fuel elements region, is used to model the heat transfer phenomena. The single
domain formulation is once more employed, thereby simplifying the set of equations through the
introduction of abrupt variations of thermophysical properties and source term at the interface
between the fluid layer and the fluid saturated porous medium. The resulting dimensionless
model is shown below:

u � rT ¼ 1
Pr

r � krT½ � þ c (8)

where k is the dimensionless thermal conductivity, which can be obtained from its dimensional
counterpart as follows:

k ¼ k�

k0
(9)

where k� is the dimensional thermal conductivity and k0 is the thermal conductivity of the fluid.
Following the single domain formalism, the dimensionless thermal conductivity is set to vary

abruptly at the interface between the fluid layer and the porous layer. Mathematically,

k ¼ 1; in Vf

kef ; in Vp

�
(10)

where kef is the dimensionless effective thermal conductivity of the fluid saturated porous
medium. The effective thermal conductivity is then obtained by taking the volumetric mean value
between the thermal conductivities of the fluid and solid phases, resulting in the following expres-
sion: kef ¼ eþ 1� eð Þks (11)

where ks is the ratio between the thermal conductivity of the solid phase and that of the
fluid phase.

To complete the heat transfer model, a set of boundary conditions must be established. The
bottom side of the cavity is considered to be thermally insulated. The top side of the cavity is
considered to be exposed to natural convection with the air layer just above it. The sidewalls are
considered to exchange heat with heat exchangers. The temperature is assumed to be constant, in
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accordance with the phase change of the refrigerant employed in the heat pipes system [43]. In
mathematical form, the boundary conditions become:

T 0; yð Þ ¼ Tw; T 2v; yð Þ ¼ Tw

@T
@y

����
y¼�1

¼ 0; BiT x; 1ð Þ þ @T
@y

����
y¼1

¼ 0 (12a-d)

where Tw is the dimensionless temperature of phase change of the refrigerant and Bi is the Biot
number based on the half height of the cavity, h.

2.3. Eigenvalue problem for the fluid flow model

Considering an infinite number of elemental vortices composing the velocity vector, as previously
proposed [38], the velocity vector can be represented by the following expansion:

u x; yð Þ ¼
X1
i¼1

r� �/i xð ÞUi yð Þ
h i

(13)

Equation (13) automatically satisfies the continuity equation, Eq. (1), sharing the same advan-
tage of the streamfunction-only formulation [26–30], though not restricted to two-dimen-
sional problems.

To warrant convergence to an arbitrary precision, the orthogonality property is demanded
from vector Ui [11, 38]. Furthermore, the base vector Ui should contain as much information
from the physical situation as possible, in order to achieve fast convergence rates and to minimize
the computational effort. The chosen eigenvalue problem with the aforementioned characteristics
has already been reported [38], and the involved set of equations is reproduced below:

d2

dy2
l
d2ui

dy2

 !
� d
dy

c
Da

dui

dy

� �
¼ ki

4l yð Þui yð Þ (14a)

ui �1ð Þ ¼ 0;
dui

dy

����
y¼�1

¼ 0 (14b,c)

ui 1ð Þ ¼ 0;
dui

dy

����
y¼1

¼ 0 (14d,e)

eui yð Þ ¼
ui yð Þffiffiffiffiffiffiffiffi
Nu;i

p ; Nu;i ¼
ð1
�1

l yð Þui yð Þ2dy (14f,g)

with the base vector Ui defined as follows:

Ui yð Þ ¼ 0 0 eui yð Þ
� �T

(15)

The base vector bears the following orthogonality property [38]:ð1
�1

l yð ÞUi yð Þ �Uj yð Þdy ¼ dij (16)

In light of the difficulty in analytically solving the eigenvalue problem of Eqs. (14a–g) in terms
of elementary functions, the GITT itself is employed as a hybrid solution methodology. This
strategy has already been successfully applied in previous works, including those that adopt the
single domain formulation [31–37]. To proceed with the GITT formalism in the solution of Eqs.
(14a–g), a simpler eigenvalue problem with known analytical solution is proposed. In this work,
the simple biharmonic eigenvalue problem shown below is used [38]:
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d4Xm

dy4
¼ xi

4Xm yð Þ (17a)

Xm �1ð Þ ¼ 0;
dXm

dy

����
y¼�1

¼ 0 (17b,c)

Xm 1ð Þ ¼ 0;
dXm

dy

����
y¼1

¼ 0 (17d,e)

with normalized eigenfunction and normalization integral given, respectively, by

eXm yð Þ ¼
Xm yð Þffiffiffiffiffiffiffiffiffiffi
NX;m

p ; NX;m ¼
ð1
�1

Xm yð Þ2dy (17f,g)

The simpler eigenvalue problem of Eqs. (17a–g) admits the following solution:

eXm yð Þ ¼ 1ffiffiffi
2

p
cos xmyð Þ
cos xmð Þ � cosh xmyð Þ

cosh xmð Þ if m odd

sin xmyð Þ
sin xmð Þ � sinh xmyð Þ

sinh xmð Þ if m even

8>>><>>>: (18a)

where xm�s are solution to the transcendental equation below:

tanh xmð Þ ¼ � tan xmð Þ if m odd
tan xmð Þ if m even

�
(18b)

bearing the orthogonality property below:ð1
�1

eXm yð ÞeXn yð Þdy ¼ dmn (18c)

The orthogonality property of Eq. (18c) allows for the establishment of the following trans-
form-inverse pair:

�ui;m ¼
ð1
�1

eXm yð Þui yð Þdy; ui yð Þ ¼
X1
m¼1

�ui;m
eXm yð Þ (19a,b)

Proceeding with the integral transformation process, Eq. (14a) is operated on withÐ 1
�1
eXmðyÞ dy, resulting in the transformed algebraic eigenvalue problem below:

P � ki
2 Q

	 

�ui ¼ 0 (20a)

�ui ¼ �ui;mf g; P ¼ Pmnf g;Q ¼ Qmnf g (20b-d)

Pmn ¼
ð1
�1

l
d2eXm

dy2
d2eXn

dy2
þ c
Da

deXm

dy
deXn

dy

" #
dy (20e)

Qmn ¼
ð1
�1

leXm
eXndy (20f)

After truncation to a finite order M, the algebraic eigenvalue problem of Eqs. (20a–f) can be
solved with well-established routines available in numerical subroutine packages such as the
Eigensystem function of the Mathematica v.10.4 platform. The resulting eigenvectors are then sub-
stituted into the inverse formula of Eq. (19b) to render the final expression for the eigenfunc-
tion uiðyÞ.
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2.4. Eigenvalue problem for the heat transfer model

Similarly, an eigenvalue problem must be proposed for the solution of the heat transfer model through
integral transforms. Applying separation of variables to a simplified version of Eq. (8) without internal
heat generation and convective terms, a Sturm–Liouville eigenvalue problem can be obtained for the
y-direction eigenfunction expansion [11]. This eigenvalue problem enables the analytical solution of
the elliptical partial differential equation that results and desirably contains all the information con-
cerned with the abrupt variation of thermal conductivity at the interface between fluid and porous
layers. The set of equations obtained through the process above described is shown below:

d
dy

k yð Þ dfldy

� �
þ gl

2k yð Þfl yð Þ ¼ 0 (21a)

fl
0 �1ð Þ ¼ 0; Bifl 1ð Þ þ fl

0 1ð Þ ¼ 0 (21b,c)

with normalized eigenfuncitons and normalization integral given, respectively, by

efl yð Þ ¼
fl yð Þffiffiffiffiffiffiffi
Nf;l

p ; Nf;l ¼
ð1
�1

k yð Þfl yð Þ2dy (21d,e)

The eigenfunction resulting from the solution of Eqs. (21a–e) has the following orthogonality
property: ð1

�1
k yð Þefl yð Þefq yð Þdy ¼ dlq (22)

The orthogonality property allows for the establishment of a transform-inverse pair for the
dimensionless temperature as follows:

�Tl xð Þ ¼
ð1
�1

k yð Þefl yð ÞT x; yð Þdy; T x; yð Þ ¼
X1
l¼1

�Tl xð Þefl yð Þ (23a,b)

Again, the GITT approach is used for the solution of the eigenvalue problem for the heat
transfer model. For this purpose, a simpler eigenvalue problem must be used in the expansion forefl. For the heat transfer model, the simplest possible Sturm–Liouville problem is chosen, in the
form:

d2nr
dy2

þ rr
2nr yð Þ ¼ 0 (24a)

nr
0 �1ð Þ ¼ 0; Binr 1ð Þ þ nr

0 1ð Þ ¼ 0 (24b,c)

with normalized eigenfunctions and normalization integrals as

enr ¼ nr yð Þffiffiffiffiffiffiffiffi
Nn;r

p ; Nn;r ¼
ð1
�1

nr yð Þ2dy (24d,e)

The following orthogonality property is valid for the solution of the eigenvalue problem of
Eqs. (24a–e): ð1

�1

enr yð Þens yð Þdy ¼ drs (25)

A transform-inverse pair can then be formed for the eigenfunction fl,

�fl;r ¼
ð1
�1

enr yð Þfl yð Þdy; fl yð Þ ¼
X1
r¼1

�fl;renr yð Þ (26a,b)
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Operating Eq. (21a) with
Ð 1
�1
enrðyÞ dy, using integration by parts to avoid derivatives of dis-

continuous functions, and employing the inverse formula of Eq. (26b), the algebraic eigenvalue
problem below results:

Rþ gl
2U

	 

�fl ¼ 0 (27a)

�fi ¼ �fi;r
 �

; R ¼ Rrsf g;U ¼ Ursf g (27b-d)

Rrs ¼ �
ð1
�1

k yð Þ d
enr
dy

dens
dy

dy (27e)

Urs ¼
ð1
�1

k yð Þenrensdy (27f)

Upon truncation to a finite order M̂ , the algebraic eigenvalue problem of Eqs. (27a–f) is solved
with the routine Eigensystem built-in the Mathematica v.10.4 platform. Additionally, the software
Mathematica is used to obtain the numerical values of the coefficients of Eqs. (27e,f) through
analytically determined expressions. The eigenvectors are then substituted into the inverse for-
mula Eq. (26b) to fully determine the eigenfunctions fl.

2.5. Transformed problem

The eigenfunction expansion proposed in Eq. (13) identically satisfies the continuity equation, Eq.
(1). Therefore, the only remaining equations are the ones related to linear momentum and energy
conservations. Proceeding then with the integral transforms formalism, Eq. (2) is operated withÐ
dVðr �UiÞ � dv leading to [38]:ð

dV
Ui � r � q u � rð Þu

� �
�r� r � lruð Þ½ � þ 1

Da
r� cu½ � � Ra

8Pr
@T
@x

ez

� �
dv ¼ 0 (28)

where dV is an infinitesimal volume consisting of the whole vertical cross-section of the cavity
depicted in Figure 1 and with an infinitesimal longitudinal length dx. The choice of the operator
used in the integral transformation allows for the complete elimination of the pressure term, thus
dropping the requirement to establish a separate eigenfunction expansion with the sole purpose
of determining the pressure field [38].

Employing the inverse formulae of Eqs. (13) and (23b), using some tensor calculus identities, and
rearranging, the following infinite system of coupled ordinary differential equations results [38]:

d4�/i

dx4
¼ �ki

4�/i�
X1
j¼1

Fij
d2�/j

dx2
þ Ra
8Pr

X1
l¼1

Gil
d�Tl

dx
�

�
X1
o¼1

X1
j¼1

Aijo
d�/j

dx
�/o þ Bijo

�/j
d�/o

dx
þ Cijo

d2�/j

dx2
d�/o

dx
þþDijo

d�/j

dx
d2�/o

dx2
þ Eijo

d3�/j

dx3
�/o

� � (29a)

with integral coefficients,

Aijo ¼
ð1
�1

q
deui

dy

deuj

dy
deuo

dy
dy (29b)

Bijo ¼ �
ð1
�1

q
deui

dy

d2euj

dy2
euody (29c)

Cijo ¼
ð1
�1

qeui

deuj

dy
euo � qeuieuj

deuo

dy

 !
dy (29d)
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Dijo ¼
ð1
�1

qeui

deuj

dy
euody (29e)

Eijo ¼ �
ð1
�1

qeuieuj
deuo

dy
dy (29f)

Fij ¼ �
ð1
�1

2l
deui

dy

deuj

dy
þ c
Da
euieuj

" #
dy (29g)

Gil ¼
ð1
�1
eui
efldy (29h)

A similar procedure is used for the integral transformation of the boundary conditions of Eqs.
(7a,b) [38], yielding:

�/i 0ð Þ ¼ 0; �/i
0 0ð Þ ¼ 0 (30a,b)

�/i 2vð Þ ¼ 0; �/i
0 2vð Þ ¼ 0 (30c,d)

The integral transformation process of the energy conservation equation follows the usual for-
malism of the GITT. Applying

Ð 1
�1
eflðyÞ dy to Eq. (8) expanded in the Cartesian coordinate sys-

tem of Figure 1, using the inverse formulae of Eqs. (13) and (23b), and rearranging, we then
have:

d2�Tl

dx2
¼ gl

2�Tl þ Pr
X1
o¼1

X1
q¼1

AAlqo
d�Tq

dx
�/o þ BBlqo

�Tq
d�/o

dx

� �
�glPr (31a)

with integral coefficients,

AAlqo ¼
ð1
�1

ef lefq deuo

dy
dy (31b)

BBlqo ¼ �
ð1
�1

efl defqdy
euody (31c)

gl ¼
ð1
�1

eflcdy (31d)

Similarly, employing the operator
Ð 1
�1 kðyÞeflðyÞ dy into Eqs. (12a,b), the transformed boundary

conditions are obtained as follows:

�Tl 0ð Þ ¼ �Tl 2vð Þ ¼ Tw

ð1
�1

k yð Þef l yð Þdy (32a,b)

2.6. Solution procedure

In face of the impossibility of solving two infinite sets of equations such as Eqs. (29a–h) and
(31a–d), a truncation process must be carried out. The summations in the inverse formulae of
Eqs. (13) and (23b) are limited to the orders N and N̂ , respectively. The truncation is then propa-
gated to the summations in Eqs. (29a) and (31a), limiting their order accordingly. The conver-
gence of the results can be verified by monitoring these two truncation orders only [11].

The integrations in Eqs. (29b–h), (31b–d), and (32a,b) are all analytically determined, after substi-
tution of the inverse formulae Eqs. (19b) and (26b), using symbolic computation functions available
at the Mathematica v.10.4 platform. The resulting system of ordinary differential equations for the
transformed potentials is then solved using the built-in function NDSolve of the Mathematica v.10.4
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platform. However, for that purpose, a pseudo-transient term is introduced on the r.h.s. of Eqs. (29a)
and (31a). The pseudo-transient term consists of the plain time-derivative of the transformed poten-
tial at the order i and l for Eqs. (29a) and (31a), respectively. Moreover, initial conditions consistent
with the boundary conditions are imposed, i.e., zero for the transformed velocity vector and equal to
the r.h.s. of Eq. (32a,b) for the transformed temperature. The pseudo-time interval is determined a
posteriori, aiming at achieving steady-state. The resulting transformed potentials at the end of the
pseudo-time interval is then substituted into the inverse formulae of Eqs. (13) and (23b) to determine
the velocity vector and temperature fields throughout the cavity.

3. Results and discussion

Along the present analysis, some parameters are kept constant throughout the test cases. The
Darcy number and the porosity, for instance, were set to 10�5 and 0.5, respectively, consistent
with spent nuclear fuel elements assemblies, as estimated in the literature [43]. Similar arguments
were used to determine a suitable value for ks as 8.33. The Prandtl and Biot numbers are set to 7
(water) and 50, respectively.

First, the effects of the Rayleigh number (Ra) are investigated and a thorough analysis under
the laminar flow regime is performed, with five values of Ra ranging from 10 to 105.
Furthermore, a combined analysis of the effects of the Rayleigh number and of the dimensionless
phase change temperature of the refrigerant is carried out. Three values of Tw are used for that
purpose: 0, 0.5, and 1. Finally, the effect of the aspect ratio (v) on the flow pattern and on the
temperature distribution is investigated. Besides the aspect ratio of 2 used in the other analyses,
the values of 4 and 6 are also employed for v. The same cases are analyzed with the software
COMSOL Multiphysics v.5.2 (Burlington, MA) for co-verification.

3.1. Convergence analysis

Before physically analyzing the results obtained, the accuracy of the developed solution will be dem-
onstrated through a convergence analysis. First, the convergence of the eigenvalue problems solution
is investigated as a function of the truncation orders M and M̂ . Table 1 shows the eigenvalues ki and
gl with increasing truncation orders, and a convergence to at least 5 significant digits can be inferred
from the results for both sets of eigenvalues. Only the last 5 eigenvalues effectively used for the eigen-
function expansions of the velocity vector and the temperature are presented, on the assumption they
show a slower convergence behavior in comparison with the lower order ones.

Regarding the convergence behavior of the velocity vector and temperature eigenfunction
expansions, Table 2 shows the values for both transversal velocity component and temperature at
selected positions within the cavity for Rayleigh numbers 103 and 105. Convergence to at least

Table 1. Convergence of the last five employed eigenvalues for the velocity vector and temperature eigenfunction expansions.
Da¼ 10�5; e¼ 0.5; ks¼ 8.33; Bi¼ 50.

k17 k18 k19 k20 k21
M ¼ 183 45.470 48.382 49.651 51.794 54.713
M ¼ 192 45.468 48.381 49.650 51.792 54.711
M ¼ 195 45.467 48.380 49.650 51.792 54.711
M ¼ 198 45.467 48.380 49.650 51.791 54.710
M ¼ 201 45.467 48.379 49.650 51.791 54.710

g17 g18 g19 g20 g21
M̂ ¼ 132 25.385 27.572 28.511 30.686 31.639
M̂ ¼ 141 25.384 27.570 28.511 30.683 31.638
M̂ ¼ 144 25.384 27.569 28.510 30.682 31.638
M̂ ¼ 147 25.384 27.568 28.510 30.682 31.638
M̂ ¼ 150 25.384 27.568 28.510 30.681 31.638
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three significant digits is achieved for the condition shown, with truncation orders N and N̂ at
most equal to 21. These values shall be used to generate all forthcoming results.

3.2. Natural convection for different Rayleigh numbers and refrigerant phase change
temperatures

Figure 2a–c depicts the streamlines within the cavity for different Rayleigh numbers with a
dimensionless phase change temperature of the refrigerant of 0.5. Two symmetrical natural con-
vection cells can be observed in the fluid layer for the three values of Ra considered, whilst in the
porous layer the fluid movement is comparatively weak. This behavior was expected due to
the magnitude of the Darcy number, preventing significant flow to develop below the line y ¼ 0.
The streamlines for both natural convection cells for Ra ¼ 104 get closer at the middle of the cav-
ity and develop steeper gradients in comparison with the Ra ¼ 103 case. For Ra ¼ 105, a horizon-
tal stretching of the cells develops, together with further enhancement of the gradients, indicating
a much larger magnitude of the velocity vectors. The temperature contours of Figure 2d–f cor-
roborate the previous findings. Within the porous layer for Ra ¼ 103, the vertically stratified pat-
tern indicates a dominance of heat transfer by conduction. Furthermore, Figure 2d–f shows a
progressive disruption of the elliptical behavior of the temperature contours within the fluid layer
predominant on the cases with lower Ra, consistent with a more relevant role of advection, as
discussed in the analysis of the streamlines.

Figure 3a–f show the transversal velocity and temperature profiles for three horizontal lines
within the fluid layer and three different values of the Rayleigh number. A comparison with
results obtained with the commercial software COMSOL Multiphysics v.5.2 (Burlington, MA) is
offered, and a good agreement with the results from the integral transforms solution is evident in
all cases considered. A downward movement near the sidewalls appears in the three cases of
Rayleigh number used to generate the results of Figure 3a–c. This behavior is consistent with the
formation of a natural convection boundary layer over a vertical cold wall. Moreover, steeper vel-
ocity gradients near the wall and towards the center of the cavity are confirmed, in accordance
with previously stated conclusions.

Figure 4a shows the dependence of the maximum temperature within the pool with the
Rayleigh number for three different values of the dimensionless phase change temperature of the
refrigerant. As expected, lowering the temperatures imposed at the sidewalls renders the cooling

Table 2. Convergence of the transversal velocity component and of the temperature at four selected positions within the cav-
ity for Ra¼ 105, Tw¼ 0.5, and v¼ 2. Results presented for four x positions along the line y¼ 0.5.

N=N̂ x¼ 0.5 x¼ 1.7 x¼ 2.3 x¼ 3.5

v T v T v T v T

Ra ¼103

3 –0.027 0.678 0.023 1.149 0.023 1.149 –0.027 0.678
6 –0.027 0.680 0.023 1.152 0.023 1.152 –0.027 0.680
9 –0.027 0.682 0.023 1.153 0.023 1.153 –0.027 0.682
12 –0.027 0.681 0.023 1.152 0.023 1.152 –0.027 0.681
15 –0.027 0.681 0.023 1.152 0.023 1.152 –0.027 0.681
18 –0.027 0.681 0.023 1.152 0.023 1.152 –0.027 0.681

Ra¼ 105

3 –1.907 0.53 2.032 0.994 2.033 0.994 –1.908 0.53
6 –1.907 0.553 2.018 0.925 2.019 0.925 –1.907 0.553
9 –1.908 0.571 2.023 0.909 2.024 0.909 –1.908 0.571
12 –1.907 0.562 2.021 0.913 2.022 0.913 –1.907 0.562
15 –1.907 0.563 2.022 0.918 2.023 0.918 –1.907 0.563
18 –1.907 0.563 2.022 0.916 2.022 0.916 –1.907 0.563
21 –1.907 0.563 2.022 0.915 2.022 0.915 –1.907 0.563
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of the pool more efficient. The results of Figure 4a also show a nearly constant maximum tem-
perature of the pool for Ra � 103, indicating the heat transfer is dominated by conduction in this
range, in accordance with findings stemming from Figure 2a–f. A drop of roughly 20% on the
maximum temperature can be observed for higher Rayleigh numbers, indicating a more promin-
ent role of advection on the heat transfer process. This decrease on the maximum temperature
with rising Rayleigh numbers, allows for the confirmation that increments on Ra, while maintain-
ing the internal heat generation rate on the nuclear fuel elements constant, increases the cooling
efficiency of the SFP. For instance, higher Ra can be easily achieved through deeper SFPs as sug-
gested by Eq. (3g). Figure 4b is aimed at further consolidating the understanding of transition

Figure 2. Streamlines and temperature contours for varying Ra and Tw¼ 0.5. Streamlines: (a) Ra ¼103; (b) Ra ¼104; (c) Ra ¼105.
Temperature: (d) Ra ¼103; (e) Ra ¼104; (f) Ra ¼105. Horizontal lines identify the fluid-porous layers interface.
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between a conduction dominated to a convection regime within the SFP. For that purpose, the
maximum absolute value of the streamfunction is used as defined below:

wmax ¼ max
x;y

����X1
i¼1

�/i xð ÞUi yð Þ
���� (33)

The steep increase on the value of wmax for Rayleigh numbers higher than 103 indicates
the development of much stronger vortices, in accordance with the conclusion that this value
is a reasonable approximation to the threshold where natural convection occurs in a more
effective way. Nevertheless, only a mild variation of wmax with the sidewall temperature is
observed in Figure 4b, indicating that, at least for the range of parameters here analyzed, the
phase change temperature of the refrigerant has little effect on the strength of the natural
convection cells.

Figure 3. Transversal velocity component and temperature profiles for varying Ra and Tw¼ 0.5. (a) Ra ¼103; (b) Ra ¼104; (c) Ra
¼105; (d) Ra ¼103; (e) Ra ¼104; (f) Ra ¼105. Symbols represent values obtained with COMSOL Multiphysics (Burlington, MA).
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3.3. Natural convection for different aspect ratios

Streamlines and temperature contours for varying aspect ratios are offered in Figure 5a–d,
with Ra ¼ 103 and Tw ¼ 0:5. The pattern of the streamlines presented in Figures 2a and 5a,b
clearly shows the tendency of stronger vortices near the wall and an increasing area of uni-
form flow near the vertical centerline. On the other hand, Figures 2d and 5c,d are qualitatively

Figure 4. Maximum temperature and absolute streamfunction value for varying Ra and Tw. (a) Maximum temperature; (b)
Maximum absolute streamfunction value.

Figure 5. Streamlines and temperature contours for varying v, Ra¼ 103, and Tw¼ 0.5. Streamlines: (a) v¼ 4; (b) v¼ 6.
Temperature: (c) v¼ 4; (d) v¼ 6. Horizontal lines represent the fluid-porous layers interface.
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similar, as expected from the observation of a conduction dominated regime for lower
Rayleigh numbers.

Figure 6a,b confirms the observation made in the previous paragraph, with the natural convec-
tion boundary layer being responsible for steep gradients near the side wall, and a plug-type flow
pattern near the vertical centerline of the SFP. Moreover, Figures 6c,d are quite similar to Figure
3d. However, the values of the dimensionless temperature are monotonically increasing with the
aspect ratio, indicating a deleterious effect this variable has on the cooling performance of the
passive system.

4. Conclusions

Natural convection within cavities partially filled with a heat generating porous medium has been
theoretically studied by applying the Generalized Integral Transform Technique (GITT). A single
domain reformulation strategy was employed in combination with the GITT approach to solve
the governing flow and energy equations, allowing for a hybrid numerical-analytical solution
obtained with automatic error control. The single domain representation is achieved by rewriting
the whole region as a Darcy model with Brinkman correction and providing space variable coeffi-
cients in the single formulation that account for the abrupt transitions between different regions.
This space variable information is then carried along to the chosen eigenvalue problems, which

Figure 6. Transversal velocity component and temperature profiles for varying v, Ra¼ 103, and Tw¼ 0.5. (a) v¼ 4; (b) v¼ 6; (c)
v¼ 4; (d) v¼ 6. Symbols represent values obtained with COMSOL Multiphysics (Burlington, MA).
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form the basis of the eigenfunction expansions, and thus resulting in an excellent overall conver-
gence behavior for both velocity and temperature fields.

This contribution has been motivated by an application dealing with wet storage of spent
nuclear fuel elements, with passive cooling of the storage pool. The analysis showed that design-
ing deeper pools and eventually the piling of the nuclear fuel elements, i.e., increasing the
Rayleigh number and decreasing the aspect ratio, respectively, significantly decreases the max-
imum temperature within the cavity, by allowing stronger vortices to develop. Additionally, the
use of heat pipes with refrigerants of lower phase change temperatures further contributes to
the cooling of the cavity. The aspect ratio tends to have an opposite effect, which is attributed to
the resulting larger distance between the cooling heat pipes exchangers, positioned on the side-
walls, and the center of the spent fuel elements layer. It is expected that the proposed approach
shall further contribute to the thermal analysis, optimization, and control of passive cooling sys-
tems for spent nuclear fuel storage pools, summing up to the efforts on rendering nuclear facili-
ties safer.
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