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Abstract
Purpose – The purpose of this study is to propose the generalised integral transform technique to
investigate the natural convection behaviour in a vertical cylinder under different boundary conditions,
adiabatic and isothermal walls and various aspect ratios.

Design/methodology/approach – GITT was used to investigate the steady-state natural
convection behaviour in a vertical cylinder with internal uniformed heat generation. The governing
equations of natural convection were transferred to a set of ordinary differential equations by
using the GITT methodology. The coefficients of the ODEs were determined by the integration of
the eigenfunction of the auxiliary eigenvalue problems in the present natural convection problem.
The ordinary differential equations were solved numerically by using the DBVPFD subroutine
from the IMSL numerical library. The convergence was achieved reasonably by using low
truncation orders.

Findings – GITT is a powerful computational tool to explain the convection phenomena in the
cylindrical cavity. The convergence analysis shows that the hybrid analytical–numerical technique
(GITT) has a good convergence performance in relatively low truncation orders in the stream-
function and temperature fields. The effect of the Rayleigh number and aspect ratio on the natural
convection behaviour under adiabatic and isothermal boundary conditions has been discussed in
detail.

Originality/value – The present hybrid analytical–numerical methodology can be extended to solve
various convection problems with more involved nonlinearities. It exhibits potential application to solve the
convection problem in the nuclear, oil and gas industries.
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Nomenclature
C0 = aspect ratio R/H;
g = gravitational acceleration;
H = cavity height;
k = thermal conductivity;
Mm = normalisation integral;
Ni = normalisation integral;
NT, NV = truncation order in temperature and stream-function expansions;
p = pressure;
Pr = Prandtl number;
q
0 0 0

= heat generation per unit volume;
R = cylinder radius;
Ra = Rayleigh number;
T = temperature;
T0 = temperature at the boundaries;
u = velocity component in the r-direction;
U = dimensionless velocity component in the r-direction;
Umax = maximum dimensionless velocity in the r-direction;
Umin =minimum dimensionless velocity in the r-direction
v = velocity component in the z-direction;
V = dimensionless velocity component in the z-direction;
Vmax = maximum dimensionless velocity in the z-direction;
Vmin = minimum dimensionless velocity in the z-direction;
r*, z* = radial and vertical coordinates;
r, z = radial and vertical coordinates, dimensionless;
Xi = eigenfunction; and
~Xi = normalised eigenfunction.

Greek Letters
a = thermal diffusivity;
b = thermal expansion coefficient;
bm = eigenvalue;
X = dimensionless temperature;
~u = dimensionless transformed temperature;
Xav = spatially averaged dimensionless temperature;
Xmax = maximum dimensionless temperature;
fm = eigenfunction;
r = density;
f m = normalised eigenfunction;
c = dimensionless stream-function;
c = transformed stream-function;
m i = eigenvalue ; and
� = kinematic viscosity.

Subscripts
i,j,m,n = eigenquantities orders

1. Introduction
The natural convection with the internal heat generation has increasingly received concerns
owing to the widely applications in the nuclear engineering and petroleum engineering. For
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instance, the natural convection that occurs in closed a vertical cylinder fuel can improve the
thermal efficiency through circulating the heat generation by the nuclear fuel in the reactor
(Martin, 1967). The natural convection behaviours in the liquefied natural gas (LNG) storage
tank laterally heated were investigated by researchers (Khelifi-Touhami et al., 2010; Roh
et al., 2013).

Recently, the numerical and experimental methods have been widely used to investigate
the natural convection in square and cylinder cavities owing to the wide applications in the
actual industrial engineering (Hess and Miller, 1979; Li et al., 1996; Leong, 2002; Wang et al.,
2014; Hu et al., 2016). Fusegi et al. (1992) used the finite-difference numerical method to study
the natural convection behaviour of the square cavity with an internal heat generation and
heated on the vertical walls. Oh et al. (1997) studied the heat transfer behaviour and flow
characteristic in natural convection with a heat-generating conducting solid in a rectangular
enclosure by using the finite volume method. The adiabatic conditions on the upper and
lower horizontal walls were used, while considering a temperature difference between two
vertical sidewalls in their study. Rahman and Sharif (2003) adopted the finite difference
method to investigate the laminar natural convection behaviour by or without considering
the internal heating generation in a rectangular enclosure. El Moutaouakil et al. (2016)
presented an analytical and numerical study to investigate the natural convection behaviour
in an inclined rectangular enclosure with various aspect ratio and heated by an uniform
internal volumetric heat source. Hess and Miller (1979) investigated the natural convection
behaviour of vertical cylinder with a constant heat flux on the sidewall by using the
experimental method. Wang et al. (2016) proposed a numerical methodology to study the
Rayleigh–Benard natural convection with various Prandtl numbers of fluid in a vertical
cylinder. Hu et al. (2016) performed experimental and numerical studies to investigate the
Rayleigh–Benard natural convection phenomena with various aspect ratios in a vertical
cylinder.

In the last decades, the hybrid analytical–numerical computational methodology (GITT)
has been recognised as a powerful computational tool to explain the heat transfer and
diffusion–convection phenomena (Nogueira and Cotta, 1990; Pontedeiro et al., 2008;
Monteiro et al., 2009; Knupp et al., 2014, 2015a, 2015b; Cotta et al., 2016) and for the solutions
of Navier–Stokes equations (Lima et al., 1997; Pereira et al., 1998, 2000; de Lima et al., 2007;
Paz et al., 2007; Silva et al., 2010). In the convection behaviour analysis, the GITT technique
has been approved as an accurate hybrid analytical–numerical methodology (Leal et al.,
1999, 2000; Alves et al., 2002; Neto et al., 2006; Monteiro et al., 2010; An et al., 2013). Leal et al.
(1999, 2000) used the GITT methodology to investigate the steady and transient convection
behaviours in a steady and transient laminar flow in a square cavity, respectively. In their
study, the adiabatic boundary condition on the upper surface was assumed and a
temperature difference between two lateral vertical walls was used, which can induce the
natural convection circulation inside the cavity. Alves et al. (2002) presented a stability
analysis of the natural convection in porous cavities under various aspect ratios by using
the GITT technique. Later, Neto et al. (2006) performed a study to investigate the effect of
the aspect ratio on the natural convection using a three-dimensional model. Recently, the
natural convection in enclosure with the uniformly distributed heat generation was
investigated using the GITT technique (An et al., 2013).

In the present study, a hybrid analytical–numerical computational methodology (GITT)
was developed to investigate the natural convection behaviour in vertical cylinder with
uniformed internal volumetric heat source. The corresponding auxiliary eigenvalue
equations were defined reasonably and the eigenfunctions and eigenvalues were obtained
correctly. The Prandtl number was assumed to be 0.71 in the present study. Different
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boundary conditions were considered: (a) isothermal boundary condition (both the vertical
and horizontal walls were isothermal); (b) adiabatic boundary condition (the vertical wall
was isothermal while the upper and the lower horizontal walls were adiabatic). The results
obtained by the present GITT technique show excellent convergence behaviour at relatively
low truncation orders of the temperature and stream-function expansions. The temperature
and velocity components (in the radial and axial directions) were discussed in detail. Finally,
the effects of the Rayleigh number and aspect ratio were discussed.

2. Mathematical formulation
Considering a vertical cylinder cavity with a radius of R and height of H, containing a fluid
with uniform internal heat generation q000. The aspect ratio (C0) is defined as C0 = R=H. Two
different boundary conditions are assumed: (a) adiabatic case: horizontal walls are adiabatic
and lateral walls are isothermal, maintaining at temperature T0; and (b) isothermal case: all
walls are isothermal, maintaining at temperatureT0. The schematic of vertical cylinder with
internal heat generation and different boundary conditions is illustrated in Figure 1.

The governing equations for two-dimensional steady-state natural convection with the
assumption of Boussinesq approximation in a vertical cylinder cavity can be simplified:

@u
@r*

þ u
r*

þ @v
@z*

¼ 0 (1a)

r u
@u
@r*

þ v
@u
@z*

� �
¼ � @p

@r*
þ r� r2u� u

r*2

� �
(1b)

r u
@v
@r*

þ v
@v
@z*

� �
¼ � @p

@z*
þ r�r2vþ rgb T � T0ð Þ (1c)

rc u
@T
@r*

þ v
@T
@z*

� �
¼ kr2T þ q000 (1d)

Figure 1.
Schematic of vertical
cylinder with internal

uniformed heat
generation

v

q′′′
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where r* and z* are, respectively, the horizontal and vertical spatial coordinates; u and v are
the radial and axial velocity components, respectively; p is the pressure; T is
the temperature; r is the density; b is the thermal expansion coefficient; g is the
gravitational acceleration; c is the specific heat; and k is the thermal conductivity of the fluid.

The operatorr2 is described as follows:

r2 ¼ 1
r*

@

@r*
þ @2

@r*2
þ @2

@z*2
(2)

The boundary conditions for the adiabatic and isothermal cases are, respectively, governed
by the following:

@v
@r*

¼ @T
@r*

¼ 0; lim
r*!0

@c

@r*

� �
¼ 0 at r* ¼ 0 (3a)

u ¼ v ¼ 0; T ¼ T0 at r* ¼ R (3b)

u ¼ v ¼ 0;
@T
@z*

¼ 0 at z* ¼ 0 (3c)

u ¼ v ¼ 0;
@T
@z*

¼ 0 at z* ¼ H (3d)

and

@v
@r*

¼ @T
@r*

¼ 0; lim
r*!0

@c

@r*

� �
¼ 0 at r* ¼ 0 (4a)

u ¼ v ¼ 0; T ¼ T0 at r* ¼ R (4b)

u ¼ v ¼ 0; T ¼ T0 at z* ¼ 0 (4c)

u ¼ v ¼ 0; T ¼ T0 at z* ¼ H (4d)

The incompressible flow is assumed in the present study and the velocity components in
radial and axial directions can be defined by using the stream-function c *:

u ¼ 1
r*
@c *

@z*
; v ¼ � 1

r*
@c *

@r*
(5a, b)

The governing equations (1b), (1c) and (1d) can be rewritten into the following stream-
function formulation:
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1
r*
@c *

@z*
@

@r*
E2c *
� �

� 2
r*

E2c *
� �� �

� 1
r*
@c *

@r*
@

@z*
E2c *
� �

¼ y E4c *
� �

� r*gb
@T
@r*

(6)

@2T
@r*2

þ 1
r*
@T
@r*

þ @2T
@z*2

¼ � q000

k
þ rc
r*k

@c *

@z*
@T
@r*

� @c *

@r*
@T
@z*

� �
(7)

In the present study, the following dimensionless variables are defined as follows:

r ¼ r*

R
; z ¼ z*

H
; C0 ¼ R

H
; c ¼ c *

a
;

X ¼ T � T0

q000R2=k
; Pr ¼ �

a
¼ mcp

k
; Ra ¼ b gq000H5

a�k

(8)

where r* and z* identify the dimensional spatial variables, � is the kinematic viscosity, a is
the thermal diffusivity, Ra is the Rayleigh number and Pr is the Prandtl number.

Substituting the dimensionless variables into the governing equations (6) and (7), the
dimensionless governing equations can be written as follows:

1
rC0

2

@c

@z
@

@r
E2c
� �

� 2
r

E2c
� �� �

� 1
rC0

2

@c

@r
@

@z
E2c
� �

¼ HPr E4c
� �

� rH2RaPr
@X
@r

(9)

1
C0

2

@2X
@r2

þ 1
r
@X
@r

� �
þ @2X

@z2
¼ �1þ 1

rC0
2H

@c

@z
@X
@r

� @c

@r
@X
@z

� �
(10)

where the operators E2 and E4 are defined as follows:

E2 ¼ 1
C0

2

@2

@r2
� 1

r
@

@r

� �
þ @2

@z2
(11a)

E4 ¼ 1
C0

4

@4

@r4
� 2

r
@3

@r3
þ 3
r2

@2

@r2
� 3
r3

@

@r

� �
�

1
C0

2

2
r

@3

@r@z2
þ 2

@4

@r2@z2

� �
þ @4

@z4

(11b)

With the following boundary conditions, for the adiabatic case:

lim
r!0

@

@r
1
r
@c

@r

� �
¼ 0; lim

r!0

@c

@r

� �
¼ @X

@r
¼ 0 at r ¼ 0 (12a)
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c ¼ @c

@r
¼ 0; X ¼ 0 at r ¼ 1 (12b)

c ¼ @c

@z
¼ 0;

@X
@z

¼ 0 at z ¼ 0 (12c)

c ¼ @c

@z
¼ 0;

@X
@z

¼ 0 at z ¼ 1 (12d)

and for the isothermal case:

lim
r!0

@

@r
1
r
@c

@r

� �
¼ 0; lim

r!0

@c

@r

� �
¼ @X

@r
¼ 0 at r ¼ 0 (13a)

c ¼ @c

@r
¼ 0; X ¼ 0 at r ¼ 1 (13b)

c ¼ @c

@z
¼ 0; X ¼ 0 at z ¼ 0 (13c)

c ¼ @c

@z
¼ 0; X ¼ 0 at z ¼ 1 (13d)

3. Integral transform solution
On the basis of the principles of the integral transform technique, the auxiliary
eigenvalue problems from homogeneous versions of the original stream-function field
and temperature problem, as shown in equations (9) and (10), were developed; secondly,
the corresponding eigenvalues and eigenfunctions that satisfy the orthogonality
boundary conditions are calculated; thirdly, the integral transform pairs, including
transform and inverse formulas, are determined to transform the original problem of
partial differential equation (PDE) into a set of ordinary differential equations (ODEs),
and the corresponding coefficients are calculated, respectively. Then, the ODEs are
solved by adopting the analytic or numerical computational codes, such as
Mathematica and IMSL Library. Finally, the original problem solutions can be obtained
using the developed inverse formulas.

In the present study, the following auxiliary eigenvalue problem is chosen:

E4Xi rð Þ ¼ �l 2
i E

2Xi rð Þ (14)

with the following boundary conditions:

lim
r!0

Xi rð Þ
r

� �
¼ 0 (15a)
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lim
r!0

d
dr

1
r
dXi rð Þ
dr

� �
¼ 0 (15b)

Xi 1ð Þ ¼ 0 (15c)

dXi 1ð Þ
dr

¼ 0 (15d)

The eigenfunctions are determined as follows:

Xi rð Þ ¼ r2 � rJ1 l irð Þ
J1 l ið Þ (16)

The eigenvalues (l i) are obtained from the following equations:

J2 l ið Þ ¼ 0; i ¼ 1; 2; 3; . . . (17)

The eigenfunctions satisfy the following orthogonality properties:

ð1
0

dXi rð Þ
dr

dXj rð Þ
dr

dr
r
¼ �

ð1
0
Xi rð Þ E2Xj rð Þ

h i dr
r
¼ 0; i 6¼ j

Ni; i ¼ j

�
(18)

TheNi is calculated as follows:

Ni ¼
ð1
0

1
r
dXi rð Þ
dr

� �2
dr ¼ l 2

i

2
(19)

The normalised eigenfunction ~X i rð Þ is assumed as given below:

~X i rð Þ ¼ Xi rð Þ
N1=2
i

(20)

When using the GITT methodology to solve the PDE system, which is governed by the
equations (9)-(13d), the integral transfer and inverse pairs for the stream-function field are
developed as follows:

c i zð Þ ¼ �
ð1
0
E2 ~X i rð Þc r; zð Þ drr ; transform (21a)

c r; zð Þ ¼
X1
i¼1

~X i rð Þc i zð Þ; inverse (21b)

The eigenfunctions associated with the temperatures problem are given as follows:

d2um rð Þ
dr2

þ 1
r
du m rð Þ

dr
¼ �b 2

mu m rð Þ (22)
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with the following boundary conditions:

u m 1ð Þ ¼ 0 (23a)

lim
r!0

du m 0ð Þ
dr

� �
¼ 0 (23b)

The eigenfunctions are governed as below:

u m rð Þ ¼ J0 b mrð Þ (24)

The eigenvalues (bm) are computed from the following equations:

J0 b mð Þ ¼ 0; m ¼ 1; 2; 3; . . . (25)

The eigenfunctions satisfy the following orthogonality properties:

ð1
0
ru m rð Þu n rð Þ ¼ 0; m 6¼ n;

Mm; m ¼ n;

�
(26)

The normMm is obtained as follows:

Mm ¼ J
0
0
2 b mð Þ
2

(27)

The normalised eigenfunctions are determined as follows:

~u m rð Þ ¼ u m rð Þ
M1=2

m

(28)

The integral transform and inverse pairs for the temperature fields are determined as
follows:

f m zð Þ ¼
ð1
0
rX r; zð Þ~u m rð Þdr; transform (29a)

X r; zð Þ ¼
X1
m¼1

~u m rð Þf m zð Þ; inverse (29b)

The integral transformation procedure is performed through the operation of withð1
0

~X i rð Þ
r

dr for the stream-function field:
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X1
j¼1

Aij
d4c j zð Þ
dz4

� 2
C0

2

d2c i zð Þ
dz2

þ 1
C0

4 l
2
i c i zð Þ

¼ Ra

H

X1
m¼1

Eimf m zð Þ þ 1
HPr

X1
j¼1

X1
k¼1

1
C0

4 Bijkc j zð Þ dc k zð Þ
dz

"

þ 1
C0

2 Cijk
dc j zð Þ
dz

d2c k zð Þ
dz2

þ 1
C0

2 Dijkc j zð Þ d
3c k zð Þ
dz3

#

i ¼ 1; 2; 3; . . . (30)

where the coefficients are calculated through the numerical computational packages of
Mathematica (Wolfram, 2003):

Aij ¼
ð1
0

~X i
~Xj

r
dr

Bijk ¼
ð1
0

~X i
1
r2

~X
0 0 0

j
~Xk � 3

r3
~X

0 0

j
~Xk þ 3

r4
~X

0

j
~Xk � 1

r2
~X

0

j
~X

0 0

k þ
1
r3

~X
0

j
~X

0

k

� �
dr

Cijk ¼
ð1
0

~X i
1
r2

~Xj
~X

0

k �
2
r3

~Xj
~Xk

� �
dr

Dijk ¼ �
ð1
0

1
r2
~X i

~X
0

j
~Xkdr

Eim ¼
ð1
0

~X i~u
0

mdr

(31a, b, c, d, e)

Similarly, the govern equation of temperature field is operated using
ð1
0

~u m rð Þrdr, given by
the following:

d2f m zð Þ
dz2

¼ 1
C0

2

1
H

X1
n¼1

X1
j¼1

Qmnjf n
dc j

dz
� Smnj

df n

dz
c j

� �

þ 1
C0

2 b
2
mf m � Pm m ¼ 1; 2; 3; . . . (32)

where the associated coefficients above are the integrals of the corresponding
eigenfunctions:

Qmnj ¼
ð1
0

~u m~u
0

n
~X jdr; Smnj ¼

ð1
0

~u m~u n
~X

0

jdr (33a, b)

Pm ¼
ð1
0
r~u mdr (33c)

The coupled stream-function and temperature problems in equations (30) and (32) are
constrained by the boundary conditions at two points, which are given by:
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c i 0ð Þ ¼ 0;
dc i 0ð Þ
dz

¼ 0;
df m 0ð Þ

dz
¼ 0 (34a, b, c)

c i 1ð Þ ¼ 0;
dc i 1ð Þ
dz

¼ 0;
df m 1ð Þ

dz
¼ 0 (34d, e, f)

and

c i 0ð Þ ¼ 0;
dc i 0ð Þ
dz

¼ 0; f m 0ð Þ ¼ 0 (35a, b, c)

c i 1ð Þ ¼ 0;
dc i 1ð Þ
dz

¼ 0; f m 1ð Þ ¼ 0 (35d, e, f)

Finally, the convection problem is numerically solved by using a computer programme
developed in Fortran 90, based on a subroutine DBVPFE in the IMSL library. The local
relative error 10–4 is maintained automatically in the present study. The governing
equations (30) and (32) are rewritten as a first-order ODE system, as shown in
equation (36).

F
0 ¼ f F; zð Þ (36)

Table I.
Convergence
analysis with
isothermal wall
conditions when
C0 = 1 and Pr = 0.71

Ra = 3,900 Ra = 10,000
Truncation order X(0.25, 0.5) U(0.5, 0.25) V(0.25, 0.5) X(0.25, 0.5) U(0.5, 0.25) V(0.25, 0.5)

NV = 4, NT = 4 0.019048 �0.273714 0.493233 0.019045 �0.697076 1.262815
NV = 4, NT = 10 0.019044 �0.273713 0.493139 0.019041 �0.697073 1.262576
NV = 4, NT = 20 0.019044 �0.273713 0.493139 0.019041 �0.697073 1.262576
NV = 8, NT = 8 0.019044 �0.276622 0.477352 0.019041 �0.704393 1.222159
NV = 10, NT = 10 0.019044 �0.277109 0.480554 0.019041 �0.705618 1.230355
NV = 20, NT = 4 0.019048 �0.277092 0.480626 0.019045 �0.705571 1.230535
NV = 20, NT = 20 0.019044 �0.277089 0.480549 0.019041 �0.705563 1.230337

X(0.5, 0.5) U(0.5, 0.5) V(0.5, 0.5) X(0.5, 0.5) U(0.5, 0.5) V(0.5, 0.5)
NV = 4, NT = 4 0.014513 �0.003465 0.171135 0.014511 �0.022678 0.439195
NV = 4, NT = 10 0.014517 �0.003465 0.171188 0.014517 �0.022675 0.452072
NV = 4, NT = 20 0.014517 �0.003465 0.171188 0.014515 �0.022675 0.452072
NV = 8, NT = 8 0.014517 �0.003574 0.175184 0.014515 �0.023391 0.449531
NV = 10, NT = 10 0.014517 �0.003588 0.176518 0.014515 �0.023485 0.452942
NV = 20, NT = 4 0.014513 �0.003591 0.176178 0.014511 �0.023503 0.452072
NV = 20, NT = 20 0.014517 �0.003590 0.176231 0.014515 �0.023499 0.452207

X(0.75, 0.5) U(0.5, 0.75) V(0.75, 0.5) X(0.75, 0.5) U(0.5, 0.75) V(0.75, 0.5)
NV = 4, NT = 4 0.007689 0.275713 �0.213701 0.007688 0.710129 �0.547559
NV = 4, NT = 10 0.007686 0.275712 �0.213742 0.007685 0.710125 �0.547665
NV = 4, NT = 20 0.007686 0.275712 �0.213742 0.007685 0.710125 �0.547665
NV = 8, NT = 8 0.007685 0.278684 �0.193557 0.007684 0.717859 �0.495881
NV = 10, NT = 10 0.007686 0.279181 �0.197421 0.007685 0.719154 �0.505787
NV = 20, NT = 4 0.007689 0.279164 �0.195847 0.007688 0.719108 �0.501752
NV = 20, NT = 20 0.007686 0.279161 �0.195906 0.007685 0.719099 �0.501902
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whereF is defined as follows:

F ¼
(
c�

1;
dc 1

dz
;
d2c 1

dz2
;
d3c 1

dz3
; . . . ; c NV ;

dc NV

dz
;

d2c NV

dz2
;
d3c NV

dz3
; f 1;

df 1

dz
; . . . ; f NT ;

df NT

dz

)T

(37)

Here, NV and NT are the reasonable truncation orders that assure a sufficient convergence
requirement for the present problem. When c i and u m have been numerically evaluated
under the assumed accuracy, the stream-function c (r, z) and temperature X(r, z) can be
obtained by using the inverse formula equations (21b) and (29b). The velocity components
u(r, z) and v(r, z) in the r and z directions, respectively, are analytically calculated based on
the inversion formula and the initial definitions in the form:

U ¼
XNV
i¼1

1
r
~X i rð Þ dc i zð Þ

dz
; V ¼ �

XNV
i¼1

1
r
d~X i rð Þ
dr

c i zð Þ (38a, b)

4. Results and discussion
4.1 Convergence analysis
In the present investigation, the Prandtl number (Pr) is assumed as 0.71, and the Rayleigh
numbers are determined as Ra = 1,000, 2,000, 3,900, 8,000, 10,000, 15,000 and 30,000,
respectively. In the parametric study, the aspect ratios (C0 = R=H) are assumed as 0.2, 1 and

Table II.
Convergence
analysis with
adiabatic wall

condition when
C0 = 1 and Pr = 0.71

Ra = 3,900 Ra = 10,000
Truncation order X(0.25, 0.5) U(0.5, 0.25) V(0.25, 0.5) X(0.25, 0.5) U(0.5, 0.25) V(0.25, 0.5)

NV = 4, NT = 4 0.043020 �0.699887 1.299742 0.042945 �1.755179 3.296841
NV = 4, NT = 10 0.043016 �0.699885 1.299648 0.042941 �1.755177 3.296604
NV = 4, NT = 20 0.043016 �0.699885 1.299648 0.042941 �1.755177 3.296604
NV = 8, NT = 8 0.043016 �0.705959 1.262187 0.042940 �1.769796 3.201573
NV = 10, NT = 10 0.043016 �0.706876 1.269661 0.042940 �1.772010 3.220518
NV = 20, NT = 4 0.043020 �0.706903 1.269714 0.042943 �1.772042 3.220568
NV = 20, NT = 20 0.043016 �0.706899 1.269636 0.042940 �1.772036 3.220371

X(0.5, 0.5) U(0.5, 0.5) V(0.5, 0.5) X(0.5, 0.5) U(0.5, 0.5) V(0.5, 0.5)
NV = 4, NT = 4 0.032213 �0.023442 0.432597 0.032161 �0.149117 1.114849
NV = 4, NT = 10 0.032217 �0.023441 0.432651 0.032165 �0.149107 1.114985
NV = 4, NT = 20 0.032217 �0.023441 0.432651 0.032165 �0.149107 1.114985
NV = 8, NT = 8 0.032217 �0.024133 0.442123 0.032164 �0.153654 1.138428
NV = 10, NT = 10 0.032217 �0.024223 0.445235 0.032164 �0.154239 1.146247
NV = 20, NT = 4 0.032213 �0.024236 0.444527 0.032160 �0.154313 1.144466
NV = 20, NT = 20 0.032217 �0.024234 0.444580 0.032163 �0.154301 1.144600

X(0.75, 0.5) U(0.5, 0.75) V(0.75, 0.5) X(0.75, 0.5) U(0.5, 0.75) V(0.75, 0.5)
NV = 4, NT = 4 0.016661 0.712618 �0.560326 0.016637 1.834809 �1.428404
NV = 4, NT = 10 0.016658 0.712616 �0.560368 0.016633 1.834805 �1.428510
NV = 4, NT = 20 0.016658 0.712616 �0.560368 0.016633 1.834805 �1.428510
NV = 8, NT = 8 0.016658 0.719028 �0.512357 0.016633 1.851696 �1.305017
NV = 10, NT = 10 0.016658 0.719994 �0.521379 0.016633 1.854239 �1.328078
NV = 20, NT = 4 0.016661 0.720026 �0.517780 0.016636 1.854289 �1.318882
NV = 20, NT = 20 0.016658 0.720022 �0.517839 0.016633 1.854280 �1.319034
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2, respectively. Both the isothermal and adiabatic boundary conditions are considered in the
present study. All of the cases are discussed under the axisymmetric assumption.

The convergence behaviours of the presented hybrid numerical–analytical
technique (GITT) under the isothermal and adiabatic boundary conditions are
investigated first when Ra = 3,900 and Ra = 10,000. Tables I and II illustrate the
convergence behaviour of temperature, radial and axial velocities at various points
under isothermal and adiabatic boundary conditions, respectively. The temperature
and velocity variations along the r direction when z = 0.5 (for temperature and axial

Figure 2.
The convergence
behaviour when
Pr = 0.71 and C0 = 1,
using various
truncation orders in
isothermal conditions
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velocity distributions) and z direction when r = 0.5 (for radial velocity distribution) are
shown in Figures 2 and 3. It is noted that the temperature is converged faster in both
cases of the isothermal and adiabatic conditions when Ra = 3,900 and Ra = 10,000,
which is owing to that the temperature is assumed as the expansion of the original
eigenfunctions, as described in equation (29), while the velocity components are defined
as the first derivatives of the stream-functions [equation (38)].

The temperature converges very well with a low truncation orders (NV = NT = 4). The
radial and axial velocities converge better with the increasing of the truncation orders, as

Figure 3.
The convergence

analysis when
Pr = 0.71 and C0 = 1,

using various
truncation orders
under adiabatic
horizontal wall

conditions
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shown in Figures 2 and 3 and Tables I and II. The results show that the present hybrid
analytical–numerical technique (GITT methodology) can be converged quickly at relatively
low truncation orders.

Figures 4 and 5 show the contours of the dimensionless temperature, stream-function,
radial and axial velocities under isothermal boundary conditions when Ra = 10,000 is
adopted. Only one roll is observed in the present axisymmetric model both for the
isothermal and adiabatic cases. The stream-function and velocity components have the
similar distributions mode in the isothermal and adiabatic cases.

In case of isothermal boundary conditions, themaximum temperature occurs in the centre
of the cylinder and the minimum temperature is observed around the lateral and horizontal
walls [see Figure 4(a)]. However, in the case of adiabatic condition, themaximum temperature
happens on the top of the vertical centreline and decreases along the r direction. The
minimumtemperature hasuniformeddistribution on the lateralwall, as shown inFigure 4(a).

The natural convection happens owing to the non-uniform distribution of the
temperature and the single counter-rotating roll is observed, as shown in Figures 4(b) and 5
(b). In both cases of isothermal and adiabatic conditions, owing to the occurrence of the
maximum temperature in the centreline and the minimum temperature near the vertical

Figure 4.
Contour plots for an
internally heated
vertical cylinder with
isothermal walls
(Ra = 10,000, C0 = 1
and Pr = 0.71)
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wall, the up-flow along the axial of the cylinder appears and the higher axial velocity
happens in this region. With the decreasing of the temperature along the r direction, the
driven force is induced by the convection decreasing and the down-flow can be observed
when the r > 0.6, as shown in Figures 4(d) and 5(d). Moreover, the maximum absolute
magnitude of axial velocity in the down-flow is approximately half of the corresponding
value of the up-flow in the centre, as shown in Figure 2.

4.2 Effects of Rayleigh number Ra
The aspect ratio of height to radius of C0 = 1 and the Prandtl number Pr = 0.71 are
maintained in this section. Both the isothermal and the adiabatic boundary condition are
considered. The Rayleigh number varies from 1,000 to 30,000 for the isothermal case, and
the maximumRayleigh number is assumed as 15,000 for the adiabatic case.

Figures 6 and 7 indicate the result comparisons under different Rayleigh number with
the isothermal and adiabatic boundaries, respectively. With the increasing of the Rayleigh
number, the absolute values of stream-function, radial and axial velocities increase linearly
for both the isothermal [as shown in Figures 6(b), (c) and (d)] and adiabatic conditions [as

Figure 5.
Contour plots for an

internally heated
vertical cylinder with

adiabatic walls
(Ra = 10,000,C0 = 1

and Pr= 0.71)
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Figure 6.
The comparisons of
the temperature,
velocities and the
streamline
distributions under
various Rayleigh
number under
isothermal conditions
(Pr= 0.71, C0 = 1)
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Figure 7.
The comparisons of
the temperature,
velocities and the
streamline
distributions under
various Ra number
under adiabatic
conditions (Pr= 0.71,
C0 = 1)
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illustrated in Figures 7(b), (c) and (d)]. Moreover, it increases more quickly in the adiabatic
condition. From Figures 6(a) and (b), it can be concluded that the effects of Rayleigh number
on the temperature are insignificant.

Figures 8(a) and (b) show the comparisons of the maximum radial and axial velocities
with various Rayleigh numbers under the adiabatic and isothermal boundary conditions.
With the increasing of the Rayleigh number, both the peak radial and axial velocities increase
linearly. The maximum axial velocity is approximate as twice of the radial velocity when a
constant Rayleigh number is maintained. This behaviour can be observed in both adiabatic
and isothermal conditions. When the Rayleigh number is assumed as a constant, it can be
observed that the maximum magnitudes of axial and radial velocities under adiabatic
condition are approximate as 2.6 times of the corresponding values when all the walls are
assumed as isothermal condition [see Figures 8(a) and (b)], which is owing to the higher
energy is maintained under the adiabatic boundary conditions. However, in the square cavity
natural convection analysis, the velocity magnitudes under adiabatic condition are twice as
the ones under the isothermal condition captured by Joshi et al. (2006) and An et al. (2013).

4.3 Effects of aspect ratio C0 = R=H
In the parametric study of the aspect ratio effects on natural convection behaviour, the
Rayleigh number (Ra) and Prandtl number (Pr) are maintained as 2,000 and 0.71,
respectively. Three aspect ratios of radius to height are assumed as C0 = 0.2, C0 = 1 and
C0 = 2, in both the isothermal and adiabatic boundary conditions.

Figure 8.
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Tables III and IV show the temperature and the maximum magnitude of velocity
components and the corresponding coordinates. We can see that the absolute values of the
temperature and velocity increase with the increasing of the aspect ratio. In the adiabatic
condition, the maximum magnitudes of the radial and axial velocities are increased more
quickly than the corresponding velocity in the isothermal condition.

When the aspect ratio is assumed as 2.0, the axial velocity magnitude in the down-flow is
higher than the one in the up-flow under the isothermal condition, as shown in Figure 9(i).
However, in the adiabatic condition, the maximum axial velocity in the up-flow is higher
than the maximum velocity in the down-flow. The corresponding coordinates of maximum
axial velocity are moving to the right side with the increasing of the aspect ratio both in the
isothermal and adiabatic conditions, as shown in Figures 9 and 10.

5. Conclusions
A hybrid analytical–numerical computational model (GITT) was developed to
investigate the natural convection behaviour in vertical cylinder with uniformed internal
volumetric heat source. The results show good convergence behaviour under lower
truncation orders and the computational costs were reduced significantly. The effects of
the Rayleigh number and the aspect ratio on the temperature and velocity components
were discussed under the isothermal and adiabatic boundary conditions. The following
main conclusions can be drawn:

The convergence analysis shows that the present hybrid analytical–numerical technique
(GITT) has a good convergence performance in relatively low truncation orders in the
stream-function and temperature fields.

Table III.
The axial velocity,
radial velocity,
temperature and
their coordinates
under Pr = 0.71 and
Ra = 2,000 and
isothermal wall
conditions

C0 = 0.2 C0 = 1 C0 = 2

Umax 0.000607 0.150 0.220085
(r, z) (0.4475, 0.94) (0.4875, 0.8025) (0.6275, 0.7875)
Umin �0.000607 �0.149 �0.21949
(r, z) (0.4475, 0.0575) (0.49, 0.1975) (0.6275, 0.2125)
Vmax 0.000688 0.29934 0.282041
(r, z) (0, 0.5) (0, 0.5025) (0.0575, 0.5025)
Vmin �0.00022 �0.13022 �0.300941
(r, z) (0.805, 0.475) (0.8475,0.50) (0.905, 0.50)
Xmax 0.001866 0.020615 0.028032
(r, z) (0, 0.5) (0,0.5) (0, 0.5)
Xav 0.000969 0.00886 0.01214

Table IV.
The axial velocity,
radial velocity,
temperature and
their coordinates
under Pr = 0.71 and
Ra = 2,000 and
adiabatic wall
conditions

C0 = 0.2 C0 = 1 C0 = 2

Umax 0.000850 0.401065 1.723981
(r, z) – (0.485, 0.8175) (0.5975, 0.7975)
Vmax 0.000694 0.800445 2.473740
(r, z) – (0, 0.505) (0.0525, 0.5125)
Xmax 0.001875 0.047091 0.189781
(r, z) – (0, 1) (0, 1)
Xav 0.001166 0.029151 0.116472
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The temperature, axial and radial velocities were calculated under the isothermal and
adiabatic boundary conditions. It is noted that the distribution mode of the velocity
components is similar. However, in the adiabatic condition, the maximum velocity
component values are 2.6 times the corresponding value in the isothermal condition.

The Rayleigh number has significant effects on the velocity components, both in the
isothermal and adiabatic boundary conditions. With the increasing of the Rayleigh number,
the radial and axial velocities increase linearly. Moreover, the velocity components increase
more quickly in the adiabatic boundary condition. The effects of the Rayleigh number on the
temperature distribution are insignificant.

The aspect ratio of radius to height has significant effects on the velocity components,
especially under the adiabatic boundary condition. With the increase in the aspect ratio, the
zero velocity region moves to the right side.

Figure 9.
The comparisons of

the results when
Pr = 0.71 and

Ra = 3,900 with
isothermal

conditions, under
various ratio of
C0 = R/H, the

temperature when (a)
C0 = 0.2, (b) C0 = 1

and (c) C0 = 2; radial
velocity (u) when (d)
C0 = 0.2, (e) C0 = 1
and (f)C0 = 2; and
axial velocity (v)

when (g) C0 = 0.2, (h)
C0 = 1 and (i)C0 = 2
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