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ABSTRACT

The present work investigates the role of different treatments of the lower boundary condition on the numer-

ical prediction of bubbly flows. Two different wall function formulations are tested against experimental

data obtained for bubbly boundary layers: (i) a new analytical solution derived through asymptotic tech-

niques and (ii) the previous formulation of Troshko and Hassan (IJHMT, 44, 871-875, 2001a). A modified

κ-ε model is used to close the averaged Navier-Stokes equations together with the hypothesis that turbu-

lence can be modelled by a linear superposition of bubble and shear induced eddy viscosities. The work

shows, in particular, how four corrections must the implemented in the standard single-phase κ-ε model to

account for the effects of bubbles. The numerical implementation of the near wall functions is made through

a finite elements code.
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INTRODUCTION

The significant advances experienced over the last forty years on turbulence modeling have meant that the

prospect of achieving a three-dimensional representation of multiphase flows has evolved into procedures

of practical application. The large increase on computer power and improvement on numerical techniques

have, in particular, succeeded in providing a framework onto which sophisticated predictive codes can be

constructed.

For disperse flows, a common solution strategy is to consider the phases separately using the inter-

penetrating continua concept. In this case, the macroscopic effects of the interaction between phases must

be correctly addressed through constitutive equations. Many examples can be found in literature, notably

the works of Drew and Lahey (1982), Lopez de Bertodano et al. (1990) and Troshko and Hassan (2001a).
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Irrespective of the chosen solution strategy, the treatment of thewall boundary condition always presents

great difficulties. The very steep changes in flow properties in the near wall region result in an extremely

thin characteristic layer that, as expected, demands the use of exceptionally fine meshes in the numerical

computation of flows.

Some early studies have proposed to separate this thin layer into two typical regions: a viscous (inner)

sublayer where turbulent and laminar stresses are of comparable magnitude and a defect (outer) layer where

the turbulent stresses provoke a small perturbation to the external flow solution. This natural division of

the flow suggests the use of local analytical solutions to bridge the viscous dominated region, in what is

normally referred to as the wall function method.

Unfortunately, the structure of a near wall turbulent bubbly boundary layer has long been recognized

as depending strongly on the complex interactions that occur between the discrete and continuous phases.

In addition to turbulence caused by shear, bubble agitation greatly contributes to the transfer of momentum

in the liquid phase. Pipe flow experiments on the distribution of void fraction have clearly established the

existence of profiles changing from a saddle to a parabolic shape as the void fraction increases at constant

water velocity (Serizawa et al. 1975, Sato et al. 1981a, b). The saddle distribution is typical of bubbly flow

whereas the parabolic distribution corresponds to slug flow.

Hence, in bubbly flows there exists a peak in void fraction, normally at a distance from the wall of about

one mean bubble radius. The effect of the bubbles in the liquid phase in the immediate vicinity of the wall is

to provoke an increase in the mean velocity gradient and in the turbulence intensity. The overall asymptotic

structure of a two-phase turbulent boundary layer is, however, found to be in accordance with single-phase

flow theory (Marié et al. 1997).

Early numerical simulations of two-phase flows resorted to procedures developed specifically for

single-phase flows. To account for void fraction effects on flow solution, more realistic wall functions were

proposed by Marié et al. (1997) and Troshko and Hassan (2001b). Wall functions for the mean liquid veloc-

ity profile (U), the turbulent kinetic energy (κ) and the dissipation rate (ε) were developed in terms of the

local void fraction (α), wall shear stress (τw), slip velocity (UR) and two empirical parameters (κ, κl) for

horizontal flow. Results were then validated against the vertical flow data of Marié et al. (1997), Sato et al.

(1981b) and Nakoryakov et al. (1981).

The present work revisits some of the previous analysis on bubbly boundary layers at low void fractions,

proposing in its own term new local solutions for U , κ and ε . Here, we follow a different route from other

authors (Marié et al. 1997, Troshko and Hassan 2001a), by using intermediate limits to derive equations

that are subsequently integrated to yield local solutions. In the process, a new equation for the transport

of ε is also derived. In fact, one of the standard single-phase constants in the ε-equation, Cε1 , is shown to

be a function of α , τw, UR, κ and κl for two-phase flows. The new solutions for U , κ and ε correct the

expressions of Troshko and Hassan (2001a).

The numerical implementation of wall functions in bubbly flows is also discussed here.An investigation

of the parametric sensitivity of the proposed wall function on the void fraction is of special concern. The new

boundary conditions are implemented in the computational fluid dynamics programTURBO2D. Predictions

are compared with the bubbly flow data of Marié et al. (1997) and with results obtained with the model of

Troshko and Hassan (2001b).
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SHORT REVIEW ON SOME PREVIOUS CONTRIBUTIONS TO THE PROBLEM

For two-phase bubbly flows, early studies tended to consider that very close to the wall the classical single-

phase logarithmic law persisted. This belief was partially motivated by the small diameter of the pipes that

were used in the experiments. In fact, the placement of standard local probes near to the wall was a problem

that seriously compromised detailed studies.

The existence of peak values of void fraction in the wall region of a bubbly flow was reported by Zun

(1980). This phenomenon was then associated to a transverse bubble migration from the core region to

the wall for certain flow regimes. A possible physical mechanism was proposed by considering the effects

of Magnus and Zhukovski forces. Thus, the non-equilibrium bubble transverse migration was treated by

combining the bubble dispersion and the circulation of liquid around the bubble provoked by the liquid

velocity gradient.

A discrepancy between the velocity logarithmic distribution occurring in a single-phase flow and the

velocity profile in a bubbly flow was observed by Sato et al. (1981a, b). By considering the turbulent struc-

ture of the liquid phase to consist of two components, one dependent only on the shear stress of the liquid

phase and the other on the additional turbulence caused by the bubbles, an eddy diffusivity model was ad-

vanced capable of accounting for the transfer of momentum and heat in a bubbly flow. The theory permitted

the prediction of mean liquid velocity profiles and frictional pressure gradients for a given void fraction

distribution. A comparison with experiments was performed for model validation. The overall agreement

between data and theory was found to be good.

An empirical correlation for the turbulent viscosity in a two-phase flow was also advanced by van der

Welle (1981). The theoretical arguments were again based on the assumption that the turbulent field could

be divided into two independent components: one due to the momentum exchange of the liquid phase, the

other due to the movement of the dispersed phase. Tests of the correlation against data from various authors

were performed, showing a standard deviation of 22%.

Beyerlein et al. (1985) reported that the bubble void fraction profile in a vertical upward flow is wall-

skewed. To account for this flow behaviour, the authors incorporated into the equations of motion a lateral

force due to the relative velocity of the two phases and the eddy diffusivity of the liquid. A good agreement

was noted between the theoretical predictions and the experimental data.

The three dimensional turbulence structure and the phase distribution in bubbly two-phase flows were

investigated by Wang et al. (1987). Using both single- and three-sensor hot-film anemometer probes, mea-

surements of local void fraction, liquid velocity and Reynolds stresses were made. For upward flows, au-

thors found that bubbles tend to migrate to the wall whereas for downward flows bubbles migrate to the pipe

centerline. These two distinct tendencies result respectively in a void fraction peaking at the wall and in a

“coring” phenomena that can be predicted by considering the turbulence structure of the continuous phase

and the lateral lift force acting on the bubbles. Measurements of the Reynolds stress components showed

nearly flat profiles in the core region, but an anisotropic structure near the wall. The presence of bubbles in a

liquid flow is normally observed to increase the level of turbulence. Wang et al. (1987), however, observed

that for the higher flow rates bubbles suppressed turbulence.

The modelling of the skin-friction and of the heat transfer in bubbly flows in pipes was considered by

Marié (1987). Two main assumptions were used by the author: the persistence of the logarithmic region and

the existence of similarity between the modifications caused by the bubbles and those that would be caused
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by a grid in a single phase flow. Therefore, the resulting expressions were supposed to be valid just for low

gas concentrations. The model was shown to work well for up to 0.2-0.3 void fractions.

To overcome some of the experimental difficulties previously found in other works, Moursali et al.

(1995) and Marié et al. (1997) turned their attention to flows developing over a vertical, smooth, flat plate in

the presence of small bubbles. In Moursali et al. (1995) graphs of void fraction distribution, wall shear stress

and liquid mean velocity profiles were presented for different mean bubble diameter. An important result

was the recognition that a significant fraction of the bubbles was deflected toward the wall depending on

their size. This migration together with a marked deceleration of the bubbles in the near wall region proved

to be the two main mechanisms responsible for the void peaking phenomenon. The presence of the dispersed

phase was found to increase the skin-friction coefficient. This increase is reflected on a modification of the

classical law of the wall, and on a depression of the wake. Marié et al. (1997) studied the changes in the

logarithmic law of the wall resulting from the presence of small bubbles. Then, through simple analytical

considerations and dimensional analysis, a modified law was proposed. The wall friction calculated on the

basis of the new law was shown to fit well the experimental data. The authors also presented longitudinal

turbulence intensity profiles and showed that turbulence is increased by two main mechanisms: a modifica-

tion of the wall production and the creation of pseudo-turbulence in the external layer. The mixing length

calculated from the data was compared with some other models proposed in literature. Their conclusion was

that the single-phase logarithmic velocity profile is definitively altered when subjected to the presence of

the bubbles.

The effects of bubble size and of two-phase flow rates on the wall shear stress were investigated exper-

imentally by Liu (1997). Using a flush-mounted hot film sensor, the time varying fluctuations of the wall

shear stress were measured in a air-water bubbly flow in a vertical channel. The reported experiments were

unique in the sense that a special bubble generator was capable of decoupling the bubble size effect from

the inlet conditions. Thus, the experiments were carried out under various fixed gas and liquid fluxes, with

only the bubble size being a variable. The data show that the wall shear stress is strongly influenced by

the wall structure of the flow, while both the liquid phase velocity and the wall concentrated bubbles are

the dominant parameters on both the magnitude and the fluctuation intensity of the wall shear stress in the

regime of bubbly flow. The findings were compared with the data of other authors as well as with other

models for the prediction of the wall shear stress.

Troshko and Hassan (2001a) developed a new formulation for the law of the wall on horizontal flows by

considering the total liquid turbulent stress to result from the summation of the bubble induced local stress

and the shear induced stress. Both stress components were estimated through the Boussinesq turbulent vis-

cosity approximation. The non-linear interaction between the shear and the bubble induced turbulence fields

was accounted for by a proportionality coefficient. The authors conclude through a numerical simulation that

the new law performs better than the classical single-phase law.

Colombo and Fairweather (2015) stated that, at the present time, no generally accepted formulation that

accounts for bubble induced turbulence has yet emerged. Some works considered similarity with single-

phase shear-induced turbulence, while others (Rzehak and Krepper, 2013) proposed the use of a mixed time

scale with the velocity scale derived from the liquid turbulent kinetic energy and the length scale equal to

the bubble diameter, which should be known or estimated in advance. Bubble induced turbulence modelling

is a complex subject and, despite the number of works dedicated to the subject, the literature still lacks a

thorough understanding of the governing mechanics.
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BASIC EQUATIONS

Transport equations for bubbly two-phase flows have been introduced by Lopez de Bertodano et al. (1994),

and, more recently, by Troshko and Hassan (2001b). For an account on the full set of equations the reader

is referred to the original references.

Here, only the x-component of the liquid momentum equation is considered. For an incompressible,

isothermal, two-phase, turbulent boundary layer in a Cartesian coordinate system, Troshko and Hassan

(2001a) write

∂ (ρlαlUlUl)

∂x
+

∂ (ρlαlUlVl)

∂y
=−αl

∂P
∂x

+Fx +ρlαlgx +
∂

∂x

(
ρlαl

(
2νl

∂Ul

∂x
−
〈
u2〉))

+
∂

∂y

[
ρlαl

(
νl

(
∂Ul

∂y
+

∂Vl

∂x

)
−〈uv〉

)]
,

(1)

whereUl and Vl are the longitudinal and transversal components of the mean liquid velocity,
〈
u2
〉
and 〈uv〉

are the Reynolds stress components, Fx and gx are the interfacial force density and gravity projections and

αl is the local liquid fraction.

Equation (1) can only be solved provided the interfacial forces and the Reynolds stress components are

modeled and appropriate boundary conditions are furnished.

Concerning the interfacial forces, the simplest possible approach is to consider the gas bubbles as mere

voidages, so that no transfer of momentum occurs in the gas phase and, therefore, the flow dynamics is

entirely determined by the liquid phase. Turbulence in the liquid phase is decomposed into contributions

due to shear and to bubble agitation. This latter assumption is considered valid for void fraction levels

below 10% (Lance and Bataille, 1991).

The linear superposition of shear and bubble induced turbulence effects means that in the boundary

layer the turbulent shear stress can be written as

−〈uv〉= νt

(
∂Ul

∂y

)
, (2)

where, according to the previous remarks,

νt = ν
s
t +ν

b
t , (3)

with νs
t = eddy viscosity due to shear; νb

t = eddy viscosity due to bubble agitation.

Different approaches can be used to specify the eddy viscosities νs
t and νb

t . The shear induced viscosity

can be modeled through the mixing-length hypothesis, that is,

ν
s
t = l2

m
dUl

dy
, (4)

where lm(= κy) is the mixing length and κ (= 0.4) is the von Kármán’s constant.

An alternative is to consider the κ-ε model, so that

ν
s
t = cν

κ2

ε
, (5)
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and the turbulent kinetic energy, κ , and the dissipation rate of turbulent kinetic energy, ε , are given by the

two transport equations

Dκ

Dt
= P− ε +

∂

∂y

(
νt

σκ

∂κ

∂y

)
, (6)

Dε

Dt
= cε1

ε

κ
P− cε2

ε2

κ
+

∂

∂y

(
νt

σε

∂ε

∂y

)
, (7)

P =−〈uv〉
(

∂Ul

∂y

)
, (8)

where all the c′s and σ ′s are model constants. Typical values of the empirical constants for single phase

flows are shown in Table I.

TABLE I

Model constants for single phase flows.

cν cε1 cε2 σκ σε

0.09 1.44 1.92 1.0 1.30

The bubble induced turbulence is suggested by Sato et al. (1981a) to be modelled by accounting for the

drift phenomena of liquid particles due to the relative motion of gas bubbles. The result is

ν
b
t = κlαgmaxyUR, (9)

where κl is an empirical constant (= 1.2 to 1.4), αgmax the peak of gas void fraction andUR the mean relative

velocity of the bubbles.

Sato et al. (1981a) mention that Eq. (9) bears similarity to the kinematic viscosity of a free turbulent

flow such as a wake behind a solid body. Parameter αgmax corresponds to the probability of vortex generation

by the transit of bubbles.

The system of equations (1) to (9) needs to be complemented by appropriate boundary conditions. This

is normally achieved with the specification of wall functions. We shall see this next.

ASYMPTOTICANALYSIS

The purpose here is to find a local solution to the system defined by Eqs. (1) to (9) in regions adjoining a

solid wall. In many works this has been made through ad hoc arguments. For example, a common approach

is to consider the existence of a flow region where turbulent effects dominate and an equilibrium condition

is established between turbulence production and dissipation. While some useful results may be inferred

sometimes, procedures with a lack of rigorous foundation very often yield misleading conclusions.

Perturbation methods have proved to be a powerful tool in the determination of global solutions. They

establish a mathematical formalism, with simple rules and recipes, that can be used to find global solutions
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from matched local solutions. For most of these simple rules, the concepts of matching and overlap do not

appear explicitly. However, matching is, by its nature, a comparison of two approximations in their domain

of overlap.

Here, an application of Kaplun’s intermediate variable theory to Eqs. (1) to (9) is made to find local

equations defined in terms of a formal domain of validity. In fact, Kaplun limits (Kaplun, 1967) have been

applied to a single-phase boundary layer by Cruz and Silva Freire (1998). The paper studies the asymptotic

structure of both the velocity and the temperature turbulent boundary layers for attached and separating

flows. A relevant result is the determination of two distinguished limits according with the scales ord η =

ord u2
∗ and ord η = ord (1/(u∗R)), where u∗ and R denote the friction velocity and the Reynolds number,

respectively. This result sheds new light onto the asymptotic structure derived by Sychev and Sychev (1987),

giving a more complete interpretation to the stretching scales derived there.

The details of the analysis of Cruz and Silva Freire (1998) are not repeated here. They can be obtained

directly from the original reference. We just emphasize that all results are derived without appealing to any

particular closure model; only asymptotic arguments need to be used. On this note, it must be said that the

asymptotic structure remains the same as considered in a κ-ε model. In fact, if the κ and ε equations are

considered in the analysis of Cruz and Silva Freire (1998), it can be shown that the overlap domain defined

by the region where turbulent effects dominate is given by the set

D = { η/ ord(1/(u∗R)) < ord(η) < ord(u∗2)}, (10)

where η denotes the region of validity of the approximated equations.

The fully turbulent region, determined by Eq.(10), must be interpreted as the overlap domain of the

inner and outer solutions.

Passing the η-limit (see Cruz and Silva Freire 1998) with ord(η) = ord(u∗2) onto Eqs. (1) to (9), we

get

0 = αl
∂

∂y

[
νt

∂Ul

∂y

]
, (11)

0 = νt

(
∂Ul

∂y

)2

− ε +
∂

∂y

(
νt

σκ

∂κ

∂y

)
, (12)

0 = cε1

ε

κ
νt

(
∂Ul

∂y

)2

− cε2

ε2

κ
+

∂

∂y

(
νt

σε

∂ε

∂y

)
. (13)

These are the equations of motion, in the sense of Kaplun, that hold in the fully turbulent region. Wall

functions forU , κ and ε must be constructed on their basis.

Note that according to the above analysis, the local motion equations do not contain a gravity term. In

fact, the formal passage of the η-limit process onto Eqs. (1) to (9) shows that gravity effects are balanced by

the inertial and pressure terms in the outer layer. These effects are then transmitted to the inner layer through

the turbulent stresses in the region defined by domain (10).

Thus, any solution to Eqs. (11) to (13) should apply to horizontal as well as vertical flows.
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LAW OF THEWALL FOR BUBBLY FLOW

ALGEBRAIC MODEL

The simplest way to find a local solution for the velocity profile is to solve Eq. (11) together with Eq. (3),

that is,

0 = αl
∂

∂y

[(
κ2y2 ∂Ul

∂y
+κlαgmaxUR y

)
∂Ul

∂y

]
. (14)

To integrate Eq. (14), the void fraction profile is considered to have a rectangular step shape with a peak

value in the fully turbulent region. The following approximation is then considered αl ∼= 1−αgmax .

A first integration of Eq. (14) yields(
κ2y2 ∂Ul

∂y
+κlαgmaxUR y

)
∂Ul

∂y
=

u2
∗

1−αgmax

, (15)

where u∗ (=
√

τw/ρl) is the friction velocity.

A second integration furnishes

U+
l =

β

κ
ln(y+)+B+, (16)

where the wall variables are defined asU+
l =Ul/u∗ and y+ = yu∗/ν , and

β =
κlαgmaxUR

2κu∗

(√
1+

(2κu∗)2

(κlαgmaxUR)2(1−αgmax)
−1

)
. (17)

Note that as αgmax tends to zero Eq. 16 reduces to the classical single-phase law of the wall. Troshko and

Hassan (2001a) have also derived a two-phase law of wall through similar reasonings. However, instead of

considering Eq. (4) for closure of the shear induced turbulence, they have taken νs
t = κyu∗. This latter choice

comes clearly from a less primitive assumption; it is not equivalent to Prandtl’s mixing length hypothesis,

Eq. (4). The objective consequence is that Troshko and Hassan (2001a) also arrive at a logarithmic equation

but with a β different from that defined by Eq. (17).

DIFFERENTIAL MODEL

Solutions for κ and ε may be obtained by considering Eq. (5) as the closure relation for the turbulence

generated by shear. The set of equations to be solved – Eqs. (11), (12) and (13)– must necessarily incorporate

Eq. (3) with Eqs. (5) and (9) in its definition so that the effects of bubble induced turbulence are accounted

for.

The resulting solution is given by

Ul =
βu∗
κ

ln(y)+B, (18)

κ =
βu2

∗√
cν

, (19)
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ε =
βu3

∗
κy

, (20)

where β is defined by Eq. (17)

These equations have been written in dimensional form so that they can be easily compared with the

results of Troshko and Hassan (2001a). In addition to the differences provoked by the definition of β , Eq.

(19) is much distinct from Troshko and Hassan (2001a), who write κ = (u∗)2/
√

cν .

In non-dimensional form, Eqs. (18) to (20) can be cast as

U+
l =

β

κ
ln(y+)+B+, (21)

κ
+ =

β
√

cν

, (22)

ε
+ =

β

κy+
, (23)

where κ+ = κ/(u∗)2, ε+ = ε/((u∗)4/ν) and clearly Eq. (21) is identical to Eq. (16).

The solution of Eqs. (11), (12) and (13) also implies that

cε1 = cε2 −
1

σε

κ2
√

cν

1
β
. (24)

In the limit as β tends to unit, Eq. (24) reduces to the single-flow equation for cε1 .

Previous studies have show that free turbulent shear flows are very sensitive to changes in cε1 and cε2 .

Variations of 10% in their values might result in changes of about 40% in the growth rate of a shear layer.

In general, σε is fixed so that adequate adjustments on cε1 are made to the flows of interest.

In a two-phase flow, Eq. (24) shows that cε1 must be corrected to account for the action of the bubbles.

Furthermore, Eq. (24) shows that this correction must be made in terms of β−1.

NUMERICAL SIMULATIONS

The present near wall formulation and the theory of Troshko and Hassan (2001b) will be validated against

the data of Marié et al. (1997). These authors have studied experimentally the wall region of a turbulent

boundary layer developing over a vertical flat plate. In addition to mean velocity data, void fraction, wall

shear stress and longitudinal turbulent intensity profiles were reported. To the best of our knowledge, the

data set of Marié et al. (1997) constitutes the best account of bubbly boundary layer flow that can be found

in literature.

Regarding the theory of Troshko and Hassan (2001b), β has been defined according to

βT H =

[
(1−αgmax)

(
1+αgmax

κl

κ
UR

u∗

)]−1

(25)

The bubbles slip velocity is evaluated from (Ishii and Zuber, 1979),

UR = [4gσ∆ρ/ρ
2
l ]

1/4(1−αgmax)
3/4, (26)
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where σ is the surface tension and ∆ρ is the density difference of the phases.

The coefficient κl was determined by Troshko and Hassan (2001b) by a direct fitting of Eq. (18) to the

experimental data of Marié et al. (1997). Troshko and Hassan (2001b) also determined B+ from a fitting

procedure to make sure that δ+ = 11, where δ+ denotes the thickness of the viscous sublayer.

The distinct behaviour of β (Eq. 17) and βT H (Eq. 25) is shown in Fig. 1.

Figure 1 - Behaviour of β according to Eqs. (17) and (25).

COMPUTATIONS

The numerical simulations were performed with code TURBO2D, which is a two-dimensional code based

on the finite elements method. The governing equations are discretized in space through triangular finite

elements, defined by linear interpolation functions. The compatibility conditions between pressure and ve-

locity is preserved using two calculation meshes. The pressure field is calculated with a mesh with elements

of types P1. The velocity and all other variables are calculated using a P1-isoP2 mesh, defined from the

P1 mesh by dividing one segment into two. This procedure generates four P1-isoP2 elements from one P1

element.

Temporal discretization of the governing equations is made through a sequential semi-implicit finite

difference algorithm. A time iteration process was used to remove the influence of the initial conditions on

the final calculations, so that the simulation ends only when statistically steady results have been reached. To

optimize the convergence, a temporal integration procedure used increasingly successive time steps, with

typical values ranging from 10−6 seconds at the beginning of a run to 5x10−2 seconds at the end of the

simulation. For the velocity and pressure fields and for the velocity boundary conditions, the convergence

criteria was set to 10−8 and 10−7 respectively. For more details on the optimization algorithm and numerical

schemes implemented in TURBO2D the reader should refer to Loureiro et al. (2007) and Fontoura Rodrigues

et al. (2013).

The final grid was obtained from successive mesh refinements with the condition that the output be

independent on the number of nodes by a margin of less than 2%. Data post-processing was done with the

aid of GnuPlot and GMSH (see Geuzaine and Remacle, 2009).

Tables II and III show the physical properties and the flow conditions used in the present validation,

whereUδ stands for the external boundary layer velocity. Figure 2a shows a sketch of the flow configuration,
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adapted from Marié et al. (1997). Figs. 2b-c present the details of the computational domain as well as the

mesh refinement considered.

Figure 2 - Sketch of the flow configuration, simulation domain and detail of the isoP2 mesh distribution.

TABLE II

Physical properties of the fluids.

νwater [m2s−1] g [ms−2] σ [N/m]

1.0×10−6 9.80 0.073

In contrast to the model of Troshko and Hassan (2001b), the present model has not been calibrated

against a particular set of flow conditions. To establish a common ground for comparison, the present

computations have been carried out with B+ = 7.6 and κl = 1.4.

The boundary conditions were taken directly from the experiments of Marié et al. (1997). The inlet

conditions were defined by a uniform vertical velocity profile with Uδ = 0.75 ms−1 and turbulence inten-

sity of 0.33%. Non-wall boundary conditions were specified in terms of zero gradients, that is, boundary
conditions of Neumann type.

The wall boundary conditions were specified with a vertical displacement of 0.4 mm from the wall.

This resulted in typical values for δ+ of about 20 in the computational domain. This procedure bridges the

turbulent region directly to the wall so that no computation of the buffer and viscous sublayers is required.

MODEL SENSITIVITY TO αGMAX

The sensitivity of the present formulation to changes in αgmax is expressed in terms of four effects, the

inclusion of parameter β into the following equations:
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TABLE III

Reference parameters from experiments.

Uδ [ms−1] αgmax u∗ [ms−1]

0.75 0.02 0.037

0.75 0.035 0.039

0.75 0.06 0.044

1. the slope of the law of the wall, Eq. (18),

2. the lower boundary condition for κ , Eq. (19),

3. the lower boundary condition for ε , Eq. (20),

4. the equation for cε1 , Eq.(24).

Figure 3 shows the effects of the peak void fraction, αgmax , on predictions of the friction velocity. The

models were tested with αgmax as high as 20%.

An increase in void fraction results in an increase of u∗ that clearly cannot be captured by the single-
phase law of the wall. Both theories, present and Troshko and Hassan’s, exhibit the same general behaviour,

agreeing with the general behavior of the data of Marié et al. (1997). However, the theory of Troshko and

Hassan (2001b) consistently furnishes higher values of u∗. At the highest experimental value of αgmax , 0.06,

our prediction of u∗ exceeds the measurements by 10%. The theory of Troshko and Hassan (2001b), on the
other hand, exceeds that value by 20%.

Figure 3 -Model sensitivity to αgmax .
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EFFECTS ON COMPUTATIONAL TIME

Figure 4 compares the required computational times between the present formulation and the theory of

Troshko and Hassan (2001b) for various values of αgmax . The theory of Troshko and Hassan (2001b) is more

time consuming for all void fractions. The differences, however, are negligible considering that the average

time difference, about 100 seconds, represents 8% of machine usage time.

Figure 4 - Computational time.

MEAN VELOCITY PROFILES

Predictions of the mean velocity profiles for three different void fractions, αgmax = 0.02, 0.035 and 0.06, are

shown in Figs. 5, 6 and 7, respectively. The three typical single-phase flow regions are also reproduced in a

bubbly flow: the viscous region, the fully turbulent region and the wake region. The profiles were taken at

a position y = 1 m, according to the coordinate system shown in Fig. 2. As the void fraction increases, the

logarithmic region becomes less step.

For the lowest void fraction, the agreement between the present formulation and the experimental data

in the logarithmic region, 100 < y+ < 800, is very good. The absence in the present formulation of wall

damping functions imply in a poor agreement in the viscous region. The theory of Troshko and Hassan

(2001b) overestimates u∗, and for this reason shifts the velocity profile to a lower level. For the higher αgmax ,

0.06, we still get a better agreement from the present formulation. For this condition, the friction velocity

calculated by the present formulation presents an agreement within 11.21% of the experimental data. The

formulation of Troshko and Hassan (2001b), on the other hand, furnished values of u∗ that differed by 24%
from the measured values.

MODEL SENSITIVITY TO κL

Table IV shows the predicted values of friction velocity for simulations where the value of κl is varied from

1.2 to 1.4 while all other parameters are kept constant. Only cases related to the peak local void fraction of
0.06 are shown. For both models, lower values of κl result in lower values of friction velocity. For κl = 1.2,

the agreement between the present model and the data of Marié et al. (1997) is within 10.32%.
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Figure 5 -Mean velocity profiles, αgmax = 0.02.

Figure 6 -Mean velocity profiles, αgmax = 0.035.
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Figure 7 -Mean velocity profiles, αgmax = 0.06.

Troshko and Hassan (2001b), as previously explained, used the data of Marié et al. (1997) to obtain a

direct fitting for κl and B+. When these fittings are used in the computations, the error in estimated value

of u∗ decreases to 1.46%. This comparison shows the dependence of this formulation on adjusted values of
κl and B+.

TABLE IV

Model sensitivity to κκκl for αgmax =0.06. Reference data from Marié et al. (1997): u∗ =0.044[ms−1].

κl Present work Error(%) Troshko and Hassan (2001b) Error(%)

u∗ [ms−1] u∗PW −u∗exp/u∗exp u∗ [ms−1] u∗T H −u∗exp/u∗exp

1.2 0.04854 10.32% 0.0536 21.87%

1.3 0.04874 10.77% 0.0541 23.04%

1.4 0.04893 11.21% 0.0546 24.17%

Variable – – 0.0446 1.46%

EFFECTS OF κ+ ANDCε1 ON FLOW SOLUTION

The combined effects of Eqs. (19) and (24) on predictions for the friction velocity have been investigated.

In fact, corrections due to both equations have been implemented in both models, the present formulation

and the model of Troshko and Hassan (2001b). All other parameters are held constant.
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Estimation of u∗ through the present model with corrections given by Eqs. (19) and (24) are improved
by 5.5%, as compared with the data of Marié et al. (1997). Results obtained with the model of Troshko

and Hassan (2001b) are improved by 8.4%. Because these percentages lie within the error margin of the

experimental data, the influence of the present modifications in κ+ and cε1 might seem small. However,

the generality introduced by Eqs.(19) and (24) is important. These equations improve estimations for flows

subjected to adverse pressure gradients and separation, when the calculation of u∗ becomes critical to the
numerical solution.

CONCLUSIONS

The present work has performed an analytical study of the fully turbulent region of bubbly flows. In the

course of the research, new expressions have been derived to provide the lower boundary condition for a

κ-ε modeling of the flow. These expressions include profiles for the mean velocity, the turbulent kinetic

energy and the rate of dissipation. The solutions are observed to satisfy the set of local equations, Eqs (11)

to (13), and imply that the standard single-phase constants in the ε-equation, Cε1 , is a function of β .

TABLE V

Summary of the corrections proposed to the single-phase κ−ε to account for the presence of bubbles and comparison with

the formulation of Troshko and Hassan (2001b).

Correction Present work Troshko and Hassan (2001b)

Slope of the law of the wall β = Eq. (17) βT H = Eq. (25)

Lower boundary condition for κ κ = Eq. (19) No correction

Lower boundary condition for ε Eq. (20) Eq. (20), β = βT H

Equation for cε1 cε1 = Eq.(24) No correction

Empirical constant κl κl = 1.4 κl fitted from experimental data

Several differences exist between the presently proposed equations and those of Troshko and Hassan

(2001a). In that reference, the eddy viscosity due to the shear effects is taken as νs
t = κu∗y, implying that the

local characteristic velocity is u∗. Their mean velocity solution, on the other hand, implies that a character-
istic velocity of the form βT Hu∗ should be used instead. These two facts cannot be reconciled, yielding an
erroneous procedure that among other things suggests a boundary condition for κ that is not correct. Here,

the correct boundary condition for κ is introduced through Eq. (19).

In particular, the present work has shown how four corrections must the implemented in the standard

single-phase κ-ε model to account for the effects of bubbles. These corrections are summarized in Table V,

which also identifies the differences with the formulation of Troshko and Hassan (2001b).
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