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A B S T R A C T

An improved k-ε turbulence model for viscoelastic fluids is developed to predict turbulent flows in complex
geometries, with polymeric solutions described by the finitely extensible nonlinear elastic-Peterlin constitutive
model. The k-ε model is tested against a wide range of direct numerical simulation data, with different rheo-
logical parameters combinations, and is capable to capture the drag reduction for all regimes of low, inter-
mediate and high, with good performance. Two main contributions are proposed, one through the viscoelastic
closures present in the turbulent kinetic energy and dissipation equations, and the other, by modifying eddy
viscosity model damping function to incorporate the viscoelastic effect close to the wall, especially at the buffer
layer. In addition, improvements have been made to the cross-correlations between the fluctuating components
of the polymer conformation and rate of strain tensors present in the Reynolds-averaged transport equation for
the conformation tensor. The main advantage is the capacity to predict all components of the tensor with good
performance.

1. Introduction

The drag reduction (DR) phenomenon present in turbulent viscoe-
lastic flows has been studied for decades. It is general knowledge that
the addition of polymeric particles in a Newtonian fluid in a turbulent
flow it reach up to 80% reduction in transport energy, by reducing the
turbulent friction. Another effect is the reduction in the heat transfer,
both phenomena provide a significant advantage in terms of energy
reduction for thermal energy transportation at long distances, and for
this reason researchers dedicate their efforts to use it in engineering
systems, such as district heating systems.

After the discovery of the drag reduction phenomenon, several
studies were carried out to understand the origin of the drag reduction
in turbulent flows, and several theories have been proposed to describe
this complex mechanism, but no definitive consensus has been reached.
Two preferred theories are the Lumley theory (Lumley, 1969 and
Lumley, 1973), the so-called viscous idea, and the Tabor and De Gennes
theory (Tabor and Gennes, 1986), known as the elastic explanation.
Lumley assumes that the DR phenomenon is a consequence of an in-
crease of the effective viscosity in a region outside of the viscous sub-
layer and in the buffer layer, caused by the polymer stretching within a
turbulent flow. It also assumes that the beginning of drag reduction

occur when the time scale of the polymers overcome the time scale of
the flow. The other assumption of Tabor and De Gennes is that the
elastic energy stored by the polymer becomes equivalent to the turbu-
lent kinetic energy in the buffer layer, and inhibits the usual energy
transfer and thickens the buffer layer, where the viscoelastic length
scale is larger than the Kolmogorov scale.

It is generally accepted that DR is linked to the increase of the ef-
fective elongational viscosity of a dilute polymer solution, caused by
the full coil-stretch transition of the elastic polymer molecules in the
direction of the mean flow, leading to a reduction in the vortex dynamic
activities, according to the Lumley theory. Latter, L'vov et al. (2004)
quantified the viscous scenario by showing the additional effective
viscosity increasing linearly with the distance from the wall in the
buffer layer, and also proposed a direct numerical simulations (DNS) of
Newtonian turbulent flows including an artificial viscosity to confirm
its theory. This was performed by De Angelis et al. (2004), which ob-
tained the same drag reducing properties of the equivalent viscoelastic
FENE-P simulations (Angelis et al., 2002).

However, DNS results between the two scenarios showed some
contradictions, when considering the high and maximum drag reduc-
tion regimes. Recently, Dallas et al. (2010) demonstrated that high drag
reduction could be achieved without full coil-stretch transition of the
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polymer molecules, in contradiction with the viscous theories. This
confirms Min et al. (2003) explanation, in which the polymers in the
near-wall region extract energy from the flow due to the uncoiling
caused by the mean shear, and release part of the stored elastic energy
back to the flow, by contracting as they shift away from the wall.

In an attempt to understand and explore the two prominent drag
reducing theories, Thais et al. (2013) carried out DNS simulations at
high Reynolds numbers to minimize the influence of viscous wall effects
in the flow dynamics, i.e., to confirm the Lumley's viscous explanation
(Lumley, 1969). The results showed to be contradictory with
Dallas et al. (2010), where the primary effect of the interaction between
the turbulent and polymeric fields was the opposite, transferring energy
from the turbulence to the polymer. Another aspect is that the ampli-
tude of the direct coupling between turbulent and elastic energies did
not change between low and high elasticity viscoelastic flows. In re-
sume, the interactions between the turbulent and viscoelastic energies
are a complex nonlinear process, and can only be fully understood
when all information on both the flow and the viscoelastic parameters
are gathered (Thais et al., 2013).

Although the DNS is a powerful tool, it is not feasible for most of the
engineering purposes involving turbulent viscoelastic flows, because it
is significantly more expensive at a computational level, in terms of
CPU-time and memory requirements, due to the larger number of pri-
mary variables. For higher DR the DNS use is even more restrictive
since the near wall streaks become progressively stabilized and elon-
gated, requiring the use of longer simulation, especially for high DR
values.

An alternative approach is the used of Reynolds-averaged
Navier–Stokes (RANS) models, which are less demanding computa-
tionally, and therefore gained an increased interest in the last decades.
The first attempt to incorporate the elastic effect in turbulence models
was made by the group of Pinho (2003) and Cruz et al. (2004), which
developed a low-Reynolds numbers k-ε turbulence model using Gen-
eralized Newtonian Fluid (GNF) constitutive equation, which includes
the dependence of the fluid strain hardening on the third invariant of
the rate of deformation tensor. They also developed an anisotropic
version which includes the increased Reynolds stress anisotropy
(Resende et al., 2006), and a Reynolds stress turbulence model
(Resende et al., 2013), capable of predicting satisfactorily the drag re-
duction. However these models are limited because the modified GNF
constitute equation is an inelastic model.

Due to the appearance of the DNS data of turbulent viscoelastic
fluids, new developments in RANS models were possible.
Leighton et al. (2003) proposed the first turbulence model for viscoe-
lastic flows based on the FENE-P dumbbell constitutive equation model,
which developed a closure to the polymer stress-strain coupling based
on a tensor expansion combining the Reynolds stress and the con-
formation tensors. Later Pinho et al. (2008) based on a-priori analyses
of DNS data, developed low-Reynolds-number k-ε model for FENE-P
fluids. Several closures were proposed to the terms of the governing
equations, with special attention to the viscoelastic terms, the viscoe-
lastic turbulent transport term of the turbulent kinetic energy and the
non-linear term involving the conformation tensor and the strain rate
fluctuations of the conformation tensor equation. This model was valid
for low drag reduction regime (DR<20%). Subsequently,
Resende et al. (2011) extended the turbulence model to intermediate
drag reduction regimes, but it was not capable to reach higher values of
DR. Despite the high performance of the closures, the model introduced
many coefficients and damping functions, which makes it unattractive
to use. Following the same procedure, Resende et al. (2013) developed
a low-Reynolds-number k-ω model for FENE-P fluids, showing the
versatility of the previous closures in the isotropic context, but pre-
senting the same limitations of the previous k-ε model. Nevertheless the
model showed to be more robust, taking the advantages of a typical k-ω
turbulence model for Newtonian fluids.

Iaccarino et al. (2010) proposed a − − −k v fɛ 2 model for FENE-P

fluids capable of predicting all range of DR, in a fully developed channel
flow, in which they introduced the concept of turbulent polymer visc-
osity to account for the combined effects of turbulence and viscoelas-
ticity on the polymer extra stress tensor term into the momentum
equation. Their closure of the nonlinear term in the conformation
tensor equation is simpler than the closure proposed by
Resende et al. (2011) model, but is not capable to capture all compo-
nents individually, only the trace of the tensor. Later,
Masoudian et al. (2013) improved the model to be valid up to max-
imum DR, using also the concept of turbulent polymer viscosity. The
main improvements consisted in the viscoelastic stress and in the vis-
coelastic stress work closures introduced in the momentum and tur-
bulent kinetic energy transport equations. It also included the viscoe-
lastic destruction term in the dissipation transport equation, following
the same procedure of Resende et al. (2011).

The second order Reynolds stress model for FENE-P fluids proposed
by Masoudian et al. (2015), is capable to predict all drag reduction
regimes. The viscoelastic interaction in the model was reduced to the
nonlinear fluctuating and destruction terms, introduced by the FENE-P
and dissipation transport equations, respectively. The nonlinear vis-
coelastic closure was modelled involving the Reynolds stresses, similar
to the Leighton et al. (2003) procedure, and the destruction viscoelastic
closure was the same used by Masoudian et al. (2013). Despite the
simplicity of the viscoelastic closures, the model in general is not at-
tractive, due to the high number of Newtonian terms involved, but it
can be easily overcome by the use of non-linear turbulence models.

More recently, Tsukahara and Kawaguchi (2013) proposed a low
Reynolds number k–ε model for viscoelastic fluids described by the
Giesekus constitutive equation, using the same principle of the group of
Pinho (2003) and Cruz et al. (2004). Although the model is valid up to
the maximum DR, it shows some instabilities for higher Weissenberg
numbers, with significant deviations from the DNS data.

In the present study, an improved k-ε turbulence model for FENE-P
fluids is proposed, validated for all regimes of drag reduction (low,
intermediate and high) with good performance. An important con-
tribution of this model is the development of new closures for eddy
viscosity through the damping function, modified to include elastic
effects, and the nonlinear fluctuating term in the conformation trans-
port equation, which increased the stability and robustness, while
keeping the same simplicity and versatility of a typically k-ε turbulence
model for Newtonian fluids. The model is assessed against DNS data,
covering a wide range of flow conditions in terms of Weissenberg
number, maximum polymer extensibility (L2), solvent ratio (β) and
Reynolds number, and is also compared with other FENE-P fluids clo-
sures available on the literature.

The paper is organized as follows: Section 2 introduces the in-
stantaneous and time-averaged governing equations and identifies the
viscoelastic terms that will require modelling. In Section 3, the devel-
oped turbulent closures are explained in detail, then Section 4 sum-
maries the present model, followed by the results for the predictions at
a fully developed turbulent channel flow, covering all range of DR, and
finally the main conclusions are presented.

2. Governing equations

The exact instantaneous continuity and momentum equations for
the turbulent flow of incompressible dilute polymer solution, where the
rheological representation is based on the FENE-P constitutive model
(Bird et al., 1980), are:
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where the hat represents instantaneous quantities of velocity, ̂ui,
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pressure, p, and stress tensor, ̂τik, and ρ the fluid density. The stress
tensor, ̂τik, is a sum of Newtonian solvent which obeys Newton's law of
viscosity, ̂̂ =τ η s2s

ik s ij, and polymeric contributions, ̂τ p
ik, Eq. (3), with ηs

representing the solvent viscosity coefficient.
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The instantaneous rate of strain tensor, ̂sij, is defined as
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The definition of the instantaneous polymer stresses based on the
FENE-P closure is given by Eq. (5) and Eq (6), function of the in-
stantaneous conformation tensor ̂cij.
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where ̂ckk is the trace of the instantaneous conformation tensor, and the
other parameters are associated to the rheological model: L2 denotes
the maximum molecular extensibility of the dumbbell; λ is the relaxa-
tion time of the fluid and ηp is polymer viscosity coefficient. The con-
formation tensor behaviour obeys to the following hyperbolic differ-
ential equation
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The ̂
∇
cij term denote Oldroyd's upper convective derivative of the

instantaneous conformation tensor. The first two terms are the material
derivative and represent the local and advective derivatives, and the
terms in the parenthesis account for the polymer stretching by the in-
stantaneous flow.

The Reynolds average equations can be obtained by applying the
Reynolds decomposition, ̂ = +u U ui i i, where the upper-case letters or
overbars represent average quantities and lower-case letters or primes
represent instantaneous quantities, and time-averaging, typically called
Reynolds-averaged Navier–Stokes/Reynolds-averaged conformation
evolution (RANS/RACE) equations:
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where p is the mean pressure, Ui is the mean velocity, − ρu ui k is the
Reynolds stress tensor and τik p, the Reynolds-averaged polymer stress.
Described by the FENE-P constitutive equation, the τik p, take the form of
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where the last term on the right side of the equation needs a closure,
and the Peterlin function becomes,
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Both Eq. (10) and Eq. (11), depends of the average tensor con-
formation, Cij, which is determined by Reynolds average conformation
evolution, Eq. (12). The different terms have specific designations, ac-
cording with Li et al. (2006) and Housiadas et al. (2005).
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The first-term inside the brackets on the left-hand-side is Oldroyd's
upper convective derivative of Cij, and the second term, Mij, is the mean
flow distortion. The remaining terms on the left-hand-side, CTij and
NLTij, account the velocity fluctuations to the advective transport of the
mean conformation tensor, and the interactions between the fluctuating
components of the conformation and velocity gradient tensors that
originate from Oldroyd's upper convected derivative, respectively. To
calculate the molecular conformation it is necessary to quantify the two
terms with overbars, using adequate closures, together with the corre-
sponding polymer stress, Eq. (10).

The closures developed in this work used DNS data to simplify and
calibrate the model coefficients. The DNS data pertain to all regimes of
drag reduction and are part of the large sets of data for FENE-P fluids in
fully-developed turbulent channel flow, produced by Li et al. (2006),
Li et al. (2006) and Kim et al. (2007). The non-dimensional numbers are
defined as follows: the Reynolds number ≡Re hu ν/τ τ 00 is based on the
friction velocity (uτ), the channel half-height (h), the zero shear-rate
kinematic viscosity of the solution, which is the sum of the kinematic
viscosities of the solvent and polymer ( = +ν ν νs p0 ). The Weissenberg
number is given by ≡Wi λu ν/τ τ

2
00 and the ratio between the solvent

viscosity and the solution viscosity at zero shear rate is β (β≡ νs/ν0).
The three sets of DNS data used throughout this paper to characterize
the elastic behaviour in each drag reduction regime, are defined by the
following parameters: =Re 395τ0 , =β 0.9 and two different maximum
extension, (1) =L 9002 for Weissenberg numbers equal to =Wi 25τ0
and =Wi 100τ0 , corresponding to drag reductions of 18% and 37%,
respectively, and (2) =L 36002 for =We 100τ0 , equivalent to 51% DR
(case A, B and C of Table 1).

The model was tested over a wide range of conditions, combining all
parameters β, L2 , Reτ0 and Weτ0, and compared with the DNS
(C.F. Li et al., 2006 and C.F. Li et al., 2006), and complemented by the

Table 1
Description of the DNS parameters for turbulent channel flow at =Re 395τ0 .

Case Reference Rheological parameters Drag reduction (%) Error (%)

Wiτ0 β L2 DNS Present model

(A) Resende et al. (2011) 25 0.9 900 18 19.2 6.7
(B) Resende et al. (2011) 100 0.9 900 37 37.5 1.4
(C) Masoudian et al. (2013) 100 0.9 3600 51 52.2 2.4
(D) Li et al. (2006) 100 0.9 14,400 61 62.3 2.1
(E) Li et al. (2006) 200 0.9 14,400 75 67.7 9.7
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DNS data of Iaccarino et al. (2010) and Ptasinski et al. (2003), from
which we used another data set to further calibrate the model, for Reτ0

and β variations.
As reported in Resende et al. (2011) and Masoudian et al. (2013),

the nonlinear fluctuation correlation of the average polymeric stress for
fully developed turbulent flow, +f C c c( )kk kk ij in Eq. (10), can be ne-
glected when compared with the average conformation tensor, Cij, in
both regimes of intermediate and high DR. Following the same proce-
dure, a contribution comparison was made to the terms of the average
tensor conformation equation, Eq. (12), and confirmed that the CTij
term can be neglected for all regimes of drag reduction, in agreement
with the findings of Housiadas et al. (2005) and Li et al. (2006). The
NLTij term can not be neglected, since it is of significant contribution.

The Reynolds stress tensor in Eq. (9) is computed by adopting the
Boussinesq turbulent stress–strain relationship,

− = −ρu u ρν S ρkδ2 2
3i j T ij ij (13)

where k is the turbulent kinetic energy, Sij is the mean rate of strain
tensor and νT is the eddy viscosity. The νT is modelled by the typically
isotropic k-ε turbulence model for low Reynolds numbers, which is
modified to include the elastic effect close to the wall through the
damping function.

The transport equation of turbulent kinetic energy for turbulent
flow of viscoelastic fluids, using the FENE-P model, Eq. (10), is given by
Eq. (14) (more details can be found in Pinho et al. (2008)
andResende et al. (2011)). The transport equation of k contains the
typically Newtonian closures found in the classical k-ε turbulence
models, which we adopt here to represent the solvent contribution: the
molecular diffusion, the turbulent transport of k by velocity and pres-
sure fluctuations, the rate of production of k and the viscous dissipation.
The last two terms on right side of equation are the viscoelastic tur-
bulent transport, QV, and the viscoelastic stress work, ɛV, respectively,
and they represent the viscoelastic contribution which require closure
models.
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The Newtonian closures followed the Nagano and Hishida (1987)
model, where is used a modified Newtonian rate of dissipation for k, ɛ͠N ,
instead of the true dissipation, ɛN, in order to increase stability of the
calculation. Both are related by = + Dɛ ɛ͠N N , where D is given in
Eq. (15). To increase the model performance, a variable turbulent
Prandtl number was introduced, via function ft, to correct turbulent
diffusion near the wall, as suggested by Nagano and Shimada (1993)
and Park and Sung (1995), = + −f 1 3.5 exp( (Re /150) )t T

2 with
= k νRe /( ɛ )͠T s

N2 .
Similar distribution analysis had been made by Pinho et al. (2008),

Resende et al. (2011) and Masoudian et al. (2013), to the viscoelastic
terms of the turbulent kinetic energy equation, the viscoelastic stress
work and the viscoelastic turbulent transport, at different drag reduc-
tion regimes. Initially Pinho et al. (2008) showed that the impact of QV

could be neglected at low regime of DR, and subsequently
Resende et al. (2011) verified that the contribution of QV became more
significant at intermediate DR regime, and developed a closure. Al-
though QV evolution had the same amplitude of ɛV at a high regime of
DR, the maximum value occurs at different location, in the buffer layer,
where its effect is overcome by the turbulent diffusion, revealing to
have small effect in the predictions and Masoudian et al. (2013) choose
to neglect the QV contribution, and it will be also neglected here.

The corresponding transport equation for the modified Newtonian
rate of dissipation of k, is given by

⎜ ⎟

∂
∂

+
∂

∂
= ∂

∂
⎡
⎣⎢

⎛
⎝

+ ⎞
⎠

∂
∂

⎤
⎦⎥

+ −

+ +

ρ
t

ρU
x x

η
ρf ν

σ x
f C

k
P f C ρ

k

ρE E

ɛ ɛ ɛ ɛ ɛ͠ ͠ ͠ ͠ ͠N
i

N

i i
s

t T N

i

N
k

N

τ

ɛ
1 ɛ 2 ɛ

p

1 2

2

(16)

with

⎜ ⎟= − ∂
∂

= − ⎛
⎝

∂
∂ ∂

⎞
⎠

P ρu u U
x

E ν ν f
U

x x
and (1 )k i k

i

k
s T μ

j

i k

2 2

(17)

As mention before, all terms are modelled in Newtonian context,
with exception of the last term, Eτp, which represent the viscoelastic
contribution to the transport equation of ɛ͠N . This term acts as a de-
struction of the dissipation and is given by Eq. (18).
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The damping functions of Eq. (16), take into account the low Rey-
nolds number behaviour, are =f 11 and = − −f 1 0.3 exp( (Re ) )T2

2 , and
the numerical values of the remaining coefficients are: =σ 1.1k , =σ 1.3ɛ ,

=C 1.45ɛ1 and =C 1.90ɛ2 .

3. Development of viscoelastic closures

The viscoelastic closures necessary to complete the turbulence
model are developed in this section, based in five sets of DNS. To obtain
the conformation tensor evolution for turbulent flows, it is necessary to
develop a closure to the NLTij term of the Eq. (12), which account the
interaction between the fluctuating components of the conformation
tensor and the velocity gradient tensor. Finally, the closures developed
for the viscoelastic stress work, ɛV, and the viscoelastic destruction of
the Newtonian rate of dissipation, Eτp, related to the transport equations
of k and its dissipation, ɛ͠N , respectively, are presented. In addition, a
modification is made to the damping function fμ of the eddy viscosity
for low Reynolds numbers, to introduce the elastic effect next to the
wall, following the same procedure realized by Pinho (2003);
Cruz et al. (2004); Resende et al. (2006) and Tsukahara and
Kawaguchi (2013), for the development of low-Reynolds-number k-ε
turbulence models to predict viscoelastic flows.

The NLTij closure is developed following the same assumptions of
Resende et al. (2011). Based in the transport equation of
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Given the high complexity of the exact transport equation of the
NLTij, more details can be found in Pinho et al. (2008) and
Resende et al. (2011)

The viscoelastic closure for the NLTij term is given by Eq. (20), and it
was developed to allow future simulations in complex geometries, by
reducing significantly the number of terms and eliminating the ne-
cessity of the wall friction velocity dependence.
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Fig. 1. Comparison of the NLTij model between DNS data (symbols: Δ DR=18%, case (A); ○ DR=37%, case (B), and ◊ DR=51%, case (C)) and predictions with
the new model (continuum lines), and previous model (dash lines): (a) NLTxx+; (b) NLTyy+; (c) NLTzz+; (d) NLTkk+ and (e) NLTxy+. Each colour corresponds to a
specific DR.
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where the viscoelastic coefficients are =C 0.02N1 , =C 0.6N2 ,
=C 0.325N3 .
The closure of Eq. (20) is modelled in three different parts:
- part I is approached by the Taylor's longitudinal micro-scale, λf, to

the relation between the double correlation of fluctuating strain rates
and the turbulence kinetic energy in homogeneous isotropic turbulence,
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At high Reynolds number homogeneous isotropic turbulence,
Taylor's longitudinal microscale is related to the dissipation of turbulent
kinetic energy via equation
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so according to Resende et al. (2011) the closure becomes
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with = − − +f y(1 exp( /25))F2
4 (more details can be found in

Resende et al. (2011)). Here, the wall distance dependence through the
damping function has been replaced by the local turbulent viscosity,

=f ν ν/N T1 0, and calibrated to account for L2 variations. In addition, the
dependence of the trace of the conformation tensor and the Weissen-
berg number was eliminated.

- part II, is responsible to capture the shear component, and corre-
sponds to the exact term, − ∂ ∂ + ∂ ∂C U x C U x[ ( / ) ( / )]kj i k ik j k , of the ap-
proximate equation, Eq. (19), corrected by L0.15 to considered L2 var-
iations, similar to the L0.42 parameter in part I, and by the damping
function, fN10.2, to correct the wall effects. Also, we eliminate the Weτ0
dependence, as can be observed by the term used by
Resende et al. (2011), Eq. (27).
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- part III is an ad-hoc term, modelled to introduce the anisotropic
effect, where the L2 and β variations are achieved by the function fN2,
Eq. (22), and (β/0.9)0.7× β parameter. Also, a correction is made to low
Reynolds numbers by the function fRe, Eq. (23), consequence of the low

performance of the Newtonian turbulence model at low Reynolds
numbers. The approach to the wall is realized by the damping function
fN1, Eq. (21), similar to the Masoudian et al. (2013) approximation.

An initial study was performed using only DNS data on the devel-
opment of viscoelastic closures, Resende and Cavadas (2018). This
model is simpler than the model of Resende et al. (2011), NLTij

Resende,
defined by Eq. (28), and is also capable to capture all the components
without the necessity of the friction velocity through the Weissenberg
number.
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The performance of the NLTij closure can be analysed in Fig. 1, by
comparing the predictions with the DNS data for turbulent channel flow
at =Re 395τ0 and =β 0.9, for different drag reduction regimes, with

=L 9002 at different Weissenberg numbers, =Wi 25τ0 and =Wi 100τ0 ,
equivalent to DR=18% and 37%, respectively, and =L 36002 , keeping
the same value of =Wi 100τ0 , corresponding to DR=51%, to analyse
the effect of L2. Fig. 1(a)-(c) shows the individual normal stress com-
ponents of NLTij model, and the predictions are a significant improve-
ment compared to the previous model of Resende et al. (2011), espe-
cially for higher values of DR. The xx component is capable to predict
well both the production and the destruction effects, close and away
from the wall, respectively, capturing the maximum value and its shift
away from the wall with the DR increase. In case of the yy and zz
components, the model underpredicted the peak values due to the
isotropic assumption, but all main features are well captured, such as
the increase in NLT with DR, the shift of the peak location to higher
values of y+ as DR increases and the saturation effect. The predictions
of NLTij have a direct impact on the prediction of the conformation
tensor, as can be observed through the Eq. (12), but in terms of the yy
component the Cyy is well predicted, although the underprediction of
the NLTyy component. The correct prediction of the Cyy is important
because it contributes directly to the determination of the axial and
shear component of the conformation tensor (Pinho et al., 2008),
however the zz component showed to had low impact. Consequently,
the trace of the NLTij term, Fig. 1(d), captured the main features of the
normal components and underpredicted the maximum value due to the
underprediction of the yy and zz components. The shear component of
the NLT model can be observed in Fig. 1(e), where the predictions are
capable to capture the behaviour with good performance for all regimes
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of drag reduction, when compared with the DNS data.
Different attempts had been made to capture the reduction of the

eddy viscosity with the DR increase, initially by Pinho et al. (2008) for
low DR regime, and later by Resende et al. (2011) for intermediate DR
regime, both closures presented difficulties to represent the correct
behaviour, and resulted in a wrong prediction of shear Reynolds stress
close to the wall, forcing the drag reduction to be achieved essential by
reducing k. An alternative is proposed here to capture the correct be-
haviour of the eddy viscosity close to wall, and consequently achieved
the increase of k as the DR increases. The eddy viscosity is modelled
considering the Newtonian solvent closure of the low Reynolds number
k− ε model of Nagano and Hishida (1987), given by Eq. (29), and the
viscoelastic effect close to the wall is accomplished by the damping
function fμ, Eq. (30), where the small scales redistribute the energy to
the large scales of the energy cascade, Min et al. (2003). This type of
approach were made by Pinho (2003); Cruz et al. (2004);
Resende et al. (2006) and Tsukahara and Kawaguchi (2013) to devel-
oped viscoelastic turbulence models using different constitutive equa-
tions. The assumption made here is similar to the same principle as-
sumed by Iaccarino et al. (2010) to develop a k-ε-v2-f viscoelastic
turbulence model, where the reduction of the eddy viscosity is pro-
portional to the increase of DR, and achieved by the v2 reduction, since

=ν C vvk/ɛT μ . In the present case, the increase of DR is accomplished by
the trace of the conformation tensor divided by square root of the
maximum molecular extensibility, ∼DR C L/kk

2 . This assumption is a
simple approximation to correct the damping function behaviour close
to the wall, based on the DNS data analysis of the cases presented here.
In addition, to consider the viscosity effect, the solvent ratio, β, is in-
troduced, but as the polymeric viscosity increases the solvent ratio
tends to zero, β→ 0, becoming necessary to incorporate the saturation
effect by using the ββ parameter. This parameter takes into account the
variations of the polymeric component in the aqueous solution. How-
ever, its impact on the flow is not linear, because of the saturation ef-
fect. This means that the effect increases and reaches a stable value,
similar to the increase of L, after a certain value the drag reduction does
not increase and becomes stable (see Fig. 1 and Li et al., 2006). To
simulate the same behaviour, the ββ parameter was implemented in the
model trough the damping function, fμ and NLTij model, to correct the
viscoelastic behaviour near and far from the wall, respectively. Finally,

the equilibrium state is achieved through the 3 parameter, where the
viscoelastic part become null for Newtonian fluids.
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where =+y u y ν/τ wall, based on the wall viscosity of the solution
= +ν ν νwall s τp wall, , sum of solvent viscosity with the polymeric viscosity

at the wall, =ν τ ργ/( ˙ )τ xy wall
p

,p wall, , where γ̇ is the shear rate.
The remaining viscoelastic terms, the viscoelastic stress work (ɛV)

and the viscoelastic destruction term, Eτp, of the transport equation of k
and ɛ͠N , are modelled using the same closures developed by
Pinho et al. (2008) and Resende et al. (2011), respectively. The vis-
coelastic stress work is given by
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Initially, based on the DNS data, Pinho et al. (2008) verified that the
double correlation can be neglected by comparison with the triple
correlation at low DR regime, and later it was also confirmed for in-
termediate and high DR regimes, (Resende et al., 2011;
Masoudian et al., 2013). Pinho et al. (2008) also showed that in low
drag reduction regime the triple correlation can be decoupled and
modelled as function of NLTmm/2, Eq. (32). Recently,
Masoudian et al. (2015) demonstrated that the model is capable to
predict all the individual components with good performance within
5% error.

Fig. 2. Comparison of the velocity profile between DNS data (symbol: Δ
DR=18%; ○ DR=37%; ◊ DR=51%; □ DR=61%;×DR=75%) and pre-
dictions, for channel turbulent flow, with rheological parameters defined in
Table 1, at =Re 395τ0 : with the new model (continuum lines), and previous
model (dash lines).

Fig. 3. Comparison of the velocity profile between DNS data from
Iaccarino et al. (2010) (symbol: □ DR=33%, case (F), and Δ DR=59%, case
(I)) and Ptasinski et al. (2003) (symbol: ◊ DR=40%, case (N); ○ DR=61%,
case (L), and×DR=64%, case (O)) and predictions (continuum lines against
to Ptasinski et al. (2003) data, and dash lines against to Iaccarino et al. (2010)
data), for channel turbulent flow, with rheological parameters defined in
Table 2 and 3. Each colour corresponds to a specific DR.
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The model used here for Eτp is given by Eq. (33) and assumed that it
depends on the same quantities as the classical Newtonian destruction
term of the transport equation of ε, i.e., proportional to ɛ2/k. This model
is based on the Resende et al. (2011) closure but more simple and
capable to capture the solvent ratio variations, close and away from the
wall.
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where the coefficients parameters are =C 1.25Fɛ 1 and
= ×C Wi0.045 (25/ )F τɛ 2 0

0.6.

4. Summary of the present model

The governing and the transport model equations are given below,
using the closures developed in the previous subsection.
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where the eddy viscosity is given by Eq. (29) and Eq. (30).
Conformation tensor equation:

− − = − −
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with

Table 2
Description of the DNS parameters for turbulent channel flow at =Re 300τ0 , Iaccarino et al. (2010).

Case Rheological parameters Drag reduction (%) Error (%)

Wiτ0 β L2 DNS Iaccarino et al. (2010) Present model

(F) 36 0.9 3600 33 31 34 3.0
(G) 60 0.9 3600 47 47 46 2.1
(H) 36 0.9 10,000 35 34 32 8.6
(I) 120 0.9 10,000 59 62 58.2 1.4
(J) 36 0.9 19,600 32 34 27.6 13.8
(K) 60 0.9 19,600 42 46 48 14.3

Table 3
Description of the DNS parameters for turbulent channel flow at =Re 180τ0 , Ptasinski et al. (2003).

Case Ptasinski et al. (2003) Rheological parameters Drag reduction (%) Error (%)

Wiτ0 β L2 DNS Present model

(L) Run B 54 0.6 1000 61 58 4.9
(M) Run C 72 0.6 1000 66 61.7 6.5
(N) Run D 54 0.8 1000 40 43.6 9.0
(O) Run E 54 0.4 1000 64 64 0

Table 4
Description of the DNS parameters for turbulent channel flow at =Re 125τ0 ,
Li et al. (2006).

Case Rheological parameters Drag reduction (%) Error (%)

Wiτ0 β L2 Li et al. (2006) Present model

(P) 50 0.9 900 31 34.5 11.3
(Q) 100 0.9 900 37 39 5.4
(R) 100 0.9 3600 56.5 51 9.7
(S) 100 0.9 7200 69 54.9 20

Table 5
Description of the DNS parameters for turbulent channel flow at =Re 180τ0 ,
Li et al. (2006).

Case Rheological parameters Drag reduction (%) Error (%)

Wiτ0 β L2 Li et al. (2006) Present model

(T) 50 0.9 900 30.5 33.9 11.1
(U) 100 0.9 900 38.5 38.7 0.5
(V) 100 0.9 3600 54 51 5.5
(X) 100 0.9 14,400 71 58 18

Fig. 4. Comparison of turbulent kinetic energy between DNS data (symbols: □
Newtonian; Δ DR=18%, case (A); ○ DR=37%, case (B), and ◊ DR=51%,
case (C)) and predictions with the new model (continuum lines), and previous
model (dash lines). Each colour corresponds to a specific DR.
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where the damping function are defined by Eq. (21) to Eq. (23), and the
viscoelastic parameters are presented after.

Transport equation of k:
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Dissipation transport equation:
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with
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The remaining damping functions and coefficients associated to the
Newtonian part are described below Eq. (18).

5. Results and discussion

In this section, the performance of the present model is evaluated at

fully-developed channel flows for different Reynolds and Weisenberg
numbers, for a wide variety of rheological parameters, and comparing
against the DNS data. The numerical simulations were carried out using
a finite-volume code for the FENE-P fluids (Resende et al., 2011), with
non-uniform meshes containing 99 cells to cover the channel width.
About 10 cells were located inside each of the viscous sublayers in order
to provide mesh independent results, with errors within 0.5% for the
mean velocity and the friction factor. No-slip boundary conditions were
applied at the wall with =U 0, =k 0 and =ɛ 0͠ N .

Fig. 2 and Fig. 3 compare the predicted velocity profiles with DNS
data for a large set of data covering all regimes of DR with different
values of β, L2, Reynolds numbers, and Weissenberg numbers, including
also the predictions used for calibration and from the previous model of
Resende et al. (2011). The DNS rheological parameters and flow con-
ditions are defined in Tables 1–3, for different Reynolds numbers,

=Re 395τ0 , =Re 300τ0 and =Re 180τ0 , respectively, together with the
DR predictions. All the profiles across the channel are in good agree-
ment with DNS data. The mean velocity in the viscous sublayer collapse
to the u+= y+ definition, and further away from the wall, in the
logarithmic layer, the profile is shifted upwards parallel to the loga-
rithmic profile of the Newtonian flows, according to a drag reduction
characteristic at low DR regime, found in the experimental and DNS
results. Furthermore, the velocity of the polymeric flow increases, and
consequently the upward shift of the logarithmic profile occur, which is
usual interpreted as a thickening of the buffer layer. At maximum drag
reduction the model is not capable to keep the same performance, as
observed in case (E) of Table 1, which can be justified by the isotropic
assumption of the turbulence model. To extend the present model to
Reynolds number and solvent ratio variations, it was used the DNS data
of Iaccarino et al. (2010), case (F) of Table 2, and
Ptasinski et al. (2003), case (O) of Table 3, respectively, for calibration,
and the remaining cases presented are to assess the model performance.
The Iaccarino et al. (2010) predictions are presented in Table 2 for
comparison. Note that the DNS simulations of Ptasinski et al. (2003)
were performed at =Re 360τ0 which differ from the present work, be-
cause their Reynolds definition is based on total height of the channel,
but here is considered half-height of the channel equivalent to

=Re 180τ0 . A turbulent viscoelastic model should be capable to predict
the viscoelastic behavior with different combinations of four para-
meters (Wiτ0, β, L2 and Reτ0), which clearly demonstrates the complexity
of the subject. In this case, the model was calibrated for the most critical
situation, β=0.4, and tested for the remaining cases. However, it was
found that for β=0.8 the error increased, but decreasing for β=0.9
(see Table 1), which means that the error does not change linearly.
Also, Tsukahara and Kawaguchi (2013), using the Giesekus model,
developed of a k-ε turbulence model for viscoelastic fluids, however it
failed to predict correctly the drag reduction for lower values of
Weissenberg numbers and β. In the worst case tested, the model pre-
dicted 1% of DR, whereas the DNS data shows 23%. For low Reynolds
numbers, =Re 125τ0 and =Re 180τ0 , the predictions start to apart from
the DNS data, Table 4 and Table 5, specially at low regime of DR, which
can be justified by the low accuracy of the Newtonian turbulence model
used for the solvent part. The prediction error of the Darcy friction
factor for a Newtonian case at =Re 125τ0 is about 6.6%. At maximum
drag reduction, the prediction error increases, showing the limitations
of this type of model, due to the use of isotropic assumptions, where the
flow at this stage is clearly anisotropic.

Besides of the present model capacity to predict all regimes of DR
with good performance, another main advantage can be observed in
Fig. 4, which shows the turbulent kinetic energy behaviour. The pre-
dictions are capable to capture correctly the k evolution, the increase of
the maximum value and its shift away from the wall with the increase
of drag reduction, when comparing with the DNS data. This improve-
ment is associated with the inclusion of a polymeric contribution in the
eddy viscosity model, through the damping function, fμ, Eq. (30). As
mention before this damping function acts close to the wall, especially

Fig. 5. Comparison of the rate of Newtonian dissipation of k between DNS data
(symbols: □ Newtonian; Δ DR=18%, case (A); ○ DR=37%, case (B), and ◊

DR=51%, case (C)) and predictions with the new model (continuum lines),
and previous model (dash lines). Each colour corresponds to a specific DR.
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into the viscous sublayer, but its impact in the energy cascade is high,
allowing the energy to propagate across the channel and increase the
turbulent kinetic energy, important to achieve higher values of DR. In

addition, it is possible to observe that the predictions from previous
model presented an opposite trend, decrease of the maximum value of k
(k+=3.2 for DR=18% and k+=3.1 for DR=37%) below the peak

Fig. 6. Comparison of conformation tensor between DNS data (symbols: Δ DR=18%, case (A); ○ DR=37%, case (B), and ◊ DR=51%, case (C)) and predictions
with the new model (continuum lines), and previous model (dash lines): (a) Cxx; (b) Cyy; (c) Czz; (d) Cxy and (e) f(Ckk). Each colour corresponds to a specific DR.
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value for the Newtonian case, k+=4. This incorrect behaviour de-
monstrates some limitations in the previous model, therefore, it can not
achieve the maximum drag reduction due to the excessive reduction of
k. For high regime of DR the predictions started to apart from the DNS
data, underpredicting the peak value of k, which means that the re-
duction of the eddy viscosity through fμ is insufficient to reduce the
shear Reynolds stress, so it is completed by a decrease of k. Even so, the
influence of k reduction on DR prediction, for DR=51%, is low, about
14%, by comparison of the maximum value of k between the predic-
tions and DNS, but as the DR increases, this effect becomes more in-
tense. An alternative is the use of a higher level turbulence model, as
made by Masoudian et al. (2015), but this is beyond the scope of this
work.

The predictions of the normalised rate of dissipation of k are plotted
in Fig. 5 and show an overprediction of the plateau close to the wall.
However, a proportional reduction of the plateau values with the in-
crease of DR is achieved, with similar behaviour at the wall, where it
can also be observed the saturation effect for higher DR. The corre-
sponding predictions of the previous model capture correctly the be-
haviour close to the wall, but presented some instabilities at the wall,
which also occur here for the case of 37% of DR, where the plateau is
not well defined. Away from the wall, the predictions of ɛ͠N are good
due to the introduction of the viscoelastic destruction term, Eτp, in the
transport equation of ɛ͠N , which decreases ɛ͠N as flow viscoelasticity
increases. The main advantage of the closure presented here is the
complexity reduction of Resende et al. (2011) model, keeping the same
predictions accuracy, specially in the logarithmic region. The inclusion
of a viscoelastic destruction closure also was made by
Masoudian et al. (2013) to improve the − − −k v fɛ 2 turbulence
model of Iaccarino et al. (2010), for FENE-P fluids, which allowed to
increase the performance of the model in terms of the Newtonian dis-
sipation predictions at the logarithmic region. The maximum value of
ɛ͠N and its location are incorrectly predicted, consequence of the New-
tonian closures, which is a known defect of the k-ε model.

The evolution of the conformation tensor is well predicted for all
components, Fig. 6(a)–(e), with exception for the zz component due to
the isotropic assumption used to modelling the NLTij term, introducing
a direct impact in the conformation tensor predictions. The quality of
the Cij predictions is a consequence of the NLTij closure performance
since NLTij is the major contribution to the balance of Cij. As can be seen
in Fig. 6(a) and (b), the predictions of Cyy and Cxx show a good
agreement with the DNS data, with the exception of Czz, where there is
an underprediction, however its impact is not significant. The major
contribution for the trace of the conformation tensor is related to the
Cxx, and it can be visualized through the f(Ckk) function in Fig. 6(e). For
high regime of DR there is a small overprediction of the maximum value
of f(Ckk) due to the Cxx overprediction, even so the region of high chain
dumbbell extension is limited to the near wall region (y+<50), which
is in concordance with findings of Li et al. (2006). Regarding Cyy pre-
dictions, a good performance is required because it acts directly to the
shear component of the conformation tensor, Cxy, and as can be ob-
served in Fig. 6(d), the predictions are capable to capture the behaviour
for low and intermediate regime of DR, with exception at high regime
where there is an overprediction of the maximum value, however, its
location is correctly predicted. Overall, it is evident that the con-
formation tensor predictions are capable to capture all the main fea-
tures with good performance and better quality predictions, when
compared with the previous model of Resende et al. (2011), con-
sequence of the new NLTij model developed in the present work.

6. Conclusions

The low-Reynolds-number k-ε turbulence model of
Resende et al. (2011) for dilute polymeric solutions, represented by the
FENE-P rheological constitutive equation, is improved up to maximum

drag reduction. The turbulence model is tested against DNS data, to
account the DR variations, with the different combinations of the vis-
coelastic rheological parameters of the relaxation time of the fluid, the
maximum molecular extensibility of the model dumbbell and the ratio
of the solvent, where four sets of DNS were used for calibration. The
present model is capable to predict all regimes of DR, in fully-developed
channel turbulent flow, with good performance.

The main feature is the inclusion of the viscoelastic effect through
the damping function of the eddy viscosity, to consider the elastic
proprieties close to the wall and correct the energy cascade distribution,
where the small scales redistributed the energy to the large scales. This
is accomplished by reducing the eddy viscosity, proportional to the DR
increase. The correct behaviour close to the wall allows the proper
prediction of the turbulent kinetic energy, the increase of the maximum
value with the DR increase, in contrast with the predictions of the
previous model of Resende et al. (2011), where was unable to reach the
high regime of DR.

Other improvements were implmented to the Reynolds-averaged
nonlinear term of the polymer conformation equation (denoted NLTij)
and to the viscoelastic destruction term of the rate of dissipation of k by
the Newtonian solvent, previous developed by Resende et al. (2011).
The improved NLTij model present better performance for all regimes of
DR, when compared with the previous model, but the main advantage
is the reduction of number of terms and the capacity to predict the
negative part, which acts like production term in the transport equation
of k. This develoment also eliminates the necessity of damping func-
tions depending on the wall distance, and the dependence of the friction
velocity through the Weissenberg number, given more stability in 3D
simulations. In terms of the viscoelastic destruction term,
Tsukahara and Kawaguchi (2013) reported that the most serious defi-
ciency found in their model was the overpredicted dissipation rate,
given an underestimated viscoelastic contribution, consequent of ne-
glecting this term. For this reason, a simpler model of
Resende et al. (2011) for the viscoelastic destruction term is proposed
here, keeping the same predictions accuracy of ɛ in the logarithmic
region, while close to the wall there is an overprediction of the plateau,
however, it is capable to capture the saturation effect with the increase
of DR.

Overall, the predictions compare very well with DNS data in terms
of mean velocity, turbulent kinetic energy and dissipation, and is cap-
able to capture all viscoelastic features at all ranges of drag reduction,
for different Reynolds numbers. The main advantage of the present
model is the combination of the performance with simplicity, which
will allow the easy implementation in 3D codes.
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