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Abstract
An approximate analytical methodology for calculating the friction factor within ducts of irregular cross-section is herein

proposed. The approximations are developed by transforming the original governing PDEs into simpler ODEs, using

approximation rules provided by the coupled integral equations approach. The transformed system is directly integrated

and analytical solutions for the friction factor are readily obtained. Four different approximation cases are analyzed, which

yield simple closed-form expressions for calculating the friction factor in terms of geometric parameters for rectangular,

triangular, and trapezoidal ducts. The results of these expressions are compared with literature data, and very reasonable

agreement is seen. After performing an error analysis of the results, regions for applicability of the methodology where

accuracy requirements can be maintained are highlighted. Finally, enhanced approximation formulas yielding maximum

errors as low as 3% are developed by using simple weighted averages of different approximation cases.

Keywords Lumped-capacitance formulation � Arbitrary geometry � Friction factor � Mathematical modeling

List of symbols
a, b, c Geometric parameters in cross-section domain

DH Hydraulic diameter

f Fanning’s friction-factor

G� Dimensionless pressure gradient

Ha;b Hermite approximation

K Aspect ratio

p Pressure

u Axial velocity

�u Cross-sectional averaged velocity

U Dimensionless axial velocity

x Axial variable

X Dimensionless function for left boundary

y, z Cross-section variables

Y, Z Dimensionless problem variables

z1 Function for left boundary

Re Reynolds number

Greek symbols
a, b, m Hermite approximation parameters

n, g Dimensionless left boundary function parameters

l Dynamic viscosity

fi Solution constants

1 Introduction

Scientists working on applied mathematics found them-

selves in the perfect environment to develop numerical

methods with the introduction of computers and the fast

increase of their memory capacity and processing speed

over the subsequent decades. These methods became so

reliable that, nowadays, they are routinely utilized in

commercial packages devoted to the simulation of engi-

neering problems. However, they are widespread to the

point of discouraging the use of analytical methods, often

being applied to solve problems that do posses analytical

solutions. Analytical methodologies played a crucial role in

the early development of fluid mechanics and heat transfer

and their relevance should not be overlook even today.

One important example in the field of differential

equations is the combined use of analytical and numerical
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methods to generate lumped solutions. These solutions are

obtained from an approximately averaged version of the

differential equations, created using special analytical

techniques that reduce their number of spatial dimensions.

However, it is important to control the error introduced by

such approximations in order to maintain precision

requirements. One particular technique that achieves these

goals is known as coupled integral equations approach or

CIEA. It approximates an integral by a linear combination

of the integrand and its derivatives at the integration limits,

an idea originally developed by Hermite [1] and first pre-

sented by Mennig et al. [2]. The latter were the first ones to

use this two-point approach, deriving it in a fully differ-

ential form called Ha;b. Furthermore, these authors showed

that the already known Obreschkoff formulae presented no

new features in relation to the Ha;b method. They used this

technique to solve linear initial-value and boundary-value

ODEs, demonstrating the advantages of this approach

compared to other methods.

Since its development, the CIEA has been applied to

many problems. Among these studies, deserve mention the

ones involving phase change [3], heat transfer in fins [4],

heat exchangers [5, 6], linear heat conduction [7], hyper-

bolic heat conduction [8], radiative cooling [9], abla-

tion [10], drying [11], heat diffusion with temperature-

dependent conductivity [12], and combined convective-

radiative cooling [13, 14]. A very similar approach was

also used in the work of Keshavarz and Taheri [15].

However, the authors refer to it by a different name, calling

it the Polynomial Approximation Method. Another similar

approach for obtaining improved lumped-models was

employed by Sadat [16, 17], in which general transient

diffusion problems were considered. In more recent years,

the CIEA methodology was applied for the solution of

coupled heat and mass transfer in adsorbed gas reser-

voirs [18], heat conduction in phase change materials [19],

thermal modeling of building elements [20] and multilay-

ered composite pipelines with active heating [21].

The current paper presents an approximate analytical

methodology, based on the coupled integral equations

approach, for solving steady laminar fluid flow equation in

irregular geometries. Its ultimate goal is to obtain simple

expressions for the friction factor for these flows, and to

analyze the error associated with each of these. Results for

different polygonal cross-section ducts, which include

rectangular, trapezoidal, and triangular geometries, are

obtained using four different approximation cases. A

comprehensive comparison of the different approximation

cases is carried-out, demonstrating that some approxima-

tion schemes could lead to errors that are too large for

certain geometric parameters. As a result of this analysis,

further enhanced approximate expressions for calculating

the friction factor in rectangular, triangular and trapezoidal

duct geometries are proposed.

2 Hermite approximation

The basis for the coupled integral equations approach

(CIEA) is the Hermite approximation of an integral, which

is given by the general expression:Z xi

xi�1

f ðxÞdx ¼
Xa
m¼0

cmða; bÞhmþ1
i f ðmÞðxi�1Þ

þ
Xb
m¼0

cmðb; aÞð�1Þmhmþ1
i f ðmÞðxiÞ þ Ea;b

ð1aÞ

where,

hi ¼ xi � xi�1; cmða; bÞ ¼
ðaþ 1Þ!ðaþ b� mþ 1Þ!

ðmþ 1Þ!ða� mÞ!ðaþ bþ 2Þ!
ð1bÞ

and f(x) and its derivatives f ðmÞðxÞ are defined for all

x 2 ½xi�1; xi�. Ea;b is the error in the approximation. It is

assumed that f ðmÞðxi�1Þ ¼ f
ðmÞ
i�1 for m ¼ 0; 1; 2; . . .; a and

f ðmÞðxiÞ ¼ f
ðmÞ
i for m ¼ 0; 1; 2; . . .;b. This integration for-

mula can easily provide different levels of approximation,

which are traditionally called Ha;b. Nevertheless, since

approximations of order higher than H1;1 involve deriva-

tives of order higher than one, these are avoided for the

sake of simplicity of the methodology. Hence, only two

different approximations below are considered:

H0;0 )
Z h

0

f ðxÞdx � 1

2
hðf ð0Þ þ f ðhÞÞ; ð2aÞ

H1;1 )
Z h

0

f ðxÞdx

� 1

2
hðf ð0Þ þ f ðhÞÞ þ 1

12
h2ðf 0ð0Þ � f 0ðhÞÞ; ð2bÞ

which correspond to the well known trapezoidal and cor-

rected trapezoidal integration rules, respectively.

3 Laminar flow in polygonal cross-section
ducts

In this section, the integral approximation rules (2a, 2b) are

applied to fully-developed laminar flow in straight ducts of

irregular geometry cross-sections, allowing expressions for

the friction-factor for different types of ducts to be

obtained. Figure 1 displays the general problem domain
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with the adopted geometric parameters. The function z1ðyÞ
describes the right boundary between y ¼ a and y ¼ c.

The governing equations for the considered problem, in

dimensionless form, are given by:

o2U

oY2
þ K2 o2U

oZ2
¼ G�; for 0� Y � 1 and

0� Z�XðYÞ;
ð3aÞ

U ¼ 0; for Y ¼ 0 and 0� Z � 1; ð3bÞ
U ¼ 0; for Y ¼ 1 and 0� Z � 1; ð3cÞ
oU

oZ
¼ 0; for Z ¼ 0 and 0� Y � 1; ð3dÞ

U ¼ 0; for Z ¼ XðYÞ and 0� Y � 1; ð3eÞ

in which the involved dimensionless groups are defined as:

Y ¼ y

b
; Z ¼ z

a
; U ¼ u

�u
; K ¼ b

a
; G� ¼ b2

l �u

dp

dx
;

ð4Þ

where XðYÞ ¼ n Y þ g is the dimensionless form of z1ðyÞ,
where n and g are geometric parameters:

n ¼ �K cotðwÞ and g ¼ 1 þ K cotðwÞ: ð5Þ

The expression of Fanning’s friction-factor can be readily

expressed in terms of the dimensionless pressure

gradient as:

f Re ¼ �G�

2

D2
H

b2
; ð6Þ

in which G� is the dimensionless pressure gradient [defined

by Eq. (4)], and Re is the hydraulic-diameter based Rey-

nolds number. The hydraulic diameter itself is expressed

as:

DH

b
¼ 4 þ 2K cotðwÞ

2 þ K ðcscðwÞ þ cotðwÞÞ ; ð7Þ

where b is a length, as described in Fig. 1. Finally, the

horizontal-averaged velocity is defined as:

UavðYÞ ¼
R X

0
UðY ;ZÞ dZ

n Y þ g
: ð8Þ

With little algebraic manipulation, the integration of

Eqs. (3a, 3b, 3c) within 0� Z�X and substitution of

Eqs. (3d, 3e) and (8), yields:

d2Uav

dY2
þ 2 n
n Y þ g

dUav

dY
þ ðK2 þ n2Þ

n Y þ g
oU

oZ

����
Z¼X

¼ G�; for

0� Y � 1; ð9aÞ

Uav ¼ 0; at Y ¼ 0 and Y ¼ 1; ð9bÞ

where the following relation between the Y- and Z-

derivatives of U at Z ¼ X, obtained from the boundary

condition at this location (3e), was used for simplification:

oU

oY

����
Z¼X

¼ � n
oU

oZ

����
Z¼X

: ð10Þ

Equation (9) constitute an exact form of system (3) that

was transformed to eliminate the independent variable Z. In

spite of being a simpler system, in order to solve Eq. (9),

the derivatives of the two-dimensional velocity field U at

Z ¼ XðYÞ must be expressed in terms of the Z-averaged

velocity, UavðYÞ. However, no further exact transforma-

tions can be of assistance at this point, and approximation

rules must be employed.

By inspecting Eqs. (9a) and (10), one notices that the

CIEA methodology can be applied to obtain relations

between the the unknown derivatives (oU=oZjZ¼X and

oU=oYjZ¼X) and the averaged velocity UavðYÞ. Neverthe-

less, two different approximation alternatives arise:

1. Employ Hermite formulas for the integrals of

U(Y, Z) and oU=oZ.

2. Employ Hermite formulas for the integrals of

U(Y, Z) and oU=oY .

Regardless of the chosen alternative, the usage of H0;0 or

H1;1 formulas for U(Y, Z), together with H0;0 formulas for

the derivatives of U, leads to approximation rules in the

following form:

oU

oZ

����
Z¼X

¼ � 1

n
oU

oY

����
Z¼X

� �c1

Uav

n Y þ g
þ c2

n
dUav

dY
; ð11Þ

where c1 and c2 are constants whose values depend on the

type of approximation used, and these will be determined

in the next section. For rectangular ducts (g ¼ 1 and

n ¼ 0), relation (10) does not hold, and only the first

approximation alternative is possible. For these type of

�

�

.

................................................................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........ ........

b

a

c

ψ

z = z1(y)

y

z

Fig. 1 Problem domain
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ducts (with w ¼ p=2), a general approximation relation

without c2 is obtained:

oU

oZ

����
Z¼X

� �c1 Uav: ð12Þ

The solution of system (9) can be simplified according to

the type of cross-section geometry. The most general case

is the trapezoidal duct, whose solution is obtained from

combining equation (11) with system (9), such that:

UavðYÞ
G� ¼ f1 ðn Y þ gÞc3 þ v þ f2 ðn Y þ gÞc3 � v þ f3 ðn Y

þ gÞ2;

ð13aÞ

with

f1 ¼ � f3 1 � g�c3þvþ2ð Þ
1 � g2 v

; ð13bÞ

f2 ¼ f3 g2 v � g�c3þvþ2ð Þ
1 � g2 v

: ð13cÞ

For triangular ducts, K ! 1, and a simpler solution is

obtained:

UavðYÞ
G� ¼ f6 ð1 � YÞ2 � ð1 � YÞc3 þ v

� �
: ð14Þ

Similarly, for rectangular profiles, the combination of (12)

and system (9) yields the following solution:

UavðYÞ
G� ¼ 1

K2c1

cos hðK Y � 1=2ð Þ ffiffiffiffiffi
c1

p Þ
cos hðK c1=2Þ � 1

� �
: ð15Þ

The constants c3, v, f3, and f6 are given by:

c3 ¼ � 1

4
ð1 þ 2 c2 þ cosð2wÞÞ secðwÞ2; ð16aÞ

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 1 þ tan2ðwÞð Þ þ c2

3

q
; ð16bÞ

f3 ¼ sin2ðwÞ
K2 ð3 � c1 þ 2 c2 þ 3 cosð2wÞÞ ; ð16cÞ

f6 ¼ cos2ðwÞ
ð3 � c1 þ 2 c2 þ 3 cosð2wÞÞ : ð16dÞ

Once the solution of the Z-averaged velocity field is

obtained, the last step is the calculation of the friction

factor itself. The value of Fanning friction factor can be

obtained directly from using Eq. (6) and the calculated

value of G�, which is obtained from the definition of the

cross-sectional averaged velocity in dimensionless form:

2

1 þ g

Z 1

0

ðn Y þ gÞUavðYÞ dY ¼ 1; ð17aÞ

such that the value of G� can be calculated by substituting

the expressions for the velocity Uav into the relation below:

G� ¼ 2

1 þ g

Z 1

0

ðn Y þ gÞ Uav

G� dY

� ��1

: ð17bÞ

After substituting the averaged-velocity expressions into

Eq. (17b), integrating the result and simplifying, closed-

form expressions for calculating the friction factor are

obtained. For rectangular ducts, f Re is given by

f Re ¼ 8K3 c3=2
1

ðK þ 2Þ2
K
ffiffiffiffiffi
c1

p � 2 tanh 1
2
K

ffiffiffiffiffi
c1

p� 	� 	 ; ð18Þ

whereas for triangular ducts, the friction factor is given by:

f Re ¼
ðc3 þ vþ 2Þ sec4 w



2

� 	
ðc1 þ 2 ðc3 � 1Þ cosð2wÞ þ 2 c3 � 2Þ
c3 þ v� 2

:

ð19Þ

For the trapezoidal duct, a more complicated expression is

obtained, since it depends on two geometric parameters

(K and w):

f Re ¼ � G� ð2K cotðwÞ þ 4Þ2

2ðK ðcotðwÞ þ cscðwÞÞ þ 2Þ2
; ð20aÞ

in which G� is obtained from:

G� ¼ � f1 2 g ðc3 þ vþ 2Þ � 2 gc3þv g2 ðc3 þ vþ 1Þ þ ððg� 1Þ ðc3 þ vþ 1Þ þ gÞ g�c3�vð Þð Þ
ðg2 � 1Þ ðc3 þ vþ 1Þðc3 þ vþ 2Þ þ

�

�
2f2 g � gc3�vþ2 þ gc3 g2�v � g�c3 ððg�1Þðc3�vþ1ÞþgÞð Þ

c3�vþ2

� �

g2 � 1ð Þðc3 � vþ 1Þ þ 1

2
f3 g2 þ 1
� 	

3
775

�1

:

ð20bÞ

76 Page 4 of 11 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:76

123



4 Coupled integral equations approach

Now that a general expression for the friction factor is

available, the four different approximation schemes are

carried-out, each leading to different values for the

parameters c1 and c2. For the sake of simplicity, no Her-

mite approximations of order higher than H1;1 are used and

the H1;1 approximation is used solely for the integral of

U(Y, Z).

4.1 Case 1: H0,0=H0,0 with alternative 1

In case 1, the H0;0 approximation is used to yield expres-

sions for the integrals of the velocity profile and its

derivative with respect to Z:
Z XðYÞ

0

UðY ; ZÞ dZ � 1

2
ðn Y þ gÞ ðUðY ; 0Þ þ UðY;XðYÞÞÞ;

ð21aÞ
Z XðYÞ

0

oU

oZ
dZ � 1

2
ðn Y þ gÞ oU

oZ

����
Z¼0

þ oU

oZ

����
Z¼X

� �
: ð21bÞ

Once these equations are solved for the unknown potential

and derivative, using the boundary information and the

definition of the average potential, the following c-values

are obtained:

c1 ¼ 4; c2 ¼ 0: ð21cÞ

4.2 Case 2: H0,0=H0,0 with alternative 2

For approximation case 2, the H0;0 approximation is again

used to yield expressions for the integral of the velocity

profile (21a). However, instead of approximating the inte-

gral of the velocity’s Z-derivative, the H0;0 rule is used with

the Y-derivative:

Z XðYÞ

0

oU

oY
dZ � 1

2
ðn Y þ gÞ oU

oY

����
Z¼0

þ oU

oY

����
Z¼XðYÞ

 !
:

ð22aÞ

Solving the above equation, together with (21a), for the

unknown potential and its derivative, and substituting the

boundary information results in the following values for c1

and c2:

c1 ¼ 2; c2 ¼ 0: ð22bÞ

4.3 Case 3: H1,1=H0,0 with alternative 1

For case 3, the H0;0 approximation is used to yield an

expression for the integral of the velocity’s Z-derivative

(21b), and, for the integral of the velocity profile, the H1;1

approximation is used as follows:
Z XðYÞ

0

UðY; ZÞ dZ � 1

2
ðn Y þ gÞ ðUðY; 0Þ þ UðY ;XÞÞþ

þ 1

12
ðn Y þ gÞ2 oU

oZ

����
Z¼0

�oU

oZ

����
Z¼X

� �
:

The above equation, together with (21b), is solved for the

unknown potential and its derivative to give, and finally the

following c-values are obtained:

c1 ¼ 3; c2 ¼ 0: ð23aÞ

4.4 Case 4: H1,1=H0,0 with alternative 2

For approximation case 4 (H1;1=H0;0 with alternative 2), the

H1;1 approximation is again used to yield expressions for

the integral of the velocity profile, Eq. (23a). However,

now the H0;0 rule is applied to the integral of the Y-

derivative [Eq. (22a)]. Solving Eqs. (21b) , (23a) and (22a)

for the unknown potential and its derivative, yields after

simplification:

c1 ¼ 2; c2 ¼ � 1

2
: ð24Þ

5 Results and discussion

Now that the solution methodology has been presented,

friction factor results for different cross-section geometries

are presented. First, results are presented for comparing

results among different approximation schemes, which will

provide an indication of regions where each approximation

scheme is better suited for application. Then, a combina-

tion of the proposed schemes based on simple weighted

averaging is carried out for further improving the approx-

imation error.

5.1 Rectangular ducts

For rectangular ducts, the following explicit expressions

for the friction-factor are obtained:

f Re ¼ 32K3

ðK þ 2Þ2 ðK � tanhðKÞÞ
; for case 1; ð25aÞ

f Re ¼ 24K3
ffiffiffi
3

p

ðK þ 2Þ2
K

ffiffiffi
3

p
� 2 tanh K

2

ffiffiffi
3

p� 	� 	 ; for case 3:

ð25bÞ

The results of these approximations are then compared

with two literature results. First, the exact analytical
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solution to the problem, which is readly available for these

types of ducts using the Classical Integral Transform

Technique [22], is given by:

f Re ¼ 24

1
K
þ 1

� 	2
1 � 192

p5 K

X1
n¼1;3;...

tanh n pK
2

� 	
n5

 !�1

; ð26Þ

Then, an approximation for the solution, given by Shah

and London [23]:

f Re

24
¼ 1 � 0:2537K5 þ 0:9564K4 � 1:7012K3

þ 1:9467K2 � 1:3553K: ð27Þ

The results calculated for the two type of approximations

are presented in Fig. 2, where the exact solution corre-

sponds to Eq. (26) and that of reference [23] to Eq. (27), in

which these two solutions overlap each other. As can be

seen, case 3 (H0;0=H1;1) presents better results than case 1

(H0;0=H0;0), having a maximum relative error of almost

7%. It should also be noted that the error is not uniform,

having an average value of about 6.1% for case 1 and 3.6%

for case 3.

As an attempt to further improve the results, a combi-

nation of the H0;0=H1;1 and H0;0=H0;0 approximations is

proposed. The combination is based on a weighted average

in the following form:

ðf ReÞimp: ¼ f Reð Þcase 1þ
f Reð Þcase 3� f Reð Þcase 1

K
; ð28Þ

which yields the solution of case 1 for K ¼ 0 and the

solution of case 3 for K ¼ 1. Although it may appear that

this solution would lead to an infinite value of f Re for

K ¼ 0, this does not occur because at this position cases 1

and 3 yield the exact same result such that the second term

in expression (28) is zero. The results of the proposed

approximation are examined by plotting the relative errors

in magnitude j�j, shown in Fig. 3.

As can be seen from this figure, the error of the com-

bined approximation scheme is just a little over four per-

cent for the worst-case scenario, and it is always smaller

than any of the other approximation cases, being clearly a

better alternative.

5.1.1 Triangular ducts

For triangular ducts, a different expression for each

approximation case is readily obtained for f Re in terms of

the polygon angle w by substituting the c-values in

Eq. (19). The data are then compared with results pre-

sented by Shah and London [23], as displayed in Fig. 4.

Naturally, the data for 0� and 90� are limiting cases in

which the duct ceases to have an actual triangular form.

As one can observe, case 1 (H0;0=H0;0) cannot yield a

good approximation for triangular ducts. On the other

hand, case 3 (H1;1=H0;0) gives a satisfactory results for

angles ranging from 55� to 90�, but looses accuracy for

smaller angles. For triangular profiles with smaller angles

(w� 30�) cases 2 (H0;0=H0;0) and 4 (H1;1=H0;0) provide a

good approximation.

Fig. 2 Variation of friction factor in rectangular duct with aspect ratio

Fig. 3 Relative error in friction factor for rectangular duct for

different approximation schemes

Fig. 4 Variation of friction factor in triangular duct with angle
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From the presented results, it is clear that a weighted

average between cases 3 and 4 can be proposed. Case 4 is

chosen instead of case 2 for maintaining the same type of

Hermite approximation. By combing these cases in a way in

which cases 3 dominates for large angles and case 4 dom-

inates for small angles a more uniform smaller error should

be obtained. The proposed combination is written as:

ðf ReÞimp: ¼ f Reð Þcase 3

w

p



2

 !
þ f Reð Þcase 4 1 � w

p



2

 !
;

ð29Þ

The relative error of this approximation is compared with

that of the previous cases (only case 3 and 4), where the

data from [23] was interpolated for calculating the error.

The comparison can be seen on Fig. 5, which clearly shows

a major improvement from using Eq. (29). With this

approximation, the maximum error is below 3%, which is

significantly smaller than that obtained for cases 3 and 4.

5.2 Trapezoidal ducts

The results for trapezoidal cross-section ducts are presented

in Figs. 6 and 7, for various aspect ratios and trapezoid

angles, using all four approximation alternatives. In order to

analyze the trapezoidal profiled duct, exact solutions using

the Generalized Integral Transform Technique (GITT)

obtained from [24] were used for comparisons.

Figure 6 presents the variation of the friction factor with

the trapezoid aspect ratio K for different angles. As can be

seen, up to 75�, approximation cases 2 and 4 yield better

results than the remaining cases, which shows the inade-

quacy of using the approximation alternative 2 for smaller

angles. For larger angles, case 3 give reasonable results,

which are in fact better than those for case 4. For instance,

when w ¼ 85� case 4 moves away from the other curves,

yielding the worst result, which shows that the combination

of the H1;1=H0;0 approximation with approximation alter-

native 2 is not a good choice for large angles.

The next results, examine more closely the dependence

of the friction factor on the trapezoid angle, by plotting

f Re versus w for different aspect ratios, as presented in

Fig. 7. These results demonstrate that for very small aspect

ratios (K ¼ 0:01), all approximation cases yield similar

results – all of which are in very good agreement with the

literature data. However, as K is increased up to 0.5, all

approximations tend to generally overpredict the friction

factor, with case 4 yielding the better results. Nevertheless

for K ¼ 0:25 case 4 already starts to exhibit an unsuited

behavior for larger angles; this tendency is amplified as the

aspect ratio is further increased. This seems suggests that

approximation alternative 1 is better suited for smaller

angles. This observation is confirmed when one notices that

the cases with the H0;0=H0;0 approximation also give better

results for smaller angles with the approximation alterna-

tive 1; for instance, case 2 is much better than case 1 for

smaller angles.

With the previous observations in mind, as similarly

done for the previous types of ducts, a combined approx-

imation is proposed. The adopted strategy is similar to the

one used for the triangle; however, due to the unsuit-

able behavior case 4 presents for large angles, case 2 and 3

are combined:

ðf ReÞimp:1 ¼ f Reð Þcase 3

w

p



2

 !
þ f Reð Þcase 2 1 � w

p



2

 !
:

ð30Þ

Although it is verified that first improvement provides a

smaller error for larger aspect ratios, for smaller aspect

ratios approximation case 2 is generally a better choice.

Hence, a second improved formula is proposed, based

again on a simple weighted average of the two limits:

ðf ReÞimp:2 ¼ f Reð Þcase 2 ð1 � K2Þ þ ðf ReÞimp:1 K
2: ð31Þ

The results of using the improved expressions are presented

in Fig. 8, which displays the relative error of the employed

approximations compared with that of cases 2, 3 and 4.

The error of case 1 is generally larger than all these

cases and therefore is not presented. As can be seen from

this figure, the combined improved approximation schemes

yield a much better homogeneous error behavior. Also, as

previously anticipated, the results show that the first

improved case, as given by Eq. (30), yields results that

have a worse error when compared to approximation case

2. However, with the second improved approximation

[Eq. (31)], is kept under 3% for most values of K and w.

For smaller aspect rations (i.e. 0.25), the error becomes

higher (about 5%), as all approximations cases move away

from the exact solution.
Fig. 5 Relative error in friction factor for triangular duct for different

approximation schemes
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6 Conclusions

This paper presented an alternative approach for calculat-

ing friction-factor in steady laminar fluid flow in ducts of

different polygonal cross-sections. An approximate

analytical methodology, based on the coupled integral

equations approach (CIEA) was utilized. Closed form

analytical expressions were obtained for Fanning’s friction

factor, for various combination of polygon angles and

aspect ratios. Results for four different approximation cases

Fig. 6 Variation of friction factor in trapezoidal duct with aspect ratio for different angles
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were presented, consisting of a combination of two levels

of approximations and two approximation alternatives. The

data was compared with previously published results, and

an error analysis showed that some cases have better per-

formance (smaller error) than others. In addition, the

results showed that different approximation alternatives

lead to larger errors for different values of the polygon

angle. This non-uniform error distribution was corrected by

employing a simple combination of approximation cases

based on simple weighted averaging schemes, leading to

Fig. 7 Variation of friction factor in trapezoidal duct with angle for different aspect ratios
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improved relations for calculating the friction-factor. The

results of the improved schemes were able, in some cases,

to maintain the maximum error under 3% in magnitude,

which is generally acceptable for engineering applications.
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8. Reis MCL, Macêdo EN, Quaresma JNN (2000) Improved

lumped-differential formulations in hyperbolic heat conduction.

Int Commun Heat Mass Transf 27(7):965–974

9. Jian Su (2004) Improved lumped models for transient radiative

cooling of a spherical body. Int Commun Heat Mass Transf

31(1):85–94

10. Ruperti NJ, Cotta RM, Falkenberg CV, Su J (2004) Engineering

analysis of ablative thermal protection for atmospheric reentry:

improved lumped formulations and symbolic-numerical compu-

tation. Heat Transf Eng 25(6):101–111

11. Dantas LB, Orlande HRB, Cotta RM (2007) Improved lumped-

differential formulations and hybrid solution methods for drying

in porous media. Int J Therm Sci 46(9):878–889

12. Ge Su, Tan Zheng, Jian Su (2009) Improved lumped for transient

heat conduction in a slab with temperature-dependent thermal

conductivity. Appl Math Model 33(1):274–283

Fig. 8 Relative error in friction factor for trapezoidal duct for different approximation schemes

76 Page 10 of 11 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:76

123



13. Tan Z, Su G, Su J (2009) Improved lumped models for combined

convective and radiative cooling of a wall. Appl Therm Eng

29(11–12):2439–2443

14. An C, Su J (2011) Improved lumped models for transient com-

bined convective and radiative cooling of multi-layer composite

slabs. Appl Therm Eng 31(14–15):2508–2517

15. Keshavarz P, Taheri M (2007) An improved lumped analysis for

transient heat conduction by using the polynomial approximation

method. Heat Mass Transf 43(11):1151–1156

16. Sadat H (2005) A general lumped model for transient heat con-

duction in one-dimensional geometries. Appl Therm Eng

25(4):567–576

17. Sadat H (2006) A second order model for transient heat con-

duction in a slab with convective boundary conditions. Appl

Therm Eng 26(8):962–965

18. Sphaier LA, Jurumenha DS (2012) Improved lumped-capacitance

model for heat and mass transfer in adsorbed gas discharge

operations. Energy 44(1):985

19. An Chen, Jian Su (2013) Lumped parameter model for one-di-

mensional melting in a slab with volumetric heat generation.

Appl Therm Eng 60(1–2):387–396

20. Underwood CP (2014) An improved lumped parameter method

for building thermal modelling. Energy Build 79:191–201

21. An Chen, Jian Su (2015) Lumped models for transient thermal

analysis of multilayered composite pipeline with active heating.

Appl Therm Eng 87:749–759
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