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Chapter 2

Cross-correlation digital
particle image velocimetry -
a review

2.1 Introduction

The dream of experimental fluid dynamicists is to be able to measure complex,
three-dimensional turbulent flow fields globally with very high spatial and tem-
poral resolution. While we are still far from fully realizing this dream, significant
progress has been made towards this goal during the last two decades. Early
quantitative measurement methods using Pitot tubes, Venturi tubes and later
measurement methods, such as Hot Wire Anemometry (HWA) and Laser-Doppler
Anemometry (LDA), by their nature, were measurement methods that provided
instantaneous velocity signals at single-points through time (see Figure 2.1). As
can be seen from typical data such as those shown in Figure 2.1(a), early emphasis
in turbulence research and its theoretical advancement necessitated a statistical
description of turbulent flow fields, which relied heavily upon measurements pro-
vided by these single-point measurement techniques. Though useful, these statis-
tical single point descriptions could not give us a clear instantaneous picture of
what the fluid was doing globally, and how its instantaneous physics ultimately
result in the fluid’s statistical behavior.

Since the early seventies, the discovery of the existence of three-dimensional
coherent structures within turbulent flows (Brown and Roshko, 1974) (see Figure
2.1(b)) using qualitative flow visualization methods (i.e. shadowgraphs, Schlieren
systems, dye injection, etc) has been of significant interest for turbulence re-
searchers. While flow visualization techniques have been around since the days
of Prandtl, it is only recently that the advent of modern imaging, laser, and data
acquisition technology has allowed for qualitative flow visualization to become
quantitative. These advents have allowed for the development and advancement of

115
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Figure 2.1: Above: Single-point measurements at various locations of a turbulent
wake flow, Re=6500, x/d=28, y/d = a)0.87 b)2.25 c)3.4 d)4.2 (Tritton, 1988).
Below: Shadowgraph of a turbulent shear layer revealing several levels of large
coherent structures (Brown & Roshko, 1974).

a relatively new measurement technique, Particle Image Velocimetry (PIV), specif-
ically its digital implementation, which allows for the global measurements of two-
component velocities within a two-dimensional domain through time. Because of
its ability to provide global two-dimensional kinematic information was well as its
ability to map the evolution of coherent structures through time, PIV has become
a powerful tool in studying, understanding, and modeling fluid flow behavior. This
chapter is therefore dedicated to reviewing digital PIV, specifically its most widely
used implementation, the cross-correlation PIV. Section 2.3 presents a general de-
scription of 2D PIV, section 2.4 discusses the of cross-correlation PIV, Section
2.4.8 discusses sources of errors within PIV measurements, Section 2.4.16 dis-
cusses calculations of differentiable and integral flow properties from PIV velocity
data, Section 2.4.19 discusses outlier identification methods and Section 2.4.20 dis-
cusses advanced PIV methods. While PIV has become the dominant technique for
flow field measurements, recent new methods have emerged that are allowing fluid
mechanics experimentalists to interrogate and measure three-component veloci-
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ties within a three-dimensional domain through time. One of these methods, the
Three-Dimensional Defocusing Particle Image Velocimetry technique (3DDPIV)
technique, will be presented in section 2.5.

2.2 Two-dimensional particle image velocimetry
(2D PIV)

Particle Tracking Velocimetry (PTV), Laser Speckle Velocimetry (LSV), and Par-
ticle Image Velocimetry (PIV) all measure instantaneous flow fields by recording
images of suspended seed particles in flows at successive instants in time. An
important difference among the three techniques comes from the typical seeding
densities that can be dealt with by each technique. PTV is appropriate with “low”
seeding density experiments, PIV with “medium” seeding density and LSV with
“high” seeding density.

Historically, LSV and PIV techniques have evolved separately from the PTV
technique. In LSV and PIV, fluid velocity information at an “interrogation region”
is obtained from many tracer particles, and it is obtained as the most probable
statistical value. In PIV, a typical interrogation region may contain images of 10-
20 particles. In LSV, the particle densities are so large that individual particles are
not distinguishable. Consequently, the scattered light interfere to form speckles,
hence its name Laser Speckle Velocimetry. Correlation of either particle images or
particle speckles can be done using identical techniques. Hence, LSV and PIV are
essentially the same technique, used with different seeding density of particles.

In PTV, the acquired data is a time sequence of individual tracer particles in
the flow. In order to be able to track individual particles from frame to frame, the
seeding density needs to be small. Unlike PIV, PTV results in sparse velocity in-
formation located in random locations. Guezennec, Y. G. et al., for example, have
developed an automated three-dimensional particle tracking velocimetry system
that provides time-resolved measurements in a volume (Guezennec et al., 1994).

2.3 General description of 2D PIV

2.3.1 2D PIV setup

The principle layout schematic of a modern 2D PIV system is shown in Figure
2.2 (Raffel et al., 1998). First, the flow facility must be seeded with particles
that act as fluid tracers (section 2.3.2). A pulsed light source (most often a laser)
and its necessary optics used to generate a thin light sheet is used to illuminate a
cross-section of the seeded flow field (sections 2.3.3 and 2.3.4). A camera located
perpendicular to the light sheet is used to acquire global and sequential images of
the illuminated flow field (section 2.3.5). Electronic equipment is used to generate
and synchronize the laser pulsing with the camera’s frame rate timing sequence
(not shown), such that each image is singly exposed (section 2.3.5). Lastly, a
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data acquisition system (not shown) is used to record sequential images from the
camera.

Generally speaking, particle displacements are locally calculated from the ac-
quired images using a cross-correlation algorithm (sections 2.4, 2.4.8, 2.4.16, 2.4.19,
2.4.20). These displacements are then converted from the image pixelated do-
main to the spatial domain via a calibration procedure. Finally, the particle dis-
placements within the spatial domain are then divided by the time separation
between the laser pulses that singly exposed sequential images, i.e. velocity =
displacement/Δt, to provide the velocity field.

Figure 2.2: Principal layout of PIV system for typical wind or water tunnel appli-
cations (Raffel et al., 1998)

2.3.2 Seeding particles

A PIV image is generated from the seeding particles in the flow field. Typically
particles are added to the flow to have control over their size, distribution, and
concentration. For ease of use, these particles should be non-toxic, non-corrosive,
and chemically inert. They should also be small enough to be good flow tracers,
yet large enough to scatter sufficient light for imaging. As a first estimate to
particle motion in relation to fluid motion, it can be shown that the step response
of the particle velocity, Up, follows an exponential law (Merzkirch, 1974):

Up(t) = U

[
1− exp

(
− t

ts

)]
, (2.1)
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where ts is the relaxation time of the particle,

ts = d2
p

ρp

18μ
, (2.2)

where ρp is the particle density, dp is the particle diameter, and μ is the fluid
dynamic viscosity. Therefore, the smallest time scales of the fluid must be greater
than the particle’s relaxation time, if the particle is to accurately represent the
local fluid velocity.

In a detailed review paper, Melling (1997) presents a wide variety of tracer par-
ticles that have been used in liquid and gas PIV experiments, as well as methods of
generating seeding particles and introducing them into the flow. For gas flow ap-
plications, theatrical smoke, different kinds of atomized oils, glass micro-balloons,
titanium dioxide (TiO2), and aluminum oxide (Al2O3) have been used. Typical
theatrical smoke generators are inexpensive, and they generate plenty of particles.
Oil can be atomized using devices such as a Laskin nozzle, generating particles
in the micron to submicron range, which are particularly useful for high-speed
applications. Titanium dioxide (TiO2), and aluminum oxide (Al2O3) are useful
for high temperature applications such as combustion, and flame measurements.
For liquid flow applications, silver-coated hollow glass spheres, polymers, titanium
dioxide (TiO2), aluminum oxide (Al2O3), conifer pollen, and hydrogen and oxygen
bubbles are typically used. Most liquid applications of PIV are in recirculating
flow set-ups, so when concentrated particles in suspension are added to the flow,
homogeneous seeding is achieved in a short time. Many gas applications are also
in recirculating flow set-ups. However, for single pass-through systems, the task of
achieving homogeneous seeding at the test section is not trivial, and typically re-
quires upstream injection systems that can provide adequate mixing of the tracer
particles before they arrive into the area of interest.

2.3.3 Light sources

In the point measurement technique of LDA, the coherence property of lasers is
utilized to generate a fringe pattern at the measurement volume. For PIV, how-
ever, the laser’s coherence property is not a requirement for measurements; hence,
the lasers are used only as a source of bright illumination. In addition, PIV image
acquisition should be acquired using short light pulses to prevent particle image
streaking. Hence, pulsed lasers become obvious choices for PIV work. The most
commonly used laser in modern PIV systems is the Nd:YAG laser. Nd:YAG lasers
emit infrared radiation at 1064 nm, where for PIV applications, the frequency
is doubled to 532nm, green, to allow for particle illumination and reflection in
the visible spectrum. Presently, PIV Nd:YAG lasers can provide power from 12
mJ to 1000 mJ per pulse. Pulse durations for PIV Nd:YAG lasers are typically
5-10 nanoseconds, with pulse frequencies in the range of 1-1000 Hz, with power
being inversely proportional to the pulse frequency. Pulse frequencies of 15 Hz
and 30Hz are most commonly used in order to be able to properly synchronize
with image acquisition cameras. As mentioned in section 2.3.1, cross-correlation
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PIV requires that each image be singly exposed. Therefore, to achieve a wide
range of pulse separations, two separate laser cavities are used where the laser
pulses can be adjusted with respect to each other using appropriate electronics
equipment. These lasers, typically called dual lasers, are housed into a single unit,
containing beam combining optics, frequency doubler, alignment optics, and an
infrared beam dump. This setup allows the two laser pulses to be superimposed,
and manipulated thereafter with the same optics (see Figure 2.3).

Figure 2.3: Dual-cavity Nd:YAG laser with resonators and beam combining optics
(Raffel et al., 1998).

2.3.4 Light sheet optics

Fiber optics are commonly used for delivering Argon-Ion beams conveniently and
safely. Single-mode polarization preserving fibers can be used for delivering up to
1 Watt of input power, whereas multi-mode fibers can accept up to 10 Watts.

Figure 2.4: Example of a typical light sheet generating optical setup (Maheo, 1998)
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The short duration high power beams from pulsed Nd:YAG lasers can instantly
damage optical fibers. Hence, the most standard methods generate a laser sheet
by using laser optics. The variables to control in generating the light sheet in
relation to the location of the laser with respect to the experimental setup are its
spreading angle and its thickness, or its “beam waist”. There are many ways to
achieve proper control that include a variety of combinations of cylindrical and/or
spherical lenses. A typical setup, for example as used by Maheo (1998) employing
3 cylindrical lenses, is shown in Figure 2.4. In this example, the first lens is a
diverging cylindrical lens that is used to spread the beam into a sheet. The second
and third lenses are used to control the location of the beam’s waist. To do this,
second and third lenses, converging and diverging, respectively, and both rotated
90 degrees with respect to the first lens, are used. Then, varying the distance
between the second and third lens will allow for the adjustment of the beam’s
waist’s location.

2.3.5 Image acquisition CCDs

Cross-correlation cameras have become the preferred method of acquiring images.
The cross-correlation cameras use high-performance progressive-scan frame inter-
line CCD chips. Such chips include m x n light sensitive picture elements (pixels)
and an equal number of storage cells (blind cells). The first laser pulse exposes
the first frame, which is transferred from the light-sensitive cells to the storage
cells immediately after the laser pulse (at the time of this publication, this trans-
fer time can be done as short as 200 ns). The second laser pulse is then fired to
expose the second frame (see Figure 2.5). The storage cells now contain the first
camera frame of the pair with information about the initial positions of seeding
particles. The light-sensitive pixels contain the second camera frame, which has
information on the final positions of the seeding particles. Using a framegrabber,
these two image frames are then transferred sequentially from the camera onto the
computer’s RAM memory or its hard drive.

Figure 2.5: Timing diagram showing asynchronous laser pulsing in relation to the
camera’s frame rate (Gharib te al., 2000).
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Cross-correlation CCD cameras are available with resolutions up to 2672 x 4008
pixels, and framing rates from 4.85 Hz to as high as 1KHz, with the framing rate
being inversely proportional to the resolution. It should be pointed out, however,
that the higher the CCD resolution, the slower the frame rate becomes. 8-Bit
digitization has been shown to be sufficient for most purposes (Raffel et al., 1998).
Flow fields with velocities ranging from micrometers per second to supersonic
speeds can be studied since inter-frame time separations down to few hundred
nanoseconds can be obtained. One interesting option of these cameras is that
they can be asynchronously reset. This is particularly useful in conjunction with
the special triggering options for synchronizing measurements to external events,
such as rotating machinery.

2.4 Fundamentals of cross-correlation particle im-
age velocimetry

The historical development of PIV can be found in a series of papers archived in
the SPIE Milestone Series Volume 99 (Grant, 1994), which include many founda-
tional and fundamental works including Willert and Gharib (1991); Adrian (1991);
Lourenco et al. (1989); Westerweel (1993). A fairly recent book, Particle Image
Velocimetry - A Practical Guide, and paper by Westerweel, Fundamentals of Dig-
ital Particle Image Velocimetry (Westerweel, 1997), are also excellent sources of
information on the fundamental aspects of PIV. Detailed derivations of the sta-
tistical description of cross-correlation PIV have been provided by Adrian (1984,
1988; Keane and Adrian, 1992), Westerweel (1993, 1997), and Raffel et al. (1998).
Below, the main results of these works are presented.

2.4.1 A visual representation of the cross-correlation con-
cept

Visually, the correlation concept can be shown using Figure 2.6 (Gharib te al.,
2000). Figure 2.6(a) and Figure 2.6(b) show instantaneous images taken from a
particle field at two consecutives time, with a time separation of Δt. If the second
particle field is translated horizontally, superposition of the translated image with
the first (Figure 2.6(c)) allows for visual detection of horizontal particle motions.
Likewise, if the second particle field is rotated, superposition of the rotated image
with the first (Figure 2.6(d)) allows for visual detection of rotating motions.

To obtain a quantitative two-dimensional vector field from such images, particle
images must be systematically interrogated. To do so, these recorded images are
sampled using an interrogation window (see Figure 2.7, left), the dimensions of
which determine the spatial resolution of the measurement. The interrogation
regions can be adjacent to each other, or more commonly, have partial overlap
with their neighbors that will allow for increased spatial resolution. The shape of
the interrogation regions can deviate from square to accommodate flow gradients.
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Figure 2.6: a and b are sample particle images. By translating a with respect to
b and overlaying the two, a simulated translational shift is obtained and shown
in c. By rotating a with respect to b and overlaying the two, a rotational shift is
obtained and shown in d (Gharib et al., 2000).

Historically, two PIV methods have been developed, first an autocorrelation
method was developed, which was then followed by a cross-correlation method.
The auto-correlation method required that the images be doubly exposed, while
the cross-correlation required that the images be singly exposed. The displacement
information is then obtained once the correlation peak is determined using either
of these methods. This analysis technique has been developed for photography-
based PIV, since it was not possible to advance the film fast enough between the
two exposures. The auto-correlation function of a doubly-exposed image has a
dominant central peak, and two symmetric side peaks. This poses two problems:
(1) although the particle displacement is known, there is an ambiguity in the flow
direction, (2) for very small displacements, the side peaks can partially overlap with
the central peak, limiting the measurable velocity range. In order to overcome the
directional ambiguity problem, image shifting techniques using rotating mirrors
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(Landreth and Adrian, 1988; Landreth et al., 1988) and electro-optical techniques
(Landreth and Adrian, 1988; Landreth et al., 1988; Lourenco, 1993) have been
developed. To leave enough room for the added image shift, larger interrogation
regions are used for auto-correlation analysis. By displacing the second image at
least as much as the largest negative displacement, the directional ambiguity is
removed. This is analogous to frequency shifting in LDA systems to make them
directionally sensitive.

Due to these complications and to the fact that dual-cavity lasers have allowed
for very small pulse separations (see section 2.3.3), the preferred method in PIV
presently is to singly expose images, and perform cross-correlation analysis, such
as that as shown in Figure 2.7. First, image subsamples, f(i, j) and g(i, j), are
extracted at the same location within the images using an interrogation window
(Figure 2.7(a)). Then, a cross-correlation procedure is performed on these two
interrogated regions. Figure 2.7(b) shows an FFT cross-correlation algorithm,
however, a direct cross-correlation procedure can also be used (see section 2.4.6).
This procedure results in a cross-correlation distribution with the pixel domain
within the interrogated regions with a dominant peak corresponding to the shift of
the particles, (see Figure 2.7(c) 0 and Figure 2.12) designated by (dx, dy). Lastly,
the pixel shift (dx, dy) is converted into a velocity through calibration parameters
(see Figure 2.7(d)). Details of these steps from a theoretical foundation to practical
implementation are described in the following sections.

Figure 2.7: Cross-correlation data processing procedure using an FFT algorithm
a an interrogation window subsamples the main sequential image pairs; b a cross-
correlation procedure is performed, in this case, an FFT implementation is shown;
c within the cross-correlation domain, the peak’s location corresponding to the
average shift of particles within the interrogation windows is identified; d this
shift is converted to physical space, providing a velocity vector

2.4.2 Statistical description of cross-correlation particle im-
age velocimetry

Before discussing the presently used cross-correlation analyses methods, it is im-
portant that a theoretical foundation is established. First, the tracer particle en-
semble cross-covariance in physical three-dimensional space is presented. As these
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tracer particles are then imaged onto a two-dimensional domain, i.e. the CCD,
the two-dimensional spatial ensemble cross-covariance of the projected tracer par-
ticles onto the two-dimensional domain is presented. Finally, several optimization
considerations are discussed.

2.4.3 Tracer particle ensemble cross-covariance in physical
space

The statistical description of fluid tracer particles is given by studying the ensemble
of all possible tracer particle distributions, G( �X, t), for a given flow field, u( �X, t),
where the tracer particle distribution within the physical spatial domain, �X, at
time t is defined to be

G( �X, t) =
N∑

i=1

δ
[

�X − �Xi(t)
]

(2.3)

where N is the total number of particles within the domain of interest, δ( �X) is the
direct function, and �Xi(t) is the position vector of the i-th particle at time t, so
that the integral of G over a volume yields the total number of particles within the
volume. The particle distribution given in Equation (2.3) can also be represented
in vector form as

�Γ =

⎛
⎜⎜⎜⎝

�X1(t)
�X2(t)
...

�XN (t)

⎞
⎟⎟⎟⎠ (2.4)

In order to measure similarities between particle distributions at two different
times, the ensemble cross-covariance is considered and defined as:

RG′G′′( �X ′, �X ′′) =
〈
G′
(

�X ′
)

G′′
(

�X ′′
)〉
−
〈
G′
(

�X ′
)〉〈

G′′
(

�X ′′
)〉

, (2.5)

where 〈.〉 symbolizes the ensemble average. The ensemble mean of G
(

�X, t
)
and

G′
(

�X ′, t
)
G′′
(

�X ′′, t
)
are given by

〈
G
(

�X, t
)〉

=
∫

G
(
�Γ
)

ρ
(
�Γ
)

d�Γ,

〈
G′
(

�X ′, t
)

G′′
(

�X ′′, t
)〉

=
∫ ∫

G′
(

�Γ′
)

G′′
(

�Γ′′
)

ρ
(
�Γ′|�Γ′′

)
d�Γ′d�Γ′′, (2.6)

where ρ (�Γ) is the probability density function for �Γ, and ρ (�Γ′|�Γ′′) is the condi-
tional probability density function for �Γ′′ given the initial state �Γ′. For a homo-
geneous tracer particle distribution, where the number density of the particles, C,
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is constant, 〈
G′
(

�X ′, t
)〉

=
〈
G′′
(

�X ′′, t
)〉

= C,〈
G′
(

�X ′, t
)

G′′
(

�X ′′, t
)〉

= Cδ
[

�X ′′ − �X ′ − �D
]
+ C2, (2.7)

where �D
(

�X; t′, t′′
)
is the displacement of the tracer particle during the time in-

terval [t′, t′′] . The ensemble cross-covariance thus reduces to

RG′G′′( �X ′, �X ′′) = Cδ
[

�X ′′ − �X ′ − �D
]

(2.8)

2.4.4 Spatial ensemble cross-covariance in projected 2D do-
main

It is important to realize that Equations (2.4 )and (2.8) give the cross-covariance of
particle distributions in the physical spatial domain, �X, thereby not making them
directly applicable to images obtained from these particle distributions. Neverthe-
less, to develop a cross-covariance expression for PIV images, the imaging process
must be first considered. As described in section 2.3.1, a laser sheet is generated,
and used to illuminate a cross-section of the flow, which has been previously seeded
with tracer particles. This light sheet will have a thickness, ΔZ0, typically with
a Gaussian intensity profile within the depth of the sheet (see Figure 2.8). The
laser sheet is assumed to be uniform in its plane, and the image acquisition optics
are assumed to be aberration-free circular lenses with a given numerical aperture
F#. The particles’ images are assumed to be in focus, which is valid if the sheet
thickness is less than the imaging depth of field (Adrian, 1991).

The imaging process projects the particles’ reflected illumination onto the pla-
nar image domain, �x = (x, y), i.e. the CCD, and is represented mathematically
as

g (�x, t) =
1
Iz

∫
I0 (Z)G

(
�X, t
)

dZ, (2.9)

where x=MX, y=MY, M is the image magnification, and I0(Z) is the light sheet
intensity profile with a maximum Iz, whereby it is assumed that tracer parti-
cle projections onto the image domain involves only an integration along the Z-
coordinate. The tracer particles’ image on the image domain can be represented
by a point-spread function, t(x,y), such that the image intensity I(x,y), for particle
tracer densities sufficiently low that do not allow particle overlap to occur, can be
represented by

I (x, y) = Iz

∫ ∫
t (s− x, t− y) g (s, t) dsdt (2.10)

Using the definition given in Equation (2.5), the image ensemble cross-covariance,
i.e. I (�x, t′) and I (�x, t′′), can be reduced to

RII (�s) = F0 (ΔZ) .RI .δ (�s− �sD) (2.11)
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Figure 2.8: Three-dimensional volume representing the laser light sheet illumina-
tion and the particles illuminated within this light sheet (Westerweel, 1997)

where

RI (�s) = CΔZ0M
−2I2

z t20Ft (�s)

t0 =
∫ ∫

t (x, y) dxdy

Ft (x, y) =
1
t20

∫ ∫
t (u, v) t (u+ x, u+ y) dudv,

F0 (ΔZ) =
∫

I0 (Z) I0 (Z +ΔZ) dZ∫
I2
0 (Z) dZ

(2.12)

�s = (x, y) and �sD = M. (ΔX,ΔY ) is the particle tracer displacement on the image
domain (Adrian, 1988). F0 (ΔZ) represents the loss of correlation due to tracer
particles’ motion perpendicular to the light sheet, t20 is the normalization to Ft, the
self-correlation of each tracer particle image, and RI is the image auto-correlation.

In implementation, ensemble averages of the flow field cannot be obtained
unless the flow is steady or periodic. Therefore, if spatial averaging is ergodic with
respect to ensemble averaging, the ensemble average can be replaced with spatial
averaging defined as

C (�s) =
∫ ∫

W ′ (�x) I ′ (�x)W ′′ (�x+ �s) I ′′ (�x+ �s) d�s. (2.13)
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If the tracer particle distribution is homogeneous, then ergodicity is satisfied, and
the spatial averaging can be written as

C (�s) = 〈C (�s)〉+ C ′ (�s) = C ′ (�s) +RD (�s) +RC (�s) +RF (�s) (2.14)

where 〈C (�s)〉 is the ensemble mean, C ′ (�s) is the fluctuating component with
respect to the ensemble mean, RD (�s) is the displacement correlation peak, RC (�s)
is the constant background correlation, and RF (�s) is the correlation between the
mean and fluctuating image intensities. These last two terms can be eliminated by
subtracting the mean image intensity from I ’ and I ”. The displacement correlation
peak is given by

RD (�s) = NIFIF0IZt20Ft ∗ δ (�s− �sD) , (2.15)

where * denotes a convolution operation, NI = CΔZ0D
2
I/M2 is the image density,

D2
I is the area associated with the interrogation window, and

FI (�s) =
1

D2
I

∫
W ′ (�s)W ′′ (�x+ �s) d�s. (2.16)

It is important to realize that the spatial correlation resulting in Equation (2.15)
correlates particles that are within two finite domains, W’ and W”. As such, due
to the flow, tracer particles can leave and enter these interrogation domains such
that not all particles within the first interrogation domain, W ’, will exist in the
second interrogation domain, W ”. The portion of the area coincident to both
interrogation domains that contain images of the same tracer particles is denoted
by Equation (2.16), and is pictorially shown in Figure 2.9. This term therefore
represents the loss of correlation in the spatial cross-correlation, Eq.(2.15), due to
in-plane loss-of-pairs, and is the only difference between the ensemble correlation
and the spatial correlation.

Figure 2.9: The number of particle-image pairs that can be contained in an inter-
rogation region is reduced for increasing displacement (Westerweel, 1997)

2.4.5 Optimization considerations

The spatial cross-correlation derived above is best suited for capturing transla-
tional motion. For such motions, the resulting cross-correlation produces a near
delta-function peak within the cross-correlation domain. However, any deviation
from translational motion, i.e. rotation and/or shear, causes a broadening of the
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peak distribution, as well as a reduction in its peak value. If the velocity differences
(due to shear and/or rotation) within the interrogation volume are small with re-
spect to the width of the interacting interrogation windows, then the displacement
field will be sufficiently uniform.

Figure 2.10: The displacement-correlation peak is skewed (Westerweel, 1997).
RI′I′′ represents tracer particle ensemble cross-covariance.

While tracer particles’ motion creates unpaired particle images within the two
interrogation volumes that broaden the cross-correlation peak, it also shifts the
peak value towards slightly lower displacement values (see Figure 2.10). This bias
occurs for even the most basic motions, such as uniform flows, and is enhanced
when flow gradients exist. Fortunately, there are three solutions that can eliminate
this problem. The first is to divide the correlation by FI (Westerweel, 1993)]. The
second is to use different size interrogation windows such that FI will be constant
within its central portion, thus preventing any biasing (Keane and Adrian, 1992).
This can be seen in the middle and bottom drawings of Figure 2.11. The third
way is to shift one of the two interrogation windows an amount equal to the
tracer particles’ displacement, and in so doing, capture all tracer particle images
common to both interrogation windows (Westerweel et al., 1997). This can be
seen in the top drawing of Figure 2.11, where the peak of FI would coincide with
the cross-correlation peak.

To further ensure displacement measurement accuracy, it is important that the
correlation peak, RD, be strong with respect to the fluctuating correlation, C ′, see
Equation (2.14). In this respect, NIFIFO, which represents the effective tracer
particle image pair density within the interrogation region, should be maximized.
Keane and Adrian (1992) suggest that for high intensity images

NIFIFO > 7 and FI = FO = 1, (2.17)

M |Δu|Δt/DI < 0.03, (2.18)

M |Δu|Δt/dτ < 1, (2.19)
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Figure 2.11: The effect of using differently sized interrogation windows on FI

(Westerweel, 1997).

where M is the image magnification, Δu is the velocity difference within the
interrogation window, Δt is the time separation between image exposures, and dτ

is tracer particle image diameter. Following the procedures above, FI can be easily
maximized to unity. Furthermore, Equations (2.18), (2.19) provide constraints
on the velocity gradients that can be tolerated within an interrogation window.
Lastly, since FO (Equation (2.12)) represents the loss of correlation due to tracer
particles’ motion perpendicular to the light sheet, it is important that out-of-plane
tracer particles’ displacements be less than one-quarter of ΔZ (Westerweel, 1997).

2.4.6 Digital implementation of cross correlation particle
image velocimetry

Due to the nature of a CCD camera, once an image is acquired, it is pixilated and
therefore discretized. The intensity value of each pixel is read through an analog-
to-digital converter, and is therefore quantized; typically with an 8-bit converter for
a total of 256 (28) quantized levels. The discretized cross-covariance can therefore
be mathematically expressed within a discrete domain as (Westerweel, 1993),17]

C(r, s) =
1

M ∗N

M∑
m=1

N∑
n=1

[
f(m,n)− f̄

]
[g(m+ r, n+ s)− ḡ ] , (2.20)
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where f(m,n) and g(m,n) represent the first and second subsampled images,
respectively, M and N represent the number of rows and columns within the
images, C(m,n) represents the discretized correlation function, (r, s) represents
the location at which the correlation is calculated, and f and g represent the
mean image intensity of the interrogation windows, f and g, respectively. Its
corresponding in-plane loss-of-pair term is

FI [r, s] =
(
1− |r|

M

)(
1− |s|

N

)
, (Westerweel, 1993), 17] (2.21)

which, per section 2.4.5, can then be used to divide the cross-covariance (Equation
(2.20)) in order to obtain an unbiased displacement measurement. Willert (Raffel
et al., 1998; Willert, 1996) also suggests using another discretized cross-covariance
description that inherently accounts for the in-plane loss-of-pair term:

C(r, s) =
CII(r, s)√

σI(r, s)
√

σII(r, s)

CII(r, s) =
M∑

m=1

N∑
n=1

[
f(m,n)− f̄

]
[g(m+ r, n+ s)− ḡ(r, s)]

σI(r, s) =
M∑

m=1

N∑
n=1

[
f(m,n)− f̄

]2

σII(r, s) =
M∑

m=1

N∑
n=1

[g(m+ r, n+ s)− ḡ(r, s)]2

(2.22)

where g(r, s) is the average of g coincident with the interrogation window, f .
To relieve the heavy computation burden, Willert and Gharib (1991) have

suggested using fast Fourier transforms (FFT) to significantly speed up the cross-
correlation calculations, since doing so would reduce the number of computational
operations for each interrogated region from N4 to N2 log2 N . This procedure is
outlined in Figure 2.7. Furthermore, computational efficiency can be further in-
creased by using the symmetry properties of real-valued images, which state that
the real part of an FFT is symmetric, while its imaginary part is anti-symmetric.
Once the cross-correlation peak is determined, the interrogation window systemat-
ically interrogates the rest of the image pair, thereby providing a two-dimensional
vector field.

2.4.7 Classical sub-pixel peak finding methods

As the image domains are discretized, Equations (2.20) and (2.22) shows that the
discretized cross-correlation domain will exist only at integer values (see Figure
2.12). This means that the peak value within the cross-correlation domain, corre-
sponding to the particle shifts within the interrogated region, is at best measured
to an integer value, with an uncertainty of ±1/2 pixel. While this may not seem
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significant, it is important to realize that, for example, for window sizes of 32 x
32, and maximum particle shifts of 1/3 of the window size, the uncertainty of
a maximum particle shift of 10 pixels, is at best 5%. Given that vorticity and
strain rates are differentiably calculated from the velocity (see section 2.4.8), their
uncertainties will be about 10%, which is unacceptable. As such, methods were
developed to obtain sub-pixel accuracy.

Figure 2.12: Sample cross-correlation peak showing single dominant peak corre-
sponding to the magnitude and direction of particle shifts (Willert and Gharib,
1991)

Initially, centroiding, defined as the ratio of the first order moment to the zeroth
order moment, was used, which required the correlation domain to be thresholded
in order to define the region containing the correlation peak (Alexander and Ng,
1991). Unfortunately, this method strongly biased the displacement measurements
towards integer values, creating a severe peak-locking effect on processed data (see
Figure 2.13) (Westerweel, 1997; Westerweel et al., 1996). Fortunately, more robust
approaches were also developed, which curve-fitted the maximum peak and its two
side-peaks, separately in both the x- and y- directions, with a function, in order to
obtain sub-pixel accuracy. Typically, these three-point estimating curve-fits have
been either parabolic or Gaussian, with Gaussian being the more frequently used
(see Table 2.1) function. Its frequent use has been justified, since the particle
images, well approximated by Gaussian intensity distributions, when correlated
also result in a Gaussian intensity distribution as well. Its estimation is therefore
much better predicted using a Gaussian curve fit, rather than a parabolic curve
fit, which has been also been shown through calibration experiments (Lourenco
and Krothapalli, 1995). Furthermore, its peak-locking effect (see section 2.4.8) is
dramatically reduced (see Figure 2.13).



2.4. Fundamentals of cross-correlation particle image velocimetry 133

C
u
rv

e-
F
it

ti
n
g

F
u
n
ct

io
n

T
h
re

e-
P
oi

n
t

E
st

im
at

or
s

P
e
a
k

C
e
n
tr

o
id

x
0
=

(i
−

1
)R

(i
−

1
,j

)
+

iR
(i

,j
)
+

(i
+

1
)R

(i
+

1
,j

)

R
(i
−

1
,j

)
+

R
(i

,j
)
+

R
(i

+
1

,j
)

f
(x
)
=

1
s

t
o
rd

e
r

m
o
m

e
n
t

2
n

d
o
rd

e
r

m
o
m

e
n
t

y 0
=

(j
−

1
)R

(i
,j
−

1
)
+

j
R

(i
,j

)
+

(j
+

1
)R

(i
,j

+
1
)

R
(i

,j
−

1
)
+

R
(i

,j
)
+

R
(i

,j
+

1
)

P
a
ra

b
o
li
c

x
0
=

R
(i
−

1
,j

)
−

R
(i

+
1

,j
)

2
R

(i
−

1
,j

)
−

4
R

(i
,j

)
+

2
R

(i
+

1
,j

)

f
(x
)
=

A
(x

0
−

x
)2
+

B
(x

0
−

x
)
+

C

y 0
=

R
(i

,j
−

1
)
−

R
(i

,j
+

1
)

2
R

(i
,j
−

1
)
−

4
R

(i
,j

)
+

2
R

(i
,j

+
1
)

G
a
u
ss

ia
n

x
0
=

ln
R

(i
−

1
,j

)
−

ln
R

(i
+

1
,j

)

2
ln

R
(i
−

1
,j

)
−

4
ln

R
(i

,j
)
+

2
ln

R
(i

+
1

,j
)

f
(x
)
=

A
ex
p
[ −(

x
0
−

x
)2

B

]
y 0
=

ln
R

(i
,j
−

1
)
−

ln
R

(i
,j

+
1
)

2
ln

R
(i

,j
−

1
)
−

4
ln

R
(i

,j
)
+

2
ln

R
(i

,j
+

1
)

T
ab
le
2.
1:

T
hr
ee
-p
oi
nt

es
ti
m
at
or
s
us
ed

to
ac
hi
ev
e
su
bp
ix
el
re
so
lu
ti
on
.
T
he

in
di
ce
s
(i

,j
)
co
rr
es
po
nd

to
th
e
sp
at
ia
l
lo
ca
ti
on

of
th
e
m
ax
im
um

lo
ca
ti
on

of
th
e
co
rr
el
at
io
n
va
lu
e
w
it
hi
n
th
e
co
rr
el
at
io
n
do
m
ai
n
(R
aff
el

et
al

.,
19
98
;
W
es
te
rw
ee
l,
19
93
).



134 2. Cross-correlation digital particle image velocimetry - a review

Figure 2.13: Histograms of the measured axial displacement (in pixels) in a tur-
bulent pipe flow using the centroid and Gaussian peak fit for the sub-pixel inter-
polation (Raffel et al., 1998; Westerweel, 1993).
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Figure 2.14: Bias error of horizontal displacements using 32 x 32 interrogation
windows (Lourenco and Krothapalli, 1995)

2.4.8 Sources of error

As with all experimental methods, PIV measurements are susceptible to error.
There are many parameters that affect the accuracy of PIV measurements: sub-
pixel peak fitting, tracer particle image diameter, tracer particle image intensity
distribution, window interrogation size, tracer particle image shift, quantization
effects, background noise, displacement gradients within an interrogation window,
and out-of-plane tracer particle motion. It is therefore important to be able to
understand how each of these variables affects the error, or uncertainty of PIV
measurements.

2.4.9 Effect of sub-pixel peak finding methods

Error analysis shows that the total error within a measurement can be expressed
as the sum of systematic or bias errors, εbiased, and random errors, which are
usually characterized as root-mean-square values, εrms:

εtotal = εbiased + εrms (2.23)

Using a photographic auto-correlation PIV system, Prasad et al. (1992). Have
shown that for fixed tracer particle image size, a bias error did exist, and was due to
the centroid sub-pixel peak finding method that was used (see Figure 2.14). Here,
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it can be clearly seen that the bias error is sinusoidal with respect to horizontal
pixel shifts, where the bias error is zero at every integer and 1/2 integer pixel
value.

In a detailed study of centroid, parabolic, Gaussian, and Whittaker (a trun-
cated sinc kernel) interpolation peak finding methods, Lourenco and Krothapalli
(1995) have shown that the Gaussian and Whittaker’s interpolation peak finding
methods were the most superior in performance (see Figure 2.15).

(a) parabolic (b) Gaussian

(c) Whittaker’s interpolation peak
finding algorithms

Figure 2.15: Actual vs. measured displacements (Lourenco and Krothapalli, 1995).

In a further study, Roesgen (2003) has suggested the use of the sinc function as
a subpixel interpolation kernel, based on its spectral shape. The spectral shapes
of various interpolation kernels are shown in Figure 2.16. In application to the
data set that is periodic in the spectral domain, it can be seen that the nearest
neighbor, linear, M ′4 (a kernel used to resample irregularly gridded data onto a
regular grid), and Whittaker kernels are either too wide, causing spectral leakage
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from the side lobes of the data spectrum, or are not constant over the desired
section of the data spectrum, causing filtering of the data. The spectrum of the
sinc interpolation kernel, however, shows that it is uniform over the desired section
of the data spectrum, avoiding any data filtration, and zero thereafter, preventing
any spectral leakage from any of the data’s spectral side lobes. This strongly
suggests that the sinc function would be a good choice for an interpolation kernel.

Figure 2.16: Spectral shape of different subpixel interpolation kernels (Roesgen,
2003)

Upon application to synthetic PIV images provided by the Visualization Soci-
ety of Japan (http://www.vsj.or.jp/piv/), the interpolation error was plotted as a
function of the sub-pixel shift (see Figure 2.17). It can be seen clearly that the sinc
interpolation kernel has almost non-existent interpolation errors, easily surpassing
the performance of the widely used Gaussian interpolation kernel.

Most recently, Nobach and Honkanen (2005) have revisited subpixel interpola-
tion kernels. Rather than implementing two one-dimensional interpolation kernels
(one in the x-direction and one in the y-direction), they suggest using a two-
dimensional 9-point Gaussian regression method (see Figure 2.18). Their results
as applied to particle images with and without noise are shown in Figure 2.19.
For the ideal case of images that are not noisy, the nine-point Gaussian regression
and the two 3-point interpolators behave identically for particle image diameters
larger than 4 pixels, since the particles are Gaussian shaped, and thus better
approximated by the Gaussian one-dimensional and two-dimensional regression
interpolators. For particle image diameters between 2-4 pixels, the extra particle
image values used towards the two-dimensional regression are sufficiently differ-
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Figure 2.17: Subpixel interpolation error for different interpolation schemes (Roes-
gen, 2003)

ent from a Gaussian regression that the introduced bias errors are non-negligible.
Also discovered was that while the two-dimensional Gaussian regression worked
perfectly for Gaussian shaped particle images or correlation peaks, if the particle
shapes differed from the Gaussian shape, the regression did not work that well.
To remedy this situation, the images were pre-processed with a low-pass Gaussian
filter, which reduced the noise as well as deformed the particle shape towards a
Gaussian profile. The results, also presented in Figure 2.19, show that for particle
diameters just over 4 pixels, the bias error is reduced significantly to almost 10−4

pixels. Noisy images unfortunately reduce the performance of the filtered regres-
sion algorithm almost by an order of magnitude, though it still outperforms the
two one-dimensional interpolation schemes for particle images larger than ∼ 2.2
pixels (see Figure 2.19(b)).

2.4.10 Effect of tracer particle image diameter

Using Gaussian interpolation peak finding methods, Raffel et al. (1998) performed
Monte Carlo simulations of translational tracer particle shifts using different par-
ticle diameters and interrogation window sizes, in order to determine their effects
on the measurement uncertainty. (see Figure 2.20). As is shown, the optimum
tracer particle image diameter that minimizes the measurement uncertainty is just
above 2 pixels, depending on the interrogation window size. It is also seen that
larger window sizes further reduce the measurement uncertainty, as more particles
within the interrogation window contribute to the cross-correlation peak.
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Figure 2.18: a One-dimensional three-point interpolation and b two-dimensional
Gaussian regression (Nobach and Honkanen, 2005)

Figure 2.19: Root mean square (RMS) bias of the one-dimensional three-point
interpolation and the two-dimensional Gaussian regression: a without noise and b
with simulated photon noise (Nobach and Honkanen, 2005).
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Figure 2.20: Measurement uncertainty (RMS random error) in digital cross-
correlation PIV evaluation with respect to varying particle image diameter. (Sim-
ulation parameters: FFT-based correlations, quantization level = 8 bits/pixel, no
noise, optimum exposure, top-hat light sheet profile, tracer particle image den-
sity=1/64 pixel−1) (Raffel et al., 1998)

Figure 2.21: “Peak locking” is introduced when the particle image diameter is
too small for the three-point estimator (simulation parameters identical to Figure
2.20) (Raffel et al., 1998)
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Figure 2.22: Monte Carlo simulation results using FFT-based correlations, for the
measurement uncertainty in digital cross-correlation PIV evaluation as a function
of particle image displacement (Raffel et al., 1998).

For particle image diameters smaller than the optimum diameter, the error
increases, since the displacements become biased towards integer values (see Figure
2.21) that result in the “peak locking” effect introduced in the previous section.
This indicates that the subpixel peak estimator, in this case the Gaussian peak
finder, is not suitable for use with these tracer particle image diameters, since such
particles are not Gaussian shaped. In fact, as can be seen from Figure 2.13, other
peak finding methods, such as the centroid peak finder, can perform even worse.

2.4.11 Effect of tracer particle image shift

In order to determine the effects of tracer particle image shifts, which had been
predicted in section 2.4, Raffel et al. (1998) performed Monte Carlo simulations
(see Figure 2.22) of translational tracer particle shifts showing that for particle
image shifts larger than 0.5 pixels, the measurement uncertainty grows linearly.
For the same tracer particle image diameter, it can be seen that larger windows
will result in a shallower slope since the larger window size will still capture more
particles in common to both interrogated windows that are cross-correlated. The
effect of the tracer particle image diameter can also be seen in Figure 2.22. Note
that the 2 pixel tracer particle image diameter results show a much lower uncer-
tainty, as well as a much shallower slope for tracer particle image shifts greater
than 0.5 pixels, confirming the results shown in Figure 2.20. Also interesting is
that for particle shifts less than 0.5 pixels, the measurement uncertainty is linear,
reducing to zero at zero shifts.

As predicted in section 2.4.5, the bias errors that result due to smaller portions
of the interrogation windows containing the same tracer particle images can be
corrected by dividing the correlation by FI (Westerweel, 1993). This has also
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Figure 2.23: Simulation results showing the difference between actual and mea-
sured displacement as a function of the particle image displacement. Bias cor-
rection remove the displacement bias (simulation parameters: FFT-based corre-
lations, dτ = 2.0, no noise, top-hat intensity profile, tracer particle image den-
sity=1/64 pixel−1) (Raffel et al., 1998)

been tested by Raffel et al. (1998), the results of which are shown in Figure 2.23
(Raffel et al., 1998). It can be seen that the corrected results have substantially
lower bias errors than the non-corrected results, thus verifying the predictions
made by theory.

2.4.12 Effect of tracer particle image density

As has been indicated previously, larger tracer particle densities will reduce the
measurement uncertainty. This has also been specifically tested using Monte Carlo
simulations of translational tracer particle shifts by Raffel et al. (1998), the results
of which are shown in Figure 2.24 (Raffel et al., 1998). It can be clearly seen here
that as the tracer particle image density increases from 5.2 to 32, the measurement
uncertainty, for particle image shifts greater than 0.5, reduces by almost a factor
of 3, from .04 to .015. As was also seen in Figure 2.22, for tracer particle image
shifts less than 0.5 pixels, the measurement uncertainty is shown to be linear.

It should be noted, however, that the tracer particle density is not the only pa-
rameter that would determine a high probability of detecting a valid displacement.
Other factors, such as the amount of in-plane displacement, FI , and the amount
of out-of-plane displacement, FI ,, also play a significant role, which has been ex-
pressed in Equation (2.17a). Towards this end, Raffel et al. have also performed
Monte Carlo simulations showing what the percent valid detection probability is
as a function of the effective particle image pair density, NIFIF0, for a variety of
tracer particle image densities, and interrogation window sizes (see Figure 2.25)
(Raffel et al., 1998). It is seen that for an effective particle image pair density
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greater than 7, the probability for detective valid displacements is greater than
95%. The theoretical Poisson distribution curves that describe the probability of
detecting at least a given number of tracer particle image pairs, P [n ≥ i], is also
shown. These theoretical curves show that detecting at least 3-4 particles matches
the simulations, suggesting that in practice, the experimental setup and processing
be optimized towards this end.

Figure 2.24: Measurement uncertainty for single exposure/double frame PIV as a
function of particle image shift for various particle image densities NI . (simula-
tion parameters: FFT-based correlations, dτ = 2.2 pixels, quantization level = 8
bits/pixel, 32 x 32 pixel interrogation window size, no noise, optimum exposure,
top-hat light sheet profile.) (Raffel et al., 1998)

2.4.13 Effect of tracer image quantization levels

Monte Carlo simulations of translational tracer particle shifts have been performed
by Raffel et al. to determine the effect of image quantization levels on the mea-
surement uncertainty (see Figure 2.26) (Raffel et al., 1998). These results show
that there is no difference in the measurement uncertainties for quantization levels
of 4 bits/pixel and 8 bits/pixel for particle image shifts greater than 0.4 pixels.
This implies that the noise due to the FFT-based correlation dominates. How-
ever, while it might be tempting to reduce image quantizations to 4 bits/pixel, it
should be noted that the measurement uncertainty using 8-bit quantization drops
by a factor of 5 as the particle image shift reduces to 0 pixels. As shown in section
2.4.11, by implementing the methods shown in section 2.4.5, it is possible to reduce
the bias error to near zero values, suggesting that using 8-bit CCD will allow for
further reduction of the measurement uncertainty. Any further reduction in quan-
tization level below 4 bits/pixel is detrimental, as the measurement uncertainties
increase by an order of magnitude.
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Figure 2.25: Vector detection probability as a function of the product of image
density, NI , in-plane loss of pairs, Fi, and out-of-plane loss of pairs, F0. The solid
line represents the probability for having at least a given number of particle images
in the interrogation spot (Raffel et al., 1998)

Figure 2.26: Measurement uncertainty for single exposure/double frame PIV as
a function of displacement and image quantization (simulation parameters: FFT-
based correlations, dτ = 2.2 pixels, NI = 10.2, 32 x 32 pixel interrogation window
size, no noise, optimum exposure, top-hat light sheet profile) (Raffel et al., 1998)
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2.4.14 Effect of background noise

Raffel et al. have also performed Monte Carlo simulations to determine the effect
of background noise on the measurement uncertainty (see Figure 2.27) (Raffel et
al., 1998). The simulations used a white noise distribution added to each pixel,
where the noise for each pixel was uncorrelated with its neighbors, or with its
companion image at the same pixel location. These results show that for noise
levels of up to 10%, the effect is negligible for particle image shifts greater than 0.4
pixels. However, there is noticeable change for particle shifts less than 0.4 pixels,
thereby suggesting that low noise CCDs are desirable if the particle shifts can be
reduced to less than 0.4 pixels (see sections 2.4.5 and 2.4.11).

Figure 2.27: Measurement uncertainty as a function of displacement and various
amounts of white background noise (simulation parameters: FFT-based correla-
tions, dτ = 2.2 pixels, NI = 10.2, 32 x 32 pixel interrogation window size, no noise,
optimum exposure, top-hat light sheet profile) (Raffel et al., 1998)

2.4.15 Effect of displacement gradients

Due to the fact that the pixels within most CCDs are either rectangular or square
and therefore distributed in a Cartesian grid, the PIV methodology is best suited
for measuring displacements that are uniform translations. However, since fluid
flow, which PIV is designed to interrogate, is most often filled with velocity gra-
dients, it is important to be able to characterize the behavior of PIV for tracer
particles that contain gradients in their displacement fields. Raffel et al. have
performed Monte Carlo simulations to determine the effect of displacement gra-
dients on the measurement uncertainty, the results of which are shown in Figure
2.28 (Raffel et al., 1998). Here, the particle image density and the interrogation
window sizes were varied in order to ascertain their effects upon the measurement
uncertainty for images with particle image shift gradients. Interestingly, it can
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be seen that the smaller interrogation windows and larger tracer particle image
densities are able to tolerate larger displacement gradients. However, the window
size seems to be the greater factor in reducing the measurement uncertainty since
for the same interrogation window size, the measurement uncertainty reduction is
relatively small compared to the its reduction when for the same particle image
density, the window size is reduced.

Figure 2.28: Measurement uncertainty as a function of displacement gradient for
various particle image densities and interrogation window sizes (simulation param-
eters: FFT-based correlations, dτ = 2.2 pixels, quantization level = 8 bits/pixel,
no noise, optimum exposure, top-hat light sheet profile). (Raffel et al., 1998)

2.4.16 Calculation of differential and integral flow proper-
ties from the velocity field

In the formulations developed in the pervious section, PIV provides global velocity
data within a two-dimensional domain and does not directly measure important
differentiable quantities, such as vorticity and strain rates, or integral quantities
such as circulation, streamlines, or potential lines. As such, they must be post-
calculated from the velocity fields. The following two sections discuss how such
calculations can be achieved.

2.4.17 Calculation of differential flow properties

The vorticity and strain rates fields are both a consequence of the deformation
tensor, which is:

d�U

d �X
=

⎡
⎣ du

dx
dν
dx

dw
dx

du
dy

dν
dy

dw
dy

du
dz

dν
dz

dw
dz

⎤
⎦ . (2.24)
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When using the vorticity vector, �ω, and the strain tensor, �ε, the deformation tensor
can be expressed as:

d�U

d �X
=

⎡
⎣ εxx

εxy

2
εxz

2εyx

2 εyy
εyz

2
εzx

2
εzy

2 εzz

⎤
⎦+
⎡
⎣ 0 ωz

2 −ωy

2−ωz

2 0 ωx

2ωy

2 −ωx

2 0

⎤
⎦ , (2.25)

where εij = 1/2 (∂ui/∂xj + ∂uj/∂xi) , and ωi = εijk∂uj/∂xk . As 2D PIV is a
two-dimensional technique that can only provide two-components of the velocity,
the measurable deformation matrix reduces to

d�U

d �X
=
[

εxx
εxy

2εyx

2 εyy

]
+
[

0 ωz

2−ωz

2 0

]
(2.26)

since the third velocity component, and d/dz terms cannot be measured. Since
the vorticity and strain rates fields cannot be directly measured, differentiation
schemes must be used to derive these quantities. Such schemes, however, are
susceptible to errors resulting from different grid spacing as well as noise within
the velocity data. It is therefore important to be able to study and characterize
various differentiation schemes in order to ascertain their performance.

In a study of several differentiation schemes, Raffel et al. (Raffel et al., 1998)
were able to document estimates for the first derivative, df/dx, of a function f(x)
at a discrete location, fi(xi) (see Table 2.2). Here, ευ is the velocity measurement
uncertainty. The accuracy of each scheme is defined as the truncation error as-
sociated with each scheme, and the uncertainty of each scheme is dependent on
the velocity measurement uncertainty within the velocity field. Table 2.2 suggests
that the forward and backward differentiation schemes would perform poorly, as
both their accuracies and uncertainties are the highest.

To test these predictions, these schemes were applied towards calculating the
vorticity from the velocity field of a laminar vortex pair, where vorticity con-
tours should be smooth (Raffel et al., 1998; Willert, 1992). Figure 2.29 shows
the vorticity fields of the laminar vortex pairs resulting from various differenti-
ation schemes. It can be clearly seen that the least-squares approach produces
the smoothest vorticity contours. Interestingly, the Richardson scheme, which is
designed to minimize truncation errors, shows not-so-smooth vorticity contours,
suggesting that schemes that can best minimize both accuracy and uncertainty
are the most desirable. An interesting observation is that while Table 2.2 sug-
gests that the center differencing scheme should produce the best results since it
best maximizes the accuracy while minimizing the uncertainty, it in fact does not
perform as well as the least-squares scheme.

Also of interest is the effect of the grid spacing. Table 2.2 suggests that reducing
the size of the grid spacing should decrease the accuracy, while increasing the
uncertainty. By increasing the interrogation window from 50% (Figure 2.29) to
75% (Figure 2.30), the effects of the grid spacing size is seen. Overall, the results
show the undesirable effect of an increased vorticity noise level. However, the
peak vorticity value at the vortices’ center is significantly increased, closer to its
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Figure 2.29: Vorticity field estimates obtained from twice oversampled PIV data,
e.g. the interrogation window overlap is 50%. The vortex pair is known to be
laminar and thus should have smooth vorticity countours. (Raffel et al., 1998)

true value. This suggests that the finer grid spacing gives better estimates for the
vorticity (though noisier), since the area over which the vorticity is averaged is
smaller.

An alternative to calculating vorticity is through the use of circulation:

Γ =
∮

�u · �dl =
∫

�ω × �dS (2.27)

where Γ is the circulation, and �ω is the vorticity vector. Given the above, for
two-dimensional flows, the average z-component vorticity can be calculated as

ωz = Γ/A, (2.28)

where ωz is the average z-component vorticity, and A is the area over which the line
and area integrals in Equation (2.27) are performed. This scheme is in fact identical
to applying a 3 x 3 smoothing operator to the velocity field followed by a center
differencing scheme (Westerweel, 1993). This approach reduces the uncertainty
to ≈ 0.61εU/ΔX (Raffel et al., 1998). The application of this scheme to the
laminar vortex pair is shown in Figure 2.31. The vorticity contours shown are
comparable to those shown for the least-squares scheme. However, the advantage
of this approach is its better estimation of the peak vorticity value. Again, it can
be seen that smaller grid sizes better estimate the value of the vorticity peaks,
since the area over which the vorticity is averaged is smaller.
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Figure 2.30: Vorticity field estimates obtained from four times oversampled PIV
data, e.g. the interrogation window overlap is 75% (Raffel et al., 1998)

Figure 2.31: Vorticity field estimates obtained from PIV velocity fields by the
circulation method: (left) the velocity field is twice oversampled, (right) four times
oversampled. The contours of this laminar vortex pair are known to be smooth
such that the nonuniformities are due to measurement noise (Raffel et al., 1998)
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Figure 2.32: a Wall-jet vorticity distribution (central-difference scheme); b Wall-
jet vorticity distribution (Adaptive Scheme) c jet vorticity distribution (adaptive
scheme and least-squares) (Lourenco and Krothapalli, 1995)
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In an effort to further reduce the total error due to velocity uncertainties
and truncation errors, Lourenco and Krothapalli (1995) implemented an adap-
tive scheme based on the Richardson’s extrapolation principle by combining the
vorticity estimates at different grid sizes. Figure 2.32 shows a typical differen-
tiation result using a central-difference scheme, while Figure 2.32(b) shows the
improved result using the adaptive scheme. Further investigation showed that an
improvement in accuracy could be achieved if each of the derivative estimates at
the different grid sizes were computed using a least squares second order polyno-
mial approximation (see Figure 2.32(c)).

Second order schemes have been further studied towards obtaining more accu-
rate vorticity calculations. Fouras and Soria (1998), recognizing that the vorticity
error was composed of both a bias error and a random error, investigated the
transmission of the velocity uncertainties into the vorticity random error, and the
effect of grid spacing on the vorticity bias error using various implementations of
a second-order polynomial χ2 fit, as described by Soria that used different grid
patterns for calculating the vorticity (see Figure 2.33).

Figure 2.33: Rectangular grid patterns used for the calculation of ωz using the χ2

method. The locations of the velocity sampling points and the point of interest
relative to the velocity sampling points are identified for. a The χ2

9 method which
uses 9 velocity sampling points; b the χ2

13 method which uses 13 velocity sampling
points and c the χ2

21 method which uses 21 velocity sampling points (Fouras and
Soria, 1998).

In addition, they developed a theoretical analysis of the random error for the
χ2 vorticity calculation method that estimates a priori the random vorticity error
using χ2

9 , χ2
13 , and χ2

21 vorticity calculation method to be σu/Δ, .447σu/Δ,
and .328σu/Δ, respectively, where Δ is the grid spacing, and σu is the velocity
uncertainty. The results, shown in Figure 2.34, show that their theory predicts the
numerical simulations quite well. Furthermore, it is seen that the random error
transmission errors for the χ2

21 method is lower than the χ2
9 and χ2

13 methods by
67% and 26%, respectively.

The effects of grid spacing on the vorticity bias error were studied using nu-
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merical simulations of an Oseen vortex. The normalized vorticity bias errors as a
function of normalized radial distance is shown in Figure 2.35. It can be seen that
as the grid spacing gets smaller with respect to the characteristic length scale of
the flow, the bias error reduces dramatically. While it is tempting to reduce this
ratio to near zero values, it should be pointed out that in practice, this would re-
quire very highly resolved velocity measurements, which may be difficult to achieve
with present technology. Also seen is that χ2

9 has much lower bias error than χ2
13

or χ2
21, which is due to the different spatial filtering characteristics of the vorticity

calculation methods.
Recognizing that the spatial resolution is limited towards the large scales by the

total image dimensions and towards the small scales by the interrogation window
size, Foucaut and Stanislas (2002) performed an exhaustive investigation of con-
ventional schemes by studying their transfer functions. The differentiation schemes
studied where 2nd, 4th, 6th, and 8th order centered difference, compact difference
and Richardson’s extrapolation schemes; 2nd, 4th, and 6th order noise minimized
Richardson extrapolation schemes, a second-order noise minimized least squares
scheme, and an eight-point circulation scheme. To characterize the PIV data,
the PIV spectral response was first determined from experimentally obtained PIV
results, and compared with results obtained with a hot wire anemometer (HWA).

Figure 2.36 shows the normalized vorticity bias errors as a function of the grid
spacing with respect to the characteristic length scale of the flow, Δ/L. Com-
parison of this figure with Figure 2.34 shows that there is a conflict between
simultaneously minimizing the random and bias errors: the larger the value of
Δ/L, the lower the random vorticity error, but the higher the bias vorticity error,
and visa versa. Overall, Fouras and Soria found that the χ2

21 vorticity calcula-
tion method resulted in the least overall error, thereby recommending it as the
preferred differentiation scheme.

Also, a spectrum model,

E11PIV =
(
E

1/2
11HWA + E

1/2
noise

)2(sin (kX/2)
kX/2

)2

(2.29)

where Enoise is the white noise level used to optimize the fit to the PIV spectrum
(Enoise varies with the inverse of the window size), X is the interrogation window
size, and k is the wave number, was used to best fit and model the PIV spectrum.
Furthermore, the window size was optimized by setting the cutoff wave number
of the PIV spectrum to be where the signal-to-noise ratio was equal to 1. This
approach resulted in a noise level on the order of 1% of the velocity dynamic range,
an interrogation window size of 44 x 44 pixels2, and a cutoff wave number of 1200
rad/m (see Figure 2.35).

The transfer functions of the differentiation schemes are shown in Figure 2.38(a-
c). Given that the cutoff wave number for the PIV data using 44 x 44 interrogation
windows in these figures is 1.37, it can be seen that the differentiation scheme with
the closest cutoff wave number is the second-order centered difference differentia-
tion scheme, which has a cutoff wave number value of 1.39.
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(a) χ2 method using 9 velocity sampling
points

(b) χ2 method using 13 velocity sampling
points

(c) χ2 method using 21 velocity sampling
points (Fouras and Soria, 1998).

Figure 2.35: Bias error in ωz calculation using exact discretized velocity data of the
Oseen vortex for different Δ/L sampling separations and using different vorticity
calculation methods.
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Figure 2.36: Bias error at the vortex centre, i.e. |ωbias(0)| /ωz(0)exact as a func-
tion of normalized velocity sampling distance Δ/L for the χ2 vorticity calculation
method when 9, 13 and 21 velocity sampling points are used in the interpolation
process and for the FD and AGW-FD vorticity calculation methods (Fouras and
Soria, 1998).

The power spectra of the differentiation schemes are shown in Figure 2.39. It
can be seen that the best filter is the second-order centered difference scheme,
since it has the same cutoff wave number as the PIV results. The 4th order
Richardson extrapolation and the least-square schemes are identical in behavior,
showing a strong filtering effect. On the other hand, the 6th and 10th order compact
difference schemes have higher cutoff wave numbers, thereby amplifying any noise
that would exist in the PIV data.

In an effort to overcome the conflict of simultaneously minimizing the random
and bias errors, first pointed out by Fouras and Soria, and confirmed by Foucaut
and Stanislas, Etebari and Vlachos (2005) hypothesized that by combining the
favorable bias-error reducing characteristics of the higher order implicit schemes
with those of the noise-minimizing schemes, a new scheme could be developed that
would reduce the overall errors and outperform the second order center differenc-
ing scheme recommended by both Fouras/Soria and Foucaut/Stanislas. Towards
this end, they combined a 4th order compact scheme, which has low bias error,
with a noise-optimized Richardson extrapolation scheme, which has low noise am-
plification, which uses a summation procedure of various spatial samplings of the
derivatives. Their results suggest that this hybrid compact-Richardson extrapo-
lation scheme provides nearly 30% less noise amplification while simultaneously
reducing the bias error with respect to the centered difference scheme. They also
suggest that further improvements might be attainable if the cutoff wave number
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Figure 2.37: Power spectra of velocity along x, 44x44 interrogation window, fre-
quency optimization. Equation (2.10) in the figure refers to Equation (2.29) (Fou-
caut and Stanislas, 2002).

of this scheme is adjusted to meet the characteristics of the particular experimental
PIV data set.

2.4.18 Calculation of integral flow properties

There are several parameters of interest that can be derived using integral methods.
Circulation can be achieved using path integrals. Circulation is defined as

Γ =
∮

�u · �dl, (2.30)

where �u is the velocity vector, and �dl is the differential path length of the total path
defining the boundary C. The numerical integration of Equation (2.30) is straight-
forward using standard integration methods. Streamlines and potential lines can
also be derived using integral methods. Assuming the flow is two-dimensional,
the PIV results can be used to derive streamlines and potential lines using the
following relations:

Ψ =
∫

y

udy −
∫

x

νdx (2.31)

Φ =
∫

x

udx+
∫

y

νdy (2.32)

Performing the integration in Equation (2.31) to obtain S will not produce unique
results, since different frames of reference will produce different streamlines. This
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is synonymous with reducing the Poisson equation

Δ2Ψ = −ωz (2.33)

into the Laplace equation
Δ2Ψ = 0 (2.34)

However, since the vorticity field is an approximation, and since boundary con-
ditions need to be specified, this integration becomes difficult. Figure 2.40, for
example, shows the different resulting set of streamlines that occur due to differ-
ent choices of the frame of reference.

2.4.19 Outlier detection methods

Regardless of how well PIV images are acquired, the post-processing cross cor-
relation procedure can result in spurious vectors due to seeding inhomogeneities,
effects of turbulence, varying intensity light sheet, etc. An example of spurious
vectors that would infect an otherwise perfect velocity field is shown in Figure
2.41. Such outliers are most often visibly detectable, and are necessary to identify
in order to maintain the integrity of the data to allow for proper data interpreta-
tion and derivation of differential and integral quantities, such as vorticity, strain
rates, circulation, and streamlines (see section 2.4.16).

Westerweel (1994) developed a statistical model for isotropic homogenous tur-
bulent flow (in most cases flows that are not homogeneous or isotropic can be
transformed to a domain where they are both) that characterizes outliers in PIV
data. This model was then used to investigate three different outlier detection
methods. For all these methods, a displacement residual vector was defined,

�ri,j = �V ′i,j − �Vi,j (2.35)

such that its magnitude squared

ri,j
2 =
∥∥∥�V ′i,j − �Vi,j

∥∥∥2 (2.36)

acts as the measure of the deviation of �V ′i,j , the vector in question, with respect to
�Vi,j , the vector’s true value. In practice, the true value of the vector is not known
and is estimated using statistics, mean and variance, using the neighbors of the
vector in question. The determination on whether the vector in question is spurious
or not is then determined by statistical tests of the displacement residuals. In the
first model, the global-mean test estimates the true value of the vector by using
the mean velocity of the whole vector field. In the second model, the local-mean
test estimates the true vector by using the mean velocity of a small neighborhood,
typically a 3 x 3 eight-connected neighborhood (8 points), surrounding the vector
in question. In the third model, the local-median test estimates the true vector
components by using the median velocity components within a 3 x 3 neighborhood
(9 points, including the vector of interest). Once an estimate of the true velocity is
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Figure 2.38: a Transfer functions of centered difference derivative filters. b
Transfer functions of compact difference derivative filters. c Transfer functions
of Richardson extrapolation derivative filters (Foucaut and Stanislas, 2002).
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Figure 2.39: Power spectra of derivative of velocity along x, 44x44 interrogation
windows (Foucaut and Stanislas, 2002).

Figure 2.40: Two-dimensional stream function computed from vortex pair velocity
data in a laboratory-fixed reference frame (left) and in a reference frame moving
20 mm/s upward with the vortex pair (right) (Raffel et al., 1998).
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Figure 2.41: Example of a simulated vector field with outliers (above) shows the
perfect simulated vector field; (below) shows the same field with outliers
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found, the displacement residuals are calculated, and tested against a user-selected
threshold - if the displacement residual is larger than the threshold, the vector
is labeled an outlier. Of the three methods, Westerweel found that the global-
mean test performed the worst, the local-mean test better performed better, and
the local-median performed the best. Specifically, the local-median test found 4
times fewer erroneous outlier vectors than the local-mean test. This procedure
can be repeated until there is no change in the global vector field. While useful,
this method is limited by the fact that the user must examine different threshold
constants to determine the optimum value to use with a particular data set.

Raffel et al. (1998) suggest a different version of the local-mean test. Rather
than applying the test to the velocity magnitude, the test is applied to each of the
velocity components. Then the average velocity of the eight points surrounding
the vector in question is calculated:

〈ui,j〉 = 1
N

N∑
n=1

u (n) (2.37)

where N is the 8 neighboring points, ui(n) is velocity component, and <> denotes
an average. Then the standard deviation is calculated:

σi,j =

√√√√ 1
N

N∑
n=1

(〈ui,j〉 − u (n))2. (2.38)

The residual is then tested against a threshold,

|〈ui,j〉 − u(n)| < εthresh, (2.39)

where
εthresh = C1 + C2σi,j , (2.40)

and C1 and C2 are under-defined constants. This procedure can be repeated until
there is no change in the global vector field. Similar to the local-median test, while
useful, this method is also limited by the fact that the user must examine different
constant values to determine the optimum values to use with a particular data set.

Nogueira et al. (1997) also describe a local validation method. First, the
normalized velocity vector residual is calculated throughout the velocity domain,

�ri,j =
∑N

n=1
�Vn − �V0∑N

n=1
�Vn

(2.41)

where N is the 8 neighboring points, �Vn represents the 8 surrounding velocity
vectors, and �V0 is the velocity vector in question. The location within the velocity
field where the residual is a minimum marks a zone where vectors achieve a degree
of uniformity and hence a zone of “local coherence”. Then, based on user-defined
criteria, variations of vectors neighboring those labeled as coherent are examined
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and joined within the region of coherence. In this manner, regions of coherence
grow and can merge. Then once an appreciable number of vectors are achieved
within a zone, the vectors within this zone are validated. Figure 2.42(above) shows
a PIV measurement field and Figure 2.42(below) shows the resulting validated
vector field. Similar to the methods described above, this method is limited by
the fact that the user must select two parameters, the tolerance of the prediction
percentage, and the number of vectors a coherence zone should contain to be
validated. The tolerance of the prediction percentage input, assumes a priori
knowledge about the flow as to how much velocity differences can be tolerated.
This value is typically set to 20%-35%. The number of vectors a coherence zone
should contain for validation is around 10% of the total number of vectors for a
correctly sampled flow.

Song et al. (1999) validate velocity vectors by verifying if the continuity equa-
tion is satisfied within Delaunay triangles. If all nodes within a triangle are good
vectors, the total flux through all the sides of the triangle, Q1 +Q2 +Q3, is very
small. If a node within a triangle is an outlier, the total flux through the triangle
is substantially larger. Hence, the normalized flux, which varies between 0 and 1
is defined as

E =
Q1 +Q2 +Q3

max (|Q+| , |Q−|) (2.42)

where Q+ and Q− are the maximum positive and negative flux through the sides
of the triangle, respectively. It is found that a threshold value of E=0.5 is sufficient
to identify outliers. Figure 2.43(above) shows a simulated velocity field and Figure
2.43 (below) shows the resulting validated vector field. It should be pointed out
that while this is a robust method for outlier detection, the Delaunay Tessellation
method was originally developed as a new PIV algorithm, and therefore should
the user want to only use the outlier detection scheme, they must go through the
added steps of generating the Delaunay triangles.

Foucaut et al. (2000) describe an iterative procedure for outlier detection.
First, during the PIV procedure, the three highest peaks from the correlation do-
main are recorded, their corresponding residuals are calculated, and the best can-
didate is selected through the use of a local-median filter. This is done iteratively
until there is no change in the global vector field. Second, the surviving residuals
are thresholded to identify spurious vectors. As noted by the authors, the difficulty
is in identifying the proper choice of the threshold. For this determination, the
authors suggest estimating the percentage of valid vectors by hand in a few vector
fields, and calculating the cumulative histogram of the residual normalized by the
velocity vector located at a particular location. Then by selecting an appropriate
percentage limit, the appropriate residual, and hence threshold, can be identified
and implemented for the rest of the data set. Similar to previous methods, while
useful, this method is also limited by the fact that the user must determine the
optimum threshold by manually examining the cumulative histograms for selected
flow fields. Liang et al. (2003) suggest that spurious vector detection is a pat-
tern recognition problem, and as such, proposed to use cellular neural networks
(CNN), a local feedback network, to identify outliers. The weights of the neurons
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Figure 2.42: (above) Example of PIV measurement. Contains spurious vectors
in an eddy, an undersampled mixing layer and a large random vector region due
to light glimmer from the visualization window. (below) Validated data from left
(Nogueira et al., 1997).
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Figure 2.43: (above) Vector field by Delaunay Tessellation particle tracking Ve-
locimetry method (DT-PTV) with 1505 particles (below) Vector field after remov-
ing the spurious vectors in the case of (above). Of the 1505 particles, DT-PTV
found 1295 vectors. After removing the spurious vectors, 1077 vectors remained
(Song et al., 1999).
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are defined as
Wi,j = T − ri,j (2.43)

where ri,j , the velocity residual, is defined as

ri,j =
∣∣Vxi

− Vxj

∣∣ or ri,j =
∣∣Vyi

− Vyj

∣∣, (2.44)

depending on which of the velocity component field is being investigated, and T
is a threshold. The method was tested on several artificially generated stagnation
flows scattered with spurious vectors, and which were also identified by the average
velocity gradient defined as

G =
{
1
2

[(
Vxi+1,j − Vxi,j

)2 + (Vxi,j+1 − Vxi,j

)2
+
(
Vyi,j+1 − Vyi,j

)2]}1/2

(2.45)

Also, two parameters were introduced to evaluate the effectiveness of the methods.
The first is the undetected rate defined as the ratio of the number of spurious
vectors that are not detected over the total number of spurious vectors; the second
is the over-detected rate defined as the ratio of the number of valid vectors that are
detected as errors over the total number of spurious vectors. For comparison, their
scheme was tested against the local-median test. The results suggest that the CNN
outperforms the local-median test. Figure 2.44(a) shows that for the stagnation
flow with G = 0.2, the threshold value that minimizes both the undetected and
over-detected rates for the CNN and local-median filter are ∼0.36 and ∼0.47,
respectively. However, the CNN percentage rate, ∼0.08, is much lower than the
local-median filter’s percentage rate, ∼0.2. Similarly, Figure 2.44(b) shows that
for the stagnation flow with G = 0.4, the threshold value that minimizes both the
undetected and over-detected rates for the CNN and local-median filter are ∼0.6
and ∼1.05, respectively. Again, the CNN percentage rate, near 0.0, is much lower
than the local-median filter’s percentage rate, ∼0.53. Lastly, Figure 2.44(c) shows
that for the stagnation flow with G = 0.64, the threshold value that minimizes
both the undetected and over-detected rates for the CNN and local-median filter
are ∼0.85 and ∼0.88, respectively. As in both previous cases, the CNN percentage
rate, ∼0.1, is much lower than the local-median filter’s percentage rate, ∼0.23.
Also, similar to previous methods, while useful, this method is limited by the fact
the user must select an appropriate threshold value. Nevertheless, as seen from the
results, if the user picks thresholds slightly different than the optimum value, the
increase in the undetected/over-detected percentages will be slight. For example,
from Figure 2.44, it can be seen that if one uses the optimum threshold for G=0.2
(i.e. T=0.36 using the CNN method) on the G=0.4 and G=0.64 velocity fields,
the over-detected percentage for both approaches infinity. Likewise, if one uses
the optimum threshold for G=0.64 (i.e. T=0.88 using the CNN method) on the
G=0.2 and G=0.4 velocity fields, the undetected percentage is 0.60% and 0.40%,
respectively.
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Shinneeb et al. (2004) , recognizing that importance of finding a threshold that
is insensitive to flow gradients, suggested the use of a variable threshold procedure
applied to both a local-median filter and the CNN procedure introduced by Liang
et al. (2003). The procedure is as follows. First, an aggressive local-median filter is
implemented to identify all outliers, even at the expense of falsely identifying good
vectors as spurious vectors. The vectors are then replaced by a Gaussian-weighted
average of their neighbors using Equation (2.46)

ui =

∑
j exp

[
− 1

2

( |�xi−�xj |
H

)2]
uj

∑
j exp

[
− 1

2

( |�xi−�xj |
H

)2] . (2.46)

H = 4
√
2 pixels and is the width of the Gaussian filter, and the summation is

performed over a 5 x 5 region surrounding i. Next, a threshold field is defined
by the mean deviation in each velocity component calculated from this newly
generated velocity field

T̃u
i =

1
N

N∑
j=1

|ui − uj |+K, (2.47)

where K is a constant and the summation is performed over the 8 neighboring
points. This threshold field is then filtered by a Gaussian kernel (Equation (2.48))

Tu
i =

∑
j exp

[
− 1

2

( |�xi−�xj |
H

)2]
T̃u

i

∑
j exp

[
− 1

2

( |�xi−�xj |
H

)2] (2.48)

H = 4
√
2 pixels and is the width of the Gaussian filter, and the summation is

performed over a 9 x 9 region surrounding i.
To test these procedures, two different types of flow fields were generated. The

first field was described by

u = Cx2 ; u = Cxy (2.49)

and the second was described by

u = Vmax cos
(

xNxπ

Lx
+

π

2

)
cos
(

yNyπ

Ly

)
,

v = Vmax sin
(

xNxπ

Lx
+

π

2

)
sin
(

yNyπ

Ly

)
(2.50)

where C is a constant, Nx and Ny are the number of vortex cells in the x and
y directions, respectively, Lx and Ly are the sizes of the particle images in the x
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Figure 2.44: Influence of the threshold on the detecting method, Error=10%. a
G=0.2, b G=0.4, c G=0.64 (Liang et al., 2003).
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Figure 2.45: Performance of the a median and b CNN methods using uniform
and variable thresholds for Field 1 (C = 250x10−6) velocity field and 10% Type 1
spurious vectors (Shinneeb et al., 2004).
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Figure 2.46: Performance of the a median and b CNN methods using uniform and
variable thresholds for Field 2 velocity field (Nx = Ny = 8, Vmax = 10) and 10%
Type 1 spurious vectors (Shinneeb et al., 2004).
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and y directions, respectively, and Vmax is the maximum velocity component. In
addition, two different types of spurious vectors were used to populate these flow
fields. The first type calculates a spurious vector in a random direction and mag-
nitude distributed uniformly between zero and the maximum velocity within the
velocity field. Such a spurious vector is designed to simulate the identification of
a noise peak within the correlation domain far removed from the signal peak. The
second type calculates a spurious vector whose magnitude deviates by a specified
percent of the correct local velocity; its direction is randomly chosen. Further-
more, to simulate seeding imperfections, these outliers were positions in randomly
located clusters. To test the performance of this approach, the undetected and
over-detected definitions introduced by Liang et al. (2003) were used. From the
results shown in Figure 2.45 and Figure 2.46, it can be seen that both the median
and CNN methods, using a variable threshold, outperform the constant threshold
method. Also of interest was the variability of the optimum threshold with re-
spect to flow fields having varying velocity gradients. The results, shown in Figure
2.47, show that these optimum variable thresholds are much more constant with
respect to varying velocity gradients, indicated by C, than the optimum constant
threshold. Results for Field 2 show similar results. Lastly, it should be pointed
out that the smoothing filter parameter, H, has an impact on the percentage of
over-detected vectors (see Figure 2.48). This is due to the fact that it is a function
of the interrogation resolution and also the experimental conditions.

Figure 2.47: Critical value of T and K for constant and variable techniques. The
critical value of T or K is determined as that value which yields 1% over-detected
vectors. These results are for Field 1 velocity fields and 10% Type 1 spurious
vectors (Shinneeb et al., 2004).

Lastly, Westerweel and Scarano (2005) studied probability density functions of
various flows in order to identify a single universal threshold value to effectively
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Figure 2.48: Effect of filter spread H for Field 1 (C = 250x10−6) with 10% Type 2
(ΔV/V = 25%, number of clusters = 1) spurious vectors for the variable threshold
CNN method (Shinneeb et al., 2004).

detect spurious vectors. This was achieved by modifying the local-median filter
test. Specifically, the original median residual field, defined and calculated as

ri = |Ui − Um| , (2.51)

was normalized by the median rm of {r1, r2, . . . r8}

r
′
i =

|Ui − Um|
rm

, (2.52)

where rm are the medians of the points surrounding the vector in question. The
normalized median residual was calculated for different grid turbulence data, where
it was found that the corresponding histograms nearly collapsed onto a single curve
(see Figure 2.49), suggesting that the existence of a universal probability density
function. However, for regions where the turbulence levels are very low and the flow
is laminar, it was found that the normalized median residual showed high values,
since the normalization factor, r

′
m, approaches zero. This was compensated for by

introducing a threshold, ε, into Equation (2.52), resulting in

r∗i =
|Ui − Um|

rm + ε
, (2.53)

Trial and error showed that the optimum value was ε = 0.1 pixel, which interest-
ingly corresponds to typical rms noise levels within PIV data (Westerweel, 2000).

To test the universality of this approach, the histogram of the standard me-
dian residuals and normalized median residuals (Equation (2.53)) for various flow
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Figure 2.49: The histograms of the residual obtained with the conventional median
test a and the normalized median test b for the grid turbulence data at decreasing
turbulence levels. The histograms represent at least 99.7% of the vector data
(Westerweel and Scarano, 2005).

fields ranging in Reynolds number from 0.1 to 107 were calculated and plotted in
Figure 2.50. It is clear from this figure that the probability density function does
achieve a universal distribution. While the standard median test shows that the
optimum residual threshold would be a function of the flow field, the normalized
median test (Equation (2.53) shows that since the histograms almost collapse, the
optimum normalized residual is independent of the flow field. Further tests show
that for a single value of r ’=2 applicable to all the tested flows, the largest 10% of
the residuals and hence spurious vectors can be identified. This study, however,
does not mention how many undetected and over-detected vector result from this
procedure.

Description Reference
Grid Turbulence (Poelma 2004 )
Turbulent pipe flow (Westerweel et al., 1996)
Turbulent jet (Fukushima et al., 2002)
Microchannel flow (Westerweel et al., 2004)
Backward-facing step (Scarano et al., 1999)
Supersonic wake (Scarano and van Oudheusden, 2003)
vo Kàrmàn wake (van Oudheusden et al., 2005)

Table 2.3: Overview of PIV data and corresponding references
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Figure 2.50: The histograms of the residuals using the conventional median a
and the normalized median b for the experimental data listed in Table 2.4.19
(Westerweel and Scarano, 2005).
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2.4.20 Advanced PIV methods

Window shifting methods

As discussed in section 2.4, PIV provides an estimate of the true velocity, which
is different from the true velocity due to noise and in-plane loss-of-pairs due to
particle motion. The variation of this bias error was shown in Figure 2.24, and
is repeated here for convenience. Upon observation, the question arises whether
one can take advantage of the very small errors shown for particle shifts close to
zero. In implementation, this can be done using an iterative adaptive approach.
First, the image pairs are processed in a conventional manner, and then repro-
cessed using the initial results as a guide to adaptively shift the second window for
each interrogation region. This process is iteratively repeated until convergence
is achieved. Keane and Adrian (1992) first proposed using a window offset equal
to the particle displacement. They also recommended using a larger second in-
terrogation window to avoid in-plane loss-of-pair. In this manner, FI , the term
representing the in-plane loss-of-pair (Equation (2.16)), is maximized, causing RD,
the term representing the displacement correlation peak (Equation (2.15)) to be
maximized as well (see Figure 2.11 center and bottom). Westerweel et al. (1997),
using discrete offsetting of the same size windows, showed its effectiveness in re-
ducing noise. Figure 2.51 best shows these results. With window shifting, the
noise reduction in the PIV data is so great that its spectrum’s noise level drops
by an order of magnitude, agreeing quite nicely with the LDV data provided by
Comte-Bellot and Corrsin (1971) .

Wereley and Meinhert (1999) recognized that by keeping the first window fixed
and shifting the second window, one would be implementing a forward difference
interrogation (FDI) algorithm,

d �X

dτ

∣∣∣∣∣τ=t =
d �X (t+Δt)− d �X (t)

Δt
+
Δt

2
d2 �X

dτ2

∣∣∣∣∣
τ=t

+ . . . , (2.54)

where the images are recorded at times t and Δt. For better accuracy, they have
suggested using a central difference interrogation (CDI) algorithm,

d �X

dτ

∣∣∣∣∣τ=t =
d �X
(
t+ Δt

2

)− d �X
(
t− Δt

2

)
Δt

+
(Δt)2

24
d3 �X

dτ3

∣∣∣∣∣
τ=t

+ . . . , (2.55)

where the images are recorded at times t − Δt/2 and t + Δt/2. For FDI, the
velocity approximation is accurate to order Δt, while for the CDI, the velocity
approximation is accurate to order Δt2. In implementation, the first image’s
interrogation windows are shifted by an amount −�V (�x)Δt/2, while the second
image’s interrogation windows are shifted by an amount �V (�x)Δt/2. In practice,
the amount of shift is first estimated by initially processing the images using
conventional PIV, and using its results as guide for implementing the CDI routine.
Wereley and Meinhert show that within 5 iterations, the solutions converge.
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Figure 2.51: The normalized power spectrum of the fluctuating streamwise velocity
of a turbulent flow behind a grid (at 40 grid-mesh lengths away from the grid).
The open dots represent the result obtained with PIV without window offset; the
closed dots the same image data but now with window offset. Also plotted are the
result obtained with LDV (♦) in the same facility and at the same location as for
the PIV, and the result obtained with hot-wire anemometry (x) by Comte-Bellot
and Corrsin (1971).

Gui and Wereley (2002) also recognized that even with discrete window shifting
using the CDI method, a zero displacement (see Figure 2.24) within the correlation
domain could never be achieved, since almost all shifts are never perfect integer
values. Consequently, they developed a continuous window shifting routine us-
ing a bilinear interpolator to allow for fractional pixel shifts. Using synthetically
generated images, they tested an FFT-accelerated non-shifting correlation-based
algorithm (FCTR), a discrete window shifting correlation-based interrogation al-
gorithm (CDWS), and the continuous window shifting correlation-based interroga-
tion algorithm (CCWS). They then documented the influences of bias and random
errors, images with and without random background noise, particle image size, and
particle image number density. Figure 2.52 shows the bias and random errors for
noiseless PIV images. Clearly, the CCWS algorithm outperforms the FCTR and



2.4. Fundamentals of cross-correlation particle image velocimetry 177

the CDWS algorithms by almost a factor of 5, producing a maximum bias and
random error of ∼.005 pixels and ∼.025 pixels, respectively. Figure 2.53 shows
the bias and random errors for noisy PIV images. This figure also shows that the
CCWS algorithm outperforms the FCTR and the CDWS algorithms by almost
a factor of 5 for the bias errors, and a factor of 3 for the random error. Here,
the noise has an effect on the random error, since for the CCDW algorithm the
random error is ∼0.03, whereas for the noiseless image, it is near zero. Also seen
is that for all three algorithms, the behavior of the bias error is near identical for
both the noisy and noiseless images.

Figure 2.52: Random errors a and bias errors b of different algorithms for PIV
images without background noise (Gui and Wereley, 2002).

Figure 2.54 shows the influence of the particle image size on the peak-locking
(Figure 2.54(a)) and the rms error (Figure 2.54(b)) for each of the algorithms.
These figures show that for particle image diameters greater than 2, the peak-
locking effect is minimized. For the effect on the rms errors, both the FCTR and
the CDWS algorithms show a minimum effect for particle image diameters ∼1.5
pixels. However, for the CCWS algorithm, the rms error is nearly identical to
the other algorithms for particle diameters less than 1.5 pixels, but continues to
decrease for increasing particle diameters.

Figure 2.55(a) shows that the particle image number density has no effect on
the peak-locking effect for each of the algorithms, but that its effect is the least
for the CCWS algorithm. However, Figure 2.55(b) the rms errors decrease with
increasing particle image number density for all algorithms, being the least for the
CCWS algorithm. Figure 2.56(a) shows the effect of the interrogation window size
on the peak-locking effect for each of the algorithms. The size of the interrogation
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Figure 2.53: Random errors a and bias errors b of different algorithms (Gui and
Wereley, 2002).

Figure 2.54: Influence of particle image size on: a peak-locking factor; b rms error
(Gui and Wereley, 2002).
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Figure 2.55: Influence of particle image number on: a peak-locking factor; b rms
error (Gui and Wereley, 2002).

window has the largest effect on peak-locking for the CDWS algorithm. The least
effect is seen in the FCTR algorithm, and for the CCWS algorithm, the effect of
the interrogation window is slight, with a slightly increasing effect with increasing
window size. The effect of the interrogation window on the rms error, as shown
in Figure 2.56(b), is seen to be the least with the CCWS algorithm, being almost
constant for all interrogation window sizes tested. Gui and Wereley also tested
their algorithms on a thermal convection flow, where they show the histogram of
the resulting PIV vectors in Figure 2.57. In this figure, it can be clearly seen that
the FDTR and the CDWS algorithms show a very strong peak-locking effect, while
the CCWS algorithm does not show any evident peak-locking effects.

Image deformation methods

While the window shifting methods discussed in the previous section have been
most helpful in reducing the uncertainty in PIV measurements, upon the incep-
tion of digital PIV (Willert and Gharib, 1991), Huang et al. (1993a, 1993b)
recognized that motion can be decomposed into translation + rotation (a function
of du/dy and dν/dx ) + stretch (a function of du/dx and dν/dy). They conse-
quently suggested a Particle Image Distortion (PID) technique, whereby through
bilinear interpolation, the interrogation windows were distorted in the latter two
terms in order to maximize on the correlation coefficient. Jambunathan et al.
(1995) also recommended a similar procedure with the exception that the second
image, rather than each of the interrogation windows, was rebuilt using a bilin-
ear interpolator. While these results showed preliminary promising results, they
were not pursued vigorously, perhaps due to the computational cost necessary for
image deformation. Furthermore, Huang et al. and Jambunathan et al. both
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Figure 2.56: Influence of interrogation window size on: a peak-locking factor; b
rms error (Gui and Wereley, 2002).

Figure 2.57: Histograms of particle image displacements for evaluating the PIV
recording pair of the thermal convection flow with different algorithms: a CDWS;
b FCTR; c CCWS (Gui and Wereley, 2002).
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reported instabilities in the convergence of their software; Huang et al. fixed this
by smoothing their results after each iteration, while Jambunathan et al. fixed
this by setting a condition requiring that each iterated peak calculation be larger
than the previous calculation.

Through the use of a proper weighting function, Nogueira et al. (1999, 2001,
2002, 2005a, 2005b; Lecuona et al. 1999) have been able to not only remedy the
algorithm instability, but also produce a method whereby the results are more
accurate and better spatially resolved. In their first work, they observed that
the amplification response of a top hat window, r, of the wavelengths being mea-
sured showed a phase reversal such that the amplification factor became negative,
and were able to show that the algorithm instabilities seen by Huang et al. and
Jambunathan et al. was due to this phase reversal (see Figure 2.58).

Figure 2.58: 1D view of the frequency response of the moving average window
(Nogueira et al., 1999).

They also show that for the nth iterative corrective step, the error will be

εn = Ai (1− r)n , (2.56)

where Ai is the original displacement amplitude to be measured. To ensure that
the error goes to zero, the condition 0 < r < 2 must hold. To correct for this
phase reversal, they suggest using a symmetric weighting function

W (ξ, η) =
∞∑

i,j=0

μij cos
(
2πiξ

F

)
cos
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F

)
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which, under the restriction of 0 < r < 2, becomes
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where F is the window size, and (ξ, η) denote the coordinates from the center of
the window. Graphically, the weighting function and its frequency response of this
function is shown in Figure 2.59.

Figure 2.59: (above) Weighting function according to Equation (2.58); (below)
1D view of the frequency response of the moving average window, weighted with
expression (2.58) (Nogueira et al., 1999).

An unfortunate new source of error of using this function is that particle image
centers are shifted towards the highest value of the weighting function (referred
to as the slippage error), thus reducing the correlation peak from what it should
otherwise be. To compensate for this, values of the maximum correlation coeffi-
cient are kept track of such that if they should decrease, they will not be further
iterated. Using a forward differencing scheme and a biparabolic interpolator, the
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correlation function

C (l,m) =

∑F/2
ξ,η=−F/2W (ξ, η) f (ξ, η) g (ξ + l, η +m)√∑F/2

ξ,η=−F/2W (ξ, η) f2 (ξ, η)
√∑F/2

ξ,η=−F/2W (ξ, η) g2 (ξ + l, η +m)
(2.59)

is used iteratively. This method is referred to as Local Field Correction PIV
(LFCPIV), and when implemented using a multigrid approach, it is referred to as
a multigrid LFCPIV. Figure 2.60 shows various multigrid LFCPIV results for 5
iterations. Note that 2 of the 4 LFCPIV implementations produce better results
than other deformation algorithms that do not apply weighting functions.

Figure 2.60: The performance of the five-iteration multigrid systems described in
the text, together with those of the methods from Jambunathan et al. (1995) (thin
full line) and Scarano and Riethmuller (2000) (thin broken line) (Nogueira et al.,
2001).

By using a central difference scheme instead of the forward difference scheme,
keeping better track of the slippage error, and only using a single size window (64
by 64 pixels),2.61 shows that the uncertainties are even lower than those previously
shown.

While the weighting function in Equation (2.58) helps significantly reduce er-
rors, it is by no means the only weighting function that can be used. In this regard,
Nogueira et al. (2005b) studied two other weighting functions:
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Figure 2.61: Performances of LFCPIV systems for the displacement fields indicated
(Nogueira et al., 2001).
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Equation (2.60) was chosen to test the asymmetric version of Equation (2.58), and
Equation (2.61) was chosen to increase the frequency response for the wavelengths
between F/2 and F/5. Their uncertainties as a function of iteration are shown
in Figure 2.62, where Equation (2.61) is seen to have the best performance. In
application to real images (see Figure 2.63), however, it can be seen that all three
weighting functions perform satisfactorily, perhaps due to the equalizing effect of
noise within the PIV images

Rather than use a bilinear interpolator, Scarano and Riethmuller (2000) , using
a multigrid approach, incorporated a cardinal function interpolator

R (x, y) =
F/2∑

i,j=−F/2

f(i, j)
sin [π(i− x)]

π(i− x)
sin [π(j − y)]

π(j − y)
, (2.62)

where R(x, y) is the image intensity at the sub-pixel location (x, y), in order to
avoid or limit the loss of information in the re-sampling process (Hall, 1979).
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Figure 2.62: Comparison of algorithms. The thick horizontal line corresponds to
a single-pass PIV with a 16x16-pixel non-weighted interrogation window. The
smooth curves correspond to the iterative algorithms described in this section.
The upper curve corresponds to Eq.(2.58), the middle curve to Eq.(2.60) and the
lower curve to Eq.(2.61) (Nogueira et al., 2005b)

The results show a significant improvement over conventional PIV and window-
shifting PIV methods, however, not quite as good as the LFCPIV methods (see
Figure 2.60).

As indicated in this discussion so far, deforming the images is a key factor
in deformation PIV methods. Towards this end, several researchers have stud-
ied the impact of various interpolation methods on the accuracy of the resulting
PIV vectors, and the time necessary to calculate them. The first such study was
performed by Astarita and Cardone (2005), where using synthetic noiseless im-
ages with translational shifts only, they studied the bias and random uncertainties
of different interpolation schemes as well as the time necessary for measurement
convergence. The interpolators studied were B-spline, FFT, Cardinal interpolator
based on the sinc function, bilinear, bicubic, biquadratic, simplex, and discrete
window offset (IDWOS) algorithms. For the B-spline, FFT, Cardinal interpola-
tors, the grid sizes tested for interpolation ranged from 2x2 through 16x16, 3x3
through 16x16, 4x4 through 16x16, respectively. Their results are best summarized
in Figure 2.64, where the average bias error and total error are shown in Figure
2.64(a) and Figure 2.64(b), respectively. These averaged values were obtained by
averaging the absolute value of the errors in the displacement interval from zero
to 4 pixels. In general, it can be seen that the simpler and less computationally
intensive schemes (IDWOS, bilinear, bicubic, simplex) produce results that are not
as accurate as schemes that are more computationally intensive (B-spline, FFT,
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Figure 2.63: a-d Performance comparison on real images from an industrial facility.
The hatched pattern means solid objects; the cross-hatched pattern means places
where reflections and shadows suppress all data. a Vorticity plot obtained from
conventional PIV data. The size of the interrogation window (32x32 pixels) is
indicated by a dark box. b Vorticity plot obtained from LFC-PIV data with a
64x64-pixel interrogation window weighted by Eq.(2.58). c Same as b, but using
Eq.(2.60). d Same as b, but using Eq.(2.61) (Nogueira et al., 2005b).
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sinc with interpolation grid sizes 6x6 through 16x16). It is interesting to note that
of the latter, the B-spline algorithms give the lowest total mean uncertainties in
the shortest duration of time.

While useful, this study did not investigate the effects of these interpolation
algorithms on non-translational motion. Towards this end, Kim and Sung (2006)
further assessed various interpolation schemes by considering both uniform and
sheared displacements. In this study, they investigated bilinear, biquadratic, B-
spline, cubic, sinc, Lagrange and Gaussian interpolations using artificially gener-
ated noiseless images with different sized particle images. The best results for the
uniform displacements are shown in Figure 2.65 through Figure 2.67. The top
plot in each figure shows the bias error as a function of displacement, which for all
cases shows a sinusoidal behavior, while the bottom plot in each figure shows the
random error as a function of displacement. It is seen that the results show the
least uncertainties for the largest particle image size studied (4.4 pixels). For this
particle image diameter, it is seen that the cubic (a = −0.61), Lagrange (N = 6),
sinc (N = 10), and Gaussian (N = 6) interpolation schemes have a maximum ran-
dom error of .005 pixels. Of these interpolation schemes, however, the maximum
bias error of the Gaussian scheme seems to be almost twice as large as the others.

The best results for the shear displacements are shown in Figure 2.68 through
Figure 2.70. The top plot in each figure shows the bias error as a function of
mean displacement, which for all cases shows a decaying sinusoidal behaviour,
while the bottom plot in each figure shows the random error as a function of mean
displacement. It is seen that the results show the least uncertainties for the largest
particle image size studied (4.4 pixels). For this particle image diameter, it is seen
that the cubic (a = −0.61), Lagrange (N = 6), sinc (N = 10), and Gaussian
(N = 6) interpolation schemes have a maximum random error of .004 pixels. Of
these interpolation schemes, however, the maximum bias error of the Gaussian
scheme seems to be almost twice as large as the others, similar to the uniform
displacement results.

Also instructive is the computational time required of the interpolation schemes.
Table 2.4.20 shows the ratio of the computational time to the bilinear interpolation
scheme. It can be seen that for the best performing schemes, the sinc (N = 10)
and the Lagrange (N = 6), the computation times are 27.1 and 15.5 time larger
than the bilinear scheme. While the increase in computational time due to the use
of deformation methods (especially the more accurate schemes) may seem large
and therefore a hindrance, it should be pointed out that the rapid increase of
computer processing speeds over time and the need for generating more accurate
results at higher grid resolutions, easily justifies using such schemes.

2.5 3-D Volumetric measurements

While 2D PIV provides a valuable tool for studying fluid flow, they are still lim-
ited as they are confined to measurements within a plane. To study complex
three-dimensional flows therefore requires methods that will allow measurements
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Interpolation Time

Quadratic N = 3 2.50
B-spline N = 3 2.50

N = 4 3.83
Lagrange N = 4 6.08

N = 6 15.5
N = 8 31.6
N = 10 57.2
N = 12 94.1

sinc N = 4 5.25
N = 6 10.4
N = 8 17.8
N = 10 27.1
N = 12 38.5

Gaussian
4th N = 4 20.9

N = 6 46.0
6th N = 4 31.4

N = 6 77.0
N = 8 122

Table 2.4: Ratio of computation time between each interpolation scheme to the
bilinear interpolation scheme for a single iteration (Kim and Sung, 2006).
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Figure 2.64: Bias a and total b mean errors as a function of time for various IS.
Closed circles indicate high speed methods, open circles BSPL IS (the number
indicates the spline order), closed squares and open squares FFT and SINC inter-
polation schemes (the number indicates the stencil linear dimension), respectively.
The time scales are arbitrary (Astarita and Cardone, 2005).
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Figure 2.65: Comparison of the best performance for each interpolation for uniform
flow (dp = 2.2 pixel) (Kim and Sung, 2006).

Figure 2.66: Comparison of the best performance for each interpolation for uniform
flow (dp = 3.3 pixel) (Kim and Sung, 2006).
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Figure 2.67: Comparison of the best performance for each interpolation for uniform
flow (dp = 4.4 pixel) (Kim and Sung, 2006).

Figure 2.68: Comparison of the best performance for each interpolation for shear
flow (dp = 2.2 pixel) (Kim and Sung, 2006).
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Figure 2.69: Comparison of the best performance for each interpolation for shear
flow (dp = 3.3 pixel) (Kim and Sung, 2006).

Figure 2.70: Comparison of the best performance for each interpolation for shear
flow (dp = 4.4 pixel) (Kim and Sung, 2006).
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of three-component velocity vectors within a volume. Furthermore, if such studies
are transient phenomena, then these methods must allow for sequential measure-
ments through time. While several techniques have been developed that acquire
three-dimensional data by scanning the light sheet through the desired volume
(Brucker 1995,1997), to date, two techniques have stood out that are capable of
true three-dimensional measurements. The first technique employs multiple cam-
eras while the second employs holographic methods.

The hardware necessary for data acquisition is almost identical to those of PIV
systems. The important items are bulleted below:

• The tracer particles used should be small enough to accurately follow the
flow, yet large enough to provide sufficient light scattering. The particle
response time as described by Equation (2.2) can be used to determine ap-
propriate sizes of particles.

• The illumination source should be pulsed in order to freeze the particle mo-
tions. Both lasers and strobe lights have been successfully used. The pulses
should be synchronous with the camera for proper exposure and therefore
correct data acquisition. The illumination should be such that there is homo-
geneous illumination throughout the interrogation volume. The illumination
spectra should be within the CCD’s detectable spectral range. The illumi-
nation source should be bright enough to provide a good signal, especially
for small tracers.

• This is more important for volumetric methods than for planar methods
when using lasers, since the laser beam must be spread into a volume for the
volumetric methods, rather than a sheet for the planar methods.

• Digital high-resolution cameras (1K*1K or 2K*2K) are preferred in order
to image higher number of particles, and also to allow for automated pro-
cessing. While film provides higher resolution, its methods are extremely
time-consuming for processing.

• Acquisition of digital images is done through the use of a framegrabber.
Images can be stored onto RAM in real-time, but are limited to the maximum
amount of RAM that can be put onto the host computer. Images can also be
stored onto a real time disk. Typically disk arrays with special configurations
using raid controllers can be used to acquire massive amounts of data. If
analog cameras are used, either laser disc recorders or VCRs are necessary
for acquisition. For processing, however, these images must be digitized,
most often not at as high a resolution or signal quality as CCDs provide,
thereby degrading the quality of the digitized image.

The limitation of holographic method is that this method can only provide
a snap shot of the velocity field at only a single point in time, i.e. it can-
not provide a sequence of data fields through time as do the multi-camera
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systems. In the following section one of the multi-camera systems, the Three-
Dimensional Defocusing Particle Image Velocimetry (3DDPIV) method, is
presented and discussed.

Figure 2.71: Diagram a Defocusing concept graphically demonstrated: a standard
imaging set-up with aperture on-axis; b defocusing set-up with two off-axis aper-
tures. Point A focuses from the reference plane onto A’ on the CCD plane; point
B focuses behind the CCD plane at point B”’, leaving two slightly blurred images
on the CCD plane (B ’ and B”) at a distance b apart; point C focuses further
behind the CCD plane at point C”’, leaving two slightly larger blurred images on
the CCD plane (C ’ and C”) at a larger distance b’ apart (adapted from Willert
and Gharib, 1992; and Pereira and Gharib, 2002) (Kajitani and Dabiri, 2005).

2.5.1 Three-dimensional defocusing particle image velocime-
try (3DDPIV) method

The most recent addition to the true 3D measurement methods is Defocusing Dig-
ital Particle Image Velocimetry. The concept was initially introduced by Willert
and Gharib (1992) , and further developed and implemented by Pereira et al.
(2000), Pereira and Gharib (2002) , and Kajitani and Dabiri (2005) . Unlike the
previous method, which is based on triangulation, this method is based on imaging
with a single lens within its defocused range. This system differs from 3D particle
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tracking methods in that the optics in this method share one optical axis, con-
sistent with the original concept, thus eliminating the need for complex schemes
to identify particles through triangulation. Out-of-plane to in-plane error ratios
using this methods are 4-6, with in-plane errors similar to those found in planar
PIV techniques.

2.5.2 The defocusing principle

This method is best described by using a two-dimensional representation of the
imaging system shown in Figure 2.71(a), which will demonstrate the defocusing
concept used to acquire 3D information. Rays from point A focus onto point A′

on the image plane. Rays from B (off the reference plane), while still traveling
through the aperture, focus away from the image plane onto C, leaving a blurred
image, B′, on the image plane. Using the blurring, one can get information about
a particle’s position in space. In Figure 2.71(b), the aperture is replaced with
another that has two apertures equally off-axis. This time, rays from A travel
through both apertures, and are focused onto A′. Likewise, rays from B, focus off
the image plane, onto B′′′. Because the apertures are off-axis, as the rays converge
onto point B′′′, they leave two blurred spots on the image plane, B′ and B′′. The
separation between B′ and B (denoted b) is a function of the distance B from the
reference plane, thus providing depth information. If a particle located at B were
to move farther from the reference plane to C, rays from this particle would focus
off the CCD plane, onto C ′′′, leaving two blurred spots on the CCD plane, C ′ and
C ′′, separated by a distance b′ that is larger than b. This geometry therefore shows
that the particle image separation on the CCD plane gets larger as the particle
moves farther away from the reference plane, thus providing a way to gauge the
depth location.

2.5.3 The descriptive equations

Given this optical setup, a particle’s position can be shown to be
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here

x0 =
xB + xTL + xTR

3

y0 =
yB + yTL + yTR

3

where M = geometrical magnification, d = distance between the centers of the
apertures, and L = distance from the aperture plane to the reference plane,
(X, Y, Z) = the coordinates of the point B in space, and (xTR, yTR), (xTL, yTL)
and (xB, yB) = the blurred image coordinates for the top right, top left, and bot-
tom coordinates, respectively, ζ= the distance from the center of this equilateral
triangle to any of the particle’s images that identify any vertex of the equilateral
triangle (i.e. xTR,yTR), and ξ = the radial distance between from the center of
the apertures to each of the apertures.. The sensitivity of this system to detect
changes in the depth location of particle is given by

∂b

∂Z
= − 1

KZ2
, K =

1
MLd

. (2.64)

In practice, rather than using two pinholes, three pinholes positioned in the shape
of an equilateral triangle are used. For images filled with thousands of particles,
this allows more precise identification of particles. Also, for good system sensitiv-
ity, the aperture distance, d, must be large, which can be achieved by decreasing
K, thereby increasing ∂b/∂Z. Typically, experimental setup requirements neces-
sitate system sensitivities such that aperture separations should be larger than
the diameter of the lens. This poses a problem as obtaining custom-made large
lenses can be quite costly. Furthermore, triply-exposing a CCD can cause it to
overcrowd rapidly, thereby only allowing limited number of particle exposures.
Therefore, rather than constructing the camera with one lens, it is possible to
construct the camera with 3 separate imaging systems as shown in Figure 2.72.
This solves the problem of over-saturating a single CCD with multiple images of
many particles, while using off-the-shelf lenses for the camera design.

2.5.4 Application to flow around a propeller

In order to test the capability of the 3DDPIV system, the flow around a propeller
was imaged and mapped. Instead of using reflective particles as is done in 2D PIV
systems, small bubbles (∼ 260μm diameter) were used as flow tracers. A two-blade
propeller (67 mm diameter) was rotated at 12 revolutions per second, achieving
a tip velocity of 2.52 m/s within a 1m3 water tank. After phase averaging 50
velocity vectors, a three-dimensional velocity field was achieved (see Figure 2.73).

Once this velocity field was obtained and outliers were corrected for, massless
particles were then numerically injected into this velocity field initially in a ring
formation (Figure 2.74(a)) at one diameter upstream of the propeller, and the
evolving pathlines were then observed Figure 2.74(b,c).
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Figure 2.72: Implementation of 3D Defocusing PIV allowing for use of off-the-shelf
hardware items (Kajitani and Dabiri, 2005).

Figure 2.73: Three-dimensional velocity field around a rotating propeller. 3DDPIV
images contain 1x104-2x104 bubbles. The imaged volume is 200x200x400 mm3

resulting in 72963 vectors (33*33*67 voxels) (Courtesy of Dr. Gharib, Graduate
Aeronautics Laboratory, Caltec).
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2.6 Concluding remarks

While the fluid dynamicist’s dream of being able to measure complex, three-
dimensional turbulent flow fields globally with very high spatial and temporal res-
olution is still far from being fully realized, the rapid developments in the various
hardware and algorithmic implementations of two-dimensional cross-correlation
PIV have allowed for significant insights into fluid mechanics that would have oth-
erwise been most difficult. Two-dimensional cross-correlation PIV methods have
allowed for fluid flow measurements ranging from the micrometers per seconds
in micro-scale flows to supersonic speeds in industrial applications. In addition,
while single-point measurements only allowed inference to vorticity and strain
rates, PIV, especially its implementation using image deformation, now allows the
fluid dynamicist to directly measure these quantities globally and accurately. Most
exciting is the emergence of three-dimensional methods that allow for volumetric
studies of time-evolving flows, which will bring us yet a step closer to the fluid
dynamicist’s dream.
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