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Preface

A I Escola de Primavera em Transição e Turbulência (ETT) foi uma iniciativa
do Comitê de Ciências Térmicas da Associação Brasileira de Ciências Mecânicas
(ABCM). Sonho antigo da comunidade de mecânica dos fluidos, ela se tornou
realidade graças ao entusiasmo de alguns pesquisadores e ao apoio generoso de
várias instituições.

O grande interesse no assunto, aliado à sua importância tecnológica, foram fatores
que sempre conspiraram a favor de sua realização. De fato, por ser a turbulência de
interesse geral para vários ramos do conhecimento, o atual formato da conferência
sempre foi anseio natural da comunidade. Um forum onde métodos e praticas
pudessem ser discutidos de modo livre se constituia em demanda leǵıtima.

A Escola supriu essa demanda, adicionando, além disso, ao seu escopo, sessões
técnicas de alto ńıvel. Fruto principal da Escola, as notas dos mini-cursos dão
origem a este livro. Preparadas com enorme dedicação por excelentes pesqui-
sadores e professores em turbulência, elas certamente deverão servir de material
didático para um grande número de cursos de pós-graduação em ciências e engen-
harias afins.

Este volume, portanto, reproduz praticamente na ı́ntegra os textos apresentados
na I ETT. No futuro, novas publicações semelhantes a esta serão editadas pela
ABCM.

A.P.S.F.
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Chapter 3

Elements of entrainment

3.1 Introduction

Turbulence has been called the most important unsolved problem in all of classical
physics. From astrophysics to oceanography, aeronautics to combustion, turbu-
lence is ubiquitous. Yet in spite of its central role in science and engineering,
turbulence has defied solution for over a century.

The most important property of turbulence is entrainment. Both transport
and mixing in turbulent flows are controlled by entrainment. Boundary layer
heat transfer and skin friction are the transport of energy and momentum at a
wall. The vertical transport of water and energy in the atmosphere and ocean are
determined by stratified entrainment. In high Reynolds number flow, the mixing
is entrainment-limited, so much so that the molecular diffusivity can change by
three orders of magnitude while the molecular mixing rate changes by only a factor
of two. Entrainment determines most of what we really want to know about a
turbulent flow.

3.2 Entrainment hypothesis

Half a century ago, Morton, Taylor & Turner (1956) proposed the most successful
hypothesis for entrainment. In order to model a thermal rising from the sudden
release of buoyant fluid, they argued on dimensional grounds that the local en-
trainment velocity ve into the thermal at any station must be proportional to the
rise speed W of the thermal at that station. There is simply no other speed avail-
able on which to base the entrainment velocity (see figure 3.1). In this way, the
thermal grows linearly with height, in accord with observation. Furthermore, their
hypothesis is equally valid for a wide variety of other classical flows that might
be termed “ordinary turbulence”, correctly accounting for the entrainment rate in
the plume, shear layer, jet, wake, etc.

However, the entrainment hypothesis sometimes fails. For example, when the

205



206 3. Elements of entrainment

Figure 3.1: Entrainment velocity ve is proportional to the thermal rise speed W
according to the entrainment hypothesis (Morton et al.)

speed of sound becomes comparable to the velocity jump across a shear layer,
the entrainment rate precipitously declines by a factor of five (Papamoschou &
Roshko 1989). This cannot be explained by the original entrainment hypothesis.
The entrainment rate is also strongly affected when acceleration, confinement,
rotation, or stratification become appreciable. This paper is an attempt to extend
the entrainment hypothesis into a more general theory.

3.3 Entrainment process

Entrainment was thought to be a small-scale nibbling process at the edge of a
turbulent region. Corrsin & Kistler (1955) proposed a “superlayer” there, across
which fluid was thought to be entrained by small-scale nibbling. Shadowgraph
images of the supersonic round wake of a projectile seemed to support this notion.
However, shadowgraph images of the plane shear layer revealed the engulfment of
large tongues of fluid by the largest vortices in the flow (Brown & Roshko 1974;
Roshko, 1976). The two-dimensional geometry of their shear layer allowed a more
clear view of the entrainment process. Instead of polite little nibbles, their images
revealed that the turbulence really entrains like a hungry teenager taking big gulps
of fluid. These large engulfed tongues of pure, unmixed fluid are transported by
the large-scale vortices entirely across the layer (Konrad, 1976).
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3.4 Entrainment rate

The entrainment rate νe is a velocity. From dimensional considerations, it must
therefore always be expressible as the ratio of a relevant length scale to the rota-
tional period τλ of the eddy responsible for entrainment. If there is engulfment,
then the relevant length scale must be the size λ of the entraining eddy.

νe = const.
λ

τλ
(3.1)

Of course, the dimensional argument cannot establish the value of the constant of
proportionality. If there is no engulfment, such as at a solid wall or at a strongly
stratified interface, the length scale must be a diffusive one, the square root of the
product of the diffusivity and an eddy time.

For ordinary, incompressible, free shear flows, the entrainment rate must be
proportional to the ratio of the size of the largest eddies to their rotation period.
This is a direct consequence of Roshko’s engulfment, whereby the first step of
engulfment by the largest eddies is rate-limiting. The subsequent processing of
the engulfed fluid by all smaller eddies is both proportional to and sufficiently
fast compared to the largest eddies that only the largest eddies matter. Since the
largest eddies control the rate, we do not need to know much about anything else.
This happy circumstance vastly simplifies matters, such as modeling the mixing
(Broadwell & Breidenthal, 1982). So for such flows equation (3.1) becomes

νe = const.
δ

τδ
(3.2)

where the subscript δ is the size of the largest eddies. Since the characteristic
velocity of the turbulent flow is also proportional to δ/τδ , we recover the Morton et
al. entrainment hypothesis for ordinary turbulence. As indicated above, equation
(3.2) does not always work. Let us now consider the various violations of the
entrainment hypothesis.

3.5 Acceleration

Like people, ordinary vortices slow down as they age. That means that the rotation
period of the largest eddies τδ increases with time t. In self-similar turbulence,
there is no other distinguished time scale, so the period must be proportional to
the age of the vortex from its virtual origin.

τδ(t) = const. t (3.3)

For all ordinary turbulence, the constant of proportionality is positive, as is con-
firmed by examination of the observed growth laws of these flows. Their rotation
period always increases with age. These flows are termed “unforced”.

Note that the vortex rotation period in an unforced flow may not exactly follow
equation (3.3) over a short time interval. For example, the large-scale vortices in
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the free shear layer obey equation (3.3) in the long term, but on time scales less
than the pairing time, a vortex does not necessarily follow (3.3). We will ignore
this subtlety here.

3.5.1 Forced turbulence

However, it is possible to force the flow in such a way that the rotation period
does not increase with age. Define an acceleration parameter α such that

τδ = τ0 − αt, (3.4)

where τ0 is the large-eddy rotation period at the arbitrary time t = 0 . For
ordinary, unforced turbulence, α < 0 . If the flow is forced, α can be zero or even
positive.

3.5.2 Temporal self-similarity

The vortices are temporarily self-similar if their next rotation period is propor-
tional to their last one. Otherwise there would be a special, distinguished time
scale, a contradiction of self-similarity. Figure 3.2 illustrates the evolution of the
rotation period of temporally self-similar turbulence. The line must be straight
and α must be a constant. For all ordinary, unforced turbulence, α < 0 and slopes
upward.

Figure 3.2: Temporal evolution of the vortex rotation period for self-similar flow

3.5.3 Exponential jet

The line is horizontal if the next rotation period is the same as the last (α = 0).
This can achieved in an exponential jet, where fluid is ejected from a nozzle with
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a speed VJ(t) that increases exponentially in time,

VJ(t) = VJ0e
t/τe , (3.5)

where VJ0 is the nozzle speed at t = 0 . Because of this forcing, every large-scale
vortex in the exponential jet rotates with the same period, equal to the e-folding
time τe imposed on the flow, no matter how old or how far from the nozzle. The
vortices never age. It is a kind of perpetual youth.

Remarkably, acceleration reduces the normalized entrainment rate. A conve-
nient way to measure entrainment at large Reynolds number is with a fast chemical
reaction that destroys a visible chemical in the nozzle fluid when mixed with the
ambient fluid. If the mixing is entrainment-limited, changes in the visible “flame
length” reflect changes in the normalized entrainment rate. Compared to the or-
dinary jet, the exponential jet has about a 20% greater flame length (Kato et
al., 1987). In fact, such acceleration is the only known method for affecting the
far-field entrainment rate of the incompressible jet, as noted by Zhang & Johari
(1996). Their detailed images of jets with modulated nozzle speed demonstrate
that acceleration only influences the entrainment rate when the imposed change in
velocity during one vortex rotation is comparable to the initial velocity. In other
words, the logarithmic derivative must be appreciable.

3.5.4 Super-exponential forcing

The third category is the line sloping downward in Figure 3.2 (α > 0). In spite
of getting older, the vortices spin ever faster. After a finite time, the spin rate
becomes infinite and the rotation period vanishes.

One might anticipate that the entrainment rate would be further reduced as
α increases. Using dimensional and heuristic arguments, one theory has been
proposed (Breidenthal (2003) with different notation). The dimensions of the
dissipation rate per unit mass are (length)2(time)−3. Every canonical turbulent
flow has a conserved quantity Q. For example, in the shear layer, it is the velocity
difference ΔU . If the dimensions of Q are in general (length)m(time)−n, the

dissipation rate is proportional to Q
2
m τ

−(3− 2n
m )

ν , where the vortex period is τν .
For super-exponential forcing,

Q = Q0e
t

τ0−αt , (3.6)

where Q0 is the value of Q at t = 0. Define D to the dissipation rate normalized by
that of the unforced flow. From heuristic grounds, we conjecture that the quantity
is the natural scaling of effect of α on D. If so, then

β ≡ −
(

3− 2n

m

)
dD

D
=

dα

− (
3− 2n

m

) (3.7)

D = e−
α−α∗

β (3.8)

where α∗ is the value of α for the unforced flow.
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3.6 Compressibility

It has long been known that a compressible flow grows more slowly than an in-
compressible one. Papamoschou & Roshko (1989) found that the spreading angle
of a turbulent shear layer dropped by a factor of about five as the Mach number
increased. Linear stability theory may provide an indication of the entrainment
behavior, since the underlying instabilities drive the basic flow. However, the indi-
cation can only be qualitative, in as much as the finite amplitude eddies are fully
nonlinear.

Bogdanoff (1983) recognized that the important parameter for the instability
is a “convective” Mach number, the Mach number of the outer flow with respect
to the speed of the instability waves. A hint that this is the correct approach
comes from the flow models of Brown (1974), Coles (1981) and Dimotakis (1986),
discussed below.

One heuristic model that addresses the fully nonlinear flow supposes that non-
steadiness is essential to entrainment. This is a hint of this in the results of the
Oster-Wygnanski (1982) experiment, where the vortices in a shear layer are forced
to be equally spaced. For a certain time, these vortices are steady, resembling
Kelvin’s cat’s eye pattern (Kelvin, 1880), with no vortex pairing. Remarkably,
Oster & Wygnanski found that the Reynolds stresses vanish. There is no turbu-
lent transport of momentum. Roberts (1985) found the mixing rate essentially
vanishes, in spite of the fact that the vortices are continuing to rotate. If non-
steadiness is required for entrainment, it follows that the signaling speed of acoustic
waves must control the physics, since the information about a nonsteady event can
travel no faster than the speed of sound.

There is a subtle point to note here. Mach number plays two simultaneous
and different roles in high speed flow (Roshko, private communication). On one
hand, it indicates the signaling process above. It is also a measure of the energy
content of the flow, i.e. thermal vs. kinetic. Indeed, most attempts to model
compressibility have focused on energy and density considerations.

The second assumption is that the important time scale for an eddy to entrain
is always about one vortex rotation. This is the behavior of the engulfment and
mixing process in incompressible turbulence (Brown & Roshko, 1974). The im-
mediate consequence of these two assumptions is that entrainment is controlled
by a “sonic eddy” whose rotational Mach number is unity (Breidenthal, 1992).
Such an eddy completes one rotation during the signaling time across its diam-
eter. Any larger eddies that might exist would play no role in the entrainment
process whatsoever.

The hypersonic wake provides a good opportunity for comparison with exper-
iment. The model predicts that the initial wake growth rate should be zero, since
the large-eddy rotational Mach number is greater than unity there. Only sonic
eddies, much smaller than the total wake thickness, are capable of transporting
momentum. The time scale for the sonic eddies to transport momentum across
the entire wake is the square of the wake thickness divided by the product of the
speed of sound and the sonic eddy size, this product being the effective turbulent
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diffusivity. Note that the concept of turbulent diffusivity is rarely justified.
The initial wake should not grow at all until the rotational Mach number of

the largest eddies has fallen to unity. Then the growth rate should transition to
the incompressible value. The time for this transition is set by the transport of
momentum by the sonic eddies across the width of the wake. Since they are small
compared to the width of the wake, the process can be modeled by turbulent
diffusion, with a diffusivity equal to the product of the speed of sound and the
size of the sonic eddy. Note that for most flows, turbulent diffusion is not an
appropriate model (Corrsin, 1974). Only in the rare circumstance of the entraining
eddies being small compared with the distance in question is diffusion a reasonable
model.

The transition is predicted to occur at a downstream station of M2d, where
d is the effective body diameter. At M = 20, this would be 400 effective body
diameters downstream, which is in accord with shadowgraph observations (Finson
1973).

3.7 Confinement and mixing

When engineers mix chemicals together, they usually want to retain the mixture
in a confined chamber. Examples include combustion and chemical processing.
So we will generalize the term entrainment here to include the entire physics of
transport and molecular mixing in a confined vessel.

Consider the probability density function (pdf) for the concentration of an
inert scalar mixing with a second fluid in some general flow sketched in figure 3.3.
Initially the pdf consists of two delta functions at the extrema, corresponding to
the two pure fluids. As the turbulence mixes some of the two pure fluids together
at intermediate concentrations, forming a central Gaussian in the pdf. For a self-
similar free shear layer with two infinite supplies of pure fluid, the pdf would reach
a steady state (Konrad, 1976; Broadwell & Breidenthal, 1982). However, if only
one fluid supply is infinite, such a finite jet injected into an infinite reservoir,
then eventually there is only one delta function in the pdf. If both fluid supplies
are finite, then the two delta functions both disappear, and the pdf consists of
a central Gaussian, the width of which is the rms concentration fluctuation. As
the turbulence further mixes the fluid, the Gaussian progressively narrows and the
fluctuations decline.

Here the simplest two assumptions are that both the flow and the mixing
are self-similar (Breidenthal et al., 1990). The former requires that the vortex
rotation period is proportional to its age, as we have seen above. The latter implies
that the concentration fluctuations decline by a factor of e at each rotation. The
simple result is that the concentration fluctuations should be proportional to a
characteristic time scale τ divided by time.

c′

c
= const.

τ

t
(3.9)
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The characteristic time scale is determined by dimensional considerations of the
problem. For example, if one fluid is initially in a spherical chamber and a second
fluid is momentarily injected into the chamber, τ depends on the jet impulse
and the chamber diameter. The characteristic time τ must also equal the vortex
rotation period at the moment t = τ when all pure fluid has disappeared and
the large-scale vortices have filled the chamber. Measurements of concentration
fluctuations are consistent with (3.9), in spite of the fact that the actual vorticity
field appears to decay exponentially instead of as inverse time (Aarnio, 1994).

Figure 3.3: Probability density function of the concentration field of a passive
scalar is composed of contributions from the pure fluid, Taylor layers, and the
vortex cores (Broadwell)

3.8 Density ratio

The coherence of large-scale structure in turbulence was discovered by accident.
Brown & Roshko (1974) were attempting to find out about the compressibility ef-
fects on entrainment. It was known that supersonic jets exhibited an anomalously
low spreading angle. It was not clear if this was due to Mach number or to the
density ratio of the supersonic experiments. Since density ratio was easier to con-
trol, they elected to measure its effect on spreading angle in incompressible flow by
taking shadowgraph pictures. While the most important result of their experiment
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was the coherent structure revealed by their pictures, they also determined that
density ratio has a remarkably weak effect on entrainment rate. The density ratio
must vary by a factor of 49 to achieve a factor of two change in spreading angle.
This proved that the main influence on jet spreading angle was Mach number.

A simple picture readily accounts for the effect of density ratio on entrainment
into a shear layer. Coles (1981) drew the shear layer in the Lagrangian frame of
the vortices (see figure 3.4). Fluid enters a vortex from each stream due to the
relative speed of the stream with respect to the vortex. Brown (1974) showed that
the relative speed ratio comes from consideration of the stagnation streamlines.
Assuming quasi-steady inviscid flow, the total pressure on both streamlines must
be constant and equal. Furthermore, the streamlines far from the stagnation point
are quasi-parallel, so that their static pressures must be equal. The result is the
dynamic pressures of the relative flows far from the stagnation point are equal. So
the speed ratio in this frame is just the inverse square root of the density ratio.
Dimotakis (1986) neatly summarizes the effects of both density and velocity ratio
on both the spreading angle and the entrainment ratio from the two sides of the
layer.

Figure 3.4: Sketch of the flow in the shear layer for an observer moving with the
vortices (Brown, Coles and Dimotakis)

3.9 Rotation

Bradshaw (1969) noted that when a fluid rotates, the higher speed fluid tends to
want to move to the outside of the turn. This corresponds to a state of lower kinetic
energy for the same angular momentum. The difference in kinetic energy between
the two states can dissipated into thermal energy in accord with the second law.
On the other hand, if the higher speed fluid is already on the outside of the turn, a
rotating flow acts as if it is stratified. This occurs even when the fluid has uniform
density. This effective stratification inhibits entrainment.

Cotel (2002) used Bradshaw’s analogy to explain the remarkable behavior of
aircraft trailing vortices. Even many kilometers behind a large aircraft, the wingtip
vortices are compact, laminar cores of only about a meter in diameter, in spite
of the large Reynolds number. The radial transport of momentum is strongly
inhibited by the effective stratification due to the rotation.
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3.10 Stationarity

When a vortex is near a surface, the motion of the vortex with respect to the
surface becomes important. The entrainment rate across the surface depends on
the amount of stationarity of the vortex. Even a small amount of vortex movement
completely changes the physics.

Cotel & Breidenthal (1997,1999) first identified this effect at a stratified in-
terface. The entrainment rate across a stratified interface was much different for
an impinging vertical jet compared to other turbulent flows, such as from an os-
cillating grid. The impinging vertical jet entrained fluid across the interface with
stationary, lateral vortices, in contrast to the moving vortices from an oscillating
grid or horizontal jet.

In order to quantify the stationarity, Cotel defined a new parameter. The
persistence parameter T is essentially the ratio of the rotational to the translational
speed of the vortex with respect to the surface (figure 3.5). When T is much less
than one, the flow is in the nonpersistent limit. When T is much greater than
one, the flow is said to be persistent. For a vortex near a surface, there is no more
important parameter than this.

Cotel asserted that the surface may be of any type: a stratified interface, a solid
wall, or even an iso-vorticity contour of a neighboring vortex. Thus her theory is
applicable to a wide class of flows.

Figure 3.5: The intrinsic velocity ratio of a vortex near a surface - vortex persis-
tence T = U2/U1 (Cotel)

When a piston suddenly begins to push fluid out of a tube at constant velocity,
a starting vortex is formed. The subsequent jet never catches up with this vortex
ring (Johari et al., 1997). If the piston advances sufficiently far, the starting
vortex cannot accept all the injected vorticity. Gharib et al. (1998) defined a
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“formation number” to be the ratio of the stroke length to piston diameter. The
formation number is essentially identical to the persistence parameter, as noted by
Gharib (private communication, 1995). There is a transition in vortex behavior at
a critical value of the formation number at about four, when the starting vortex
ring can no longer accept all the injected vorticity. This transition is important in
heart flow.

Another example of persistence is the boundary layer. When the surface is a
solid wall, the wall fluxes can be drastically modified by persistence. In order to
achieve the persistent limit, strong stationary vortices must be introduced. This is
difficult, since a linear vortex near a flat wall is unstable to both short wavelength
Widnall (Widnall et al., 1974) and long wavelength Crow (1970) instabilities,
which would promptly render the vortex nonsteady. Balle (Balle & Breidenthal,
2002) suggested that vortices could be stabilized by a wavy wall, substituting for
the dividing streamline in a von Karman wake. The wake vortices are known to be
at least quasi-stable. Balle found the wall flux measured at the bottom of a trough
to be laminar, as predicted by Cotel’s theory. Using flow visualization, Dawson
(2005) subsequently confirmed that an otherwise turbulent boundary layer was
indeed made laminar by the addition of persistent vortices. However, she found
that a small segment of the wavy wall did not achieve laminar flow, due to an
adverse pressure gradient in the spanwise direction. It is still an open question if a
wall shape can be found that will achieve laminar flow everywhere under persistent
vortices. Reducing the heat flux to a laminar value would be useful for turbine
blades and hypersonic flow.

Surprisingly, Dawson found that the flow pattern did not correspond to the
von Karman wake. Instead, it resembled Kelvin’s cat’s eye flow. As mentioned
above, this flow pattern always seems to be associated with laminar fluxes.

These discoveries raise interesting questions about the stabilizing effect of sta-
tionary vortices on the flow. It seems reasonable that a stationary vortex would
not directly hand off energy into smaller scale eddies, since that presumably re-
quires some kind of nonsteadiness in that vortex. However, the persistent vortex
seems to inhibit instabilities even in neighboring vorticity, such as that in the
boundary layer below the streamwise vortices. Recent results by Fransson et al.
(2005) indicate that streamwise vortices can stabilize Tollmein-Schlichting waves.

3.11 Stratification

Based on the persistence parameter, Cotel (Cotel & Breidenthal, 1997) proposed a
new model for stratified entrainment. It consists of different entrainment regimes,
determined by the Richardson, Reynolds, Schmidt, Prandtl, and persistence pa-
rameters. For simplicity, we will only consider the limit of a thin stratified inter-
face.

The Richardson number Ri (of the largest eddies) is defined as the ratio of the
potential to the kinetic energy of the largest eddies at the stratified interface. One
can also define the eddy Richardson number Riλ of a smaller eddy of size λ . For



216 3. Elements of entrainment

Figure 3.6: Cat’s eye flow (Kelvin)

a Kolmogorov spectrum, the eddy Richardson number increases with eddy size.
If Ri << 1, the potential energy is dominated by the kinetic energy and strati-

fication is not important for any eddy. If Ri > 1, there are at least two possibilities.
Depending on the Reynolds number, the smallest eddies at the Kolmogorov mi-
croscale λ0 may have an eddy Richardson number Riλ0 greater than one. If so,
then they and therefore all eddies have insufficient kinetic energy to engulf a tongue
of fluid across the interface. Consequently, in this limit of strong stratification the
interface must be essentially flat. All fluxes are purely diffusive. From dimensional
considerations, we can define a corresponding effective entrainment velocity to be
the square root of the ratio of the diffusivity divided by some eddy rotation pe-
riod. The diffusivity corresponds to the flux in question, i.e. mass, momentum, or
energy.

There are many choices for the eddy rotation period, ranging from that of
the largest to the smallest eddy. Clearly, eddies in the middle cannot be rate
limiting, since there is no basis to select one over another. So only the largest or
the smallest eddy could be correct. Cotel proposed that in the persistent limit,
the correct choice is that of the largest eddy. Remarkably, the fluxes would then
be completely independent of any fine-scale turbulence.

While this prediction may not yet have been tested in stratified flow, it does
seem to work in the corresponding wall flow discussed above. The heat flux is
laminar because the persistent vortices make the flow laminar.

In the non-persistent limit, the fluxes would be controlled by the smallest-scale
eddies, corresponding to ordinary turbulent flow. This is in accord with many
observations at stratified interfaces and the boundary layer.

If the smallest scale vortices have an eddy Richardson number less than unity,
then the interface is not flat. The eddy whose Richardson number is equal to
about unity can engulf fluid across the interface. It determines the entrainment
rate.

Dramatic evidence of the importance of persistence on stratified entrainment
was measured by Cotel et al. (1997). Following a suggestion by L. Redekopp
(private communication, 1995), they tilted an impinging jet and precessed it. The
entrainment rate was reduced by orders of magnitude compared to that of the
vertical jet. The effect is not only large, but counter-intuitive.
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Figure 3.7: Stratified entrainment diagram in the persistent limit (Cotel)

Figure 3.8: Stratified entrainment diagram in the nonpersistent limit (Cotel)
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3.12 Conclusions

The entrainment rate of a turbulent flow can always be expressed as the ratio of a
length to a time scale corresponding to the entraining eddy. This is a generalization
of the entrainment hypothesis of Morton, Taylor & Turner that accounts for a
variety of effects, such as acceleration, compressibility, confinement, stratification,
and stationarity.
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