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A B S T R A C T

The present work proposes a new scaling and modeling procedure for the description of turbulent flows subject
to wall injection or suction, non-zero pressure gradients – including flow separation – and wall heat transfer.
With the proposed scaling, mean velocity and temperature profiles are self-similar with respect to the tran-
spiration rate in the entire flow domain. All parameters appearing in the proposed expressions are shown not to
vary with any of the flow variables. The near wall solutions are extended to the defect region through con-
sideration of the intermittent character of the flow. A comparison with available experimental data shows that
the intermittent factor used in this work is a universal function, independent of the transpiration rate and the
pressure gradient.

1. Introduction

A problem of particular concern in the classical theory of laminar
boundary layers is the asymptotic suction profile. The interest in applying
distributed suction through a wall was early studied with the purpose of
either preserving laminar flow under conditions which would otherwise
lead to turbulent flow or maintaining flow without separation in the
face of adverse pressure gradients.
In the case of a flat plate at zero incidence with uniform suction, the

laminar boundary layer equations yield the exact solution

= = <u y U v y v x y v( ) [1 exp( / )]; ( , ) 0.w w (1)

Equation (1) is shown in Schlichting (1979, 7th Edition, page 385);
putting (∂u/∂x) ≡ 0 into the equations of motion and u= 0, v= vw=
const < 0 for y = 0 and u = U∞ for y→∞, the solution follows
immediately.
The resulting displacement and momentum thicknesses and wall

shear stress then simply become

= = =
v v

v U,
2

, ( ) .
w w

w w1 2 (2)

Early experiments by Kay (1948) and Dutton (1958) demonstrated
that the laminar exponential suction profile can be established and
maintained provided the boundary layer is in an undisturbed state at
the beginning of the suction region. For turbulent flow, the experiments
also showed that an asymptotic suction profile may closely be

approached at appropriate values of the suction rate. Kay further used
Prandtl’s mixing length theory and Taylor’s vorticity transfer theory to
propose two alternative forms for the mean velocity profile: a loga-
rithmic formula and a bi-logarithmic formula.
Subsequent analyzes by Dorrance and Dore (1954), Rubesin (1954),

Clarke et al. (1955), Dorrance (1956), van Driest (1957), Mickley and
Davis (1957), Black and Sarnecki (1958), Turcotte (1960),
Townsend (1961), Stevenson (1963), Marxman and Gilbert (1963),
Tennekes (1964), Torii et al. (1966), Simpson (1967), Coles (1972) and
Andersen et al. (1972) included transverse fluid injection at the wall
and involved solutions for the mean velocity profile that presented
linear (y), logarithmic (ln y) or bi-logarithmic (ln 2 y) terms. The studies
discussed the effects of heat transfer, pressure gradients (favourable and
adverse) and compressibility.
By the seventies, authors were divided as to how best represent the

mean velocity profiles, through logarithmic (Tennekes, 1964; Coles,
1972; Andersen et al., 1972; Watts, 1972; Afzal, 1975; Nezu, 1977) or
bi-logarithmic (Clarke et al., 1955; Mickley and Davis, 1957; Black and
Sarnecki, 1958; Stevenson, 1963) expressions. The discussion is not
simple since it involves the specification of different velocity and length
scales, turbulence models, dimensional analyses and asymptotic argu-
ments and methods. The experimental data also did not help: they did
not provide conclusive evidence in favour of any particular proposition.
With the passage of time, the controversy has not settled and this is
clearly illustrated in the work of Vigdorovich (2016), who advocates in
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favour of the bi-logarithmic solution.
Still, according to Vigdorovich (2016), the bi-logarithmic law is

distrusted for being derived “on the basis of the Prandtl mixing-length
formula, the validity of which near a permeable surface, of course, can
be questioned”. Actually the strongest arguments of Tennekes (1964)
and Avsarkisov et al. (2014) against the bi-logarithmic laws relate to the
adopted characteristic scales for velocity and length. In fact, the two
main opposing arguments of Tennekes are that the bi-logarithmic ve-
locity distribution does not “yield an overlap region between the wall
law and the related velocity defect law and it does not include similarity
of the flow in the viscous sub-layer”. The comment related to the
overlap region was discussed by Tennekes in terms of Millikan’s ana-
lysis, which is really much less fundamental than the intermediate limit
analysis of Kaplun (1967) or the matched asymptotic expansions’
method. This is an elaborate discussion that will not be further pursued
here. However, we notice that Silva Freire (1988b) has shown that
provided adequate asymptotic expansions are specified for all flow
parameters, an adequate matching can be carried out between the bi-
logarithmic solutions of the viscous, defect and external flow regions.
In the present contribution, a particular decomposition of the tur-

bulent shear stress is proposed. This decomposition splits the transport
of momentum into effects associated to the turbulence of the flow and
the wall transpiration. Similar procedures were recently adopted by
Mendoza and Zhou (1992) and Manes et al. (2012). Together with a
new scaling procedure (for velocity and temperature), the proposed ex-
pressions are capable of well representing flows subject to transpiration
(blowing or suction), pressure gradients, separation and wall heat
transfer. All free parameters that appear in the new expressions are
shown not to vary with the transpiration rate, the pressure gradient or
any other flow variable. They are thus true constants. This is in distinct
contrast with some other formulations where even the constant of von
Karman is subject to an empirical correction.
The near wall laws are extended to the defect layer through con-

sideration of the intermittent character of the flow. A comparison with
available experimental data shows that the intermittent factor used in
this work is a universal function, independent of the transpiration rate
or the pressure gradient. The complete (inner+outer) velocity and
temperature mean profiles are the basis of integral methods.
The new scaling (length, velocity, temperature) for the near-wall

region is appropriate for use in local analytical solutions, the numerical
implementation of turbulence models or the improvement of existing
turbulence models (Skote and Wallin, 2016).
The ample scope is an important aspect of the present study. Often,

contributions propose isolated expressions that are shown to work for
particular conditions. Most works only deal with isothermal (or adia-
batic), zero-pressure gradient flows. However, results provided by bi-
logarithmic laws are known to provide acceptable predictions for very
complex flows. For incompressible attached flows, theoretical predic-
tions of the friction and heat transfer coefficients are often within 3% of
the experimental data (Silva Freire, 1988b; Faraco-Medeiros and
Silva Freire, 1992). For compressible attached flows, predictions of the
same coefficients are good to within 5% of the data (Silva Freire, 1988c;
Silva Freire et al., 1995). Bi-logarithmic laws are also useful in pro-
viding analytical solutions to problems that involve interaction with
shock-waves (Silva Freire, 1988a) or require the specification of
boundary conditions to the model (Avelino et al., 1999). Thus, it
must be expected that any new proposition to the problem should be
able to cover an equivalent number of applications.
Many comprehensive sets of experimental data can be found in the

literature. A typical example is the thorough experimental investigation
of incompressible turbulent boundary layers subject to transpiration,
heat addition and adverse pressure gradients that was undertaken by
the Thermosciences Division of the Mechanical Engineering
Department of Stanford University. A report by Moffat and Kays (1984)
summarizes the contributions of ten doctoral programs to the data base.
Unfortunately, none of the data to which the present authors had access

contemplated simultaneously flow transpiration, transfer of heat and
separation. In fact, one experimental work was identified on transpired
and separated flow. For this reason, the only comparison with experi-
mental data presented here for transpired and separated flows uses the
data of Yang et al. (1994).

2. Characteristic scales of the flow

For the canonical turbulent boundary layer, the celebrated velocity
and length scales for the wall region are uτ (= / ,w friction velocity)
and ℓτ (= ν/uτ).
In the presence of wall transpiration, however, the viscous layer

solution is given by

=v u
u

v y¯ exp 1,w w
2 (3)

where ū now represents the longitudinal mean velocity.
Equation (3) is shown in Tennekes (1964, page 25); it is similar to

Eq. (1), but has been derived for turbulent flow by putting u= 0, v= vw
= const < 0, τ = const = τw for y = 0.
Equation (3) suggests the similarity scales u v/ w

2 and ν/vw, which
cannot, of course, be used for vw = 0 or even small values of the
transpiration velocity. In fact, a series expansion of Eq. (3) as vw → 0
gives

= +u
u

yu v
u

yu¯ 1
2

.w
2

(4)

In the above two term expansion, the relevant scales uτ and ν/uτ are
recovered. The first order correction is O(vw/uτ) so that the approx-
imation, Eq. (4), is valid for all boundary layers with blowing and
suction in which condition O(vw/uτ) < < 1 is observed. The char-
acteristic velocity for flows subjected to strong adverse pressure gra-
dients and separation was shown by Goldstein (1948) to be up (= ((ν/ρ)
(dPw/dx))1/3). At a point of zero wall shear stress, successive integra-
tions of the equations of motion give

=u
u

yu¯ 1
2

.
p

p 2

(5)

Stratford (1959) used the mixing-length concept to find for the fully
turbulent region

=u
u

yu¯ 2 ,
p

p 1/2

(6)

where ϰ (=0.4) is the von Karman constant and ϕ (=0.66) is a cor-
rection to the value of ϰ. This result was also derived by Stratford
through dimensional analysis.
Thus, it is evident from the above that any proposed scaling pro-

cedure for flows subject to transpiration and adverse pressure gradients
(with possible flow separation) needs to adjust itself to reduce to the
relevant scales in the relevant limiting cases of small, moderate and
large vw and p x¯ / .
In particular, the structure of a turbulent boundary layer must

change to accommodate the scaling of Goldstein (1948) and
Stratford (1959) at a point of separation ( =u u F yu¯/ ( / )p p ). The DNS
data of Na and Moin (1998) and Skote and Henningson (2002) confirm
the existence of regions where the Goldstein’s and Stratford’s scaling is
observed. The experimental data of Loureiro et al. (2007) and
Loureiro and Silva Freire (2009) for flow over a smooth surface and
Loureiro et al. (2008, 2009) for separated flow over rough surfaces also
clearly show the scaling of Goldstein and Stratford at a point of τw= 0.
To determine the characteristic scales of velocity and length (uc, yc)

the approach of Cruz and Silva Freire (1998, 2002) is adopted here.
Consider the momentum balance in the fully turbulent region where

the turbulent stresses are balanced by the local pressure gradient and
the inertial term, that is,
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=v u
y

p
x y

u v¯ 1 ¯ .w (7)

A first integration leads to,

=v u p
x

y u v¯ 1 ¯ .w
w

(8)

Considering that the velocities scale as u u v u¯ c and that
close to the wall yc∼ ν/uc, it results from an order of magnitude ana-
lysis of the terms in Eq. (8) (e.g., for the pressure gradient term

=y p x p x u u u¯ / ( ¯ / )/ /c p c
1 1 3 ) and further algebraic manipula-

tions that

=u u v u u/ ( ) 0,c c w w c p
3 2 3 (9)

where α and γ are proportionality coefficients of order unity and τw and
up satisfy the previous definitions. For later use, we define ucp as the
characteristic velocity scale for which =v 0,w that is

=u u u/ ( ) 0.cp w cp p
3 3 (10)

Equation (9) is an algebraic equation that can be solved for uc, its
highest real root. For boundary layer flows over an impervious surface
(where =v 0w ) and subjected to separation, the behaviour of uc is vastly
discussed in Loureiro and Silva Freire (2011). In particular, the char-
acteristic behaviour of uτ, up and uc is described according to the data of
Na and Moin (1998) and of Loureiro et al. (2007). From Eq. (9), it is
clear that as =v 0w and τw→0, Goldstein’s scaling uc∼ up is recovered;
as =v 0w and p x¯ / 0 the friction velocity uc∼ uτ is obtained.
For a zero-pressure gradient flow ( p x¯ / = 0), Eq. (9) reduces to a

second-order equation with solution

= + +u v v u1
2

( 4 ).c w w
2 2 2

(11)

For vw = 0, it follows immediately that uc = uτ. For the limiting
case, vw/uτ < < 1,

= + +u u v v
u

1
2

1
8c w

w2
2

(12)

an expression that to the first two orders of approximation is equivalent
to the one introduced by Tennekes (1964).
Equation 9 is then observed to satisfy in the limiting relevant cases

all expected behaviours. An alternative scaling was introduced in
Skote and Henningson (2002), whereby the viscous term is retained in
the treatment of the near-wall region and the quantity y is kept as a free
parameter. Note, however, that the quoted authors never considered
wall transpiration in their analysis.

3. Near wall local solutions

3.1. Mean velocity profile

To find an expression for the stream-wise mean velocity profile in
the near-wall fully turbulent region, consider that the behaviour of the
turbulent shear stress τt is affected essentially by two distinct me-
chanisms: (i) the transport of momentum associated with the larger
Reynolds-stress-carrying eddies and (ii) the injection or suction of fluid
at the wall.
With this consideration, τt can be written as

= + ,t e vw (13)

where the subscripts e and vw refer respectively to eddy and wall
transpiration effects.
Further, consider the eddy viscosity hypothesis

= u u
y
¯ ,e c t (14)

where uc is the characteristic velocity defined by Eq. (9) and ℓt= ϰy (ϰ

= 0.4).
An expression for the component of τt associated with the extra

momentum transport caused by the wall transpiration ( vw) must be
related to the characteristic velocity of the flow and the injection (or
suction) velocity. A simple dimensional analysis suggests

= u v ,v c ww (15)

where β is a proportionality constant of order unity.
Equation (15) furnishes a zero contribution to the total turbulent

shear stress as =v 0w ; positive and negative contributions follow in the
case of wall injection or suction respectively. With the proposed ex-
pression for ,vw the turbulent shear stress does not vanish at =y 0. The
model is thus valid only in the fully turbulent region of the boundary
layer. This is made clear next through an extensive analysis of many
experimental data sets.
The analysis continues with the local approximate equation,

= + +

+ = + +

dP
dx

y v u

u u
y

u v dP
dx

y v u

¯,

¯ ¯,

t w
w

w

c t c w w
w

w
(16)

where λ is a dimensionless parameter.
Solutions of the above first order ordinary differential equation,

Eq. (16), are not in general logarithmic solutions as demonstrated next.
Only under special conditions, solutions of Eq. (16) reduce to the
logarithmic law.
At the wall, the equations of motion show that the gradient of total

stress normal to the wall is equal to the stream-wise pressure gradient.
However, away from the wall, in the fully turbulent region, both
quantities are observed to depart in view of the inertia effects. To
simplify the theoretical formulation, McDonald (1969) suggested to
encapsulate the inertia effects into the pressure gradient term through
consideration of the parameter λ. In his work, McDonald found λ= 0.7,
about the same value that was quoted by Knopp et al. (2015). In fact,
McDonald’s analysis of the data of Newman (1951) determined that the
value of λ was below 0.33 as a separation point was approached.
However, he concluded that = 0.7 is a good approximation for most of
the data sets that he analysed. Perry et al. (1966) proposed a varying λ –
0.65 to 0.9 – while Granville (1989) set = 0.9. Knopp et al. (2015)
obtained a value of = 0.6 for their own data and = 0.9 for the ex-
periment of Skåre and Krogstad (1994).
Equation (16) can be analytically solved with Eq. (13). The solution

is

= + +u
u

u
u v

A yu u
u u v

yu¯ 1 ,
c c w

c p

c c w

c
2 3

3 2

vw
uc

(17)

where A is an integration constant.
Parameter β is obtained from the condition that Eq. (17) must

contain as limiting cases the particular solutions as vw→0 with dPw/
dx≠0 and dPw/dx→0 with vw≠0 (Section 3.3);

= +f P u
u

A( ) ln( ),
cp

2

2 (18)

where ucp is the solution of Eq. (9) with =v 0w (latter justified) and
+f P( ) is given by (also latter justified)

= ++f P
u
u

u
u

u
u

u
u

( ) 1
2

10. 8 10.8

ln(10.8) 10.8.

p

cp cp

cp

p

cp

3
2

2

2 3

3
(19)

Equation (17) exhibits four constants that need to be determined
from experimental or numerical data. The values adopted in the present
work are =A 0.35, = 3.15, = 0.45 and = 3.4. These constants were
obtained from a large set of experimental and DNS data, that satisfied
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general as well as limiting conditions.
For example, a comparison of Eq. (17) with the results of

Andersen et al. (1972), Blackwell et al. (1972) and Orlando et al. (1974)
for turbulent boundary layer flows over flat plate walls with tran-
spiration and mild or strong adverse pressure gradients shows that a
good agreement is obtained in the near wall region (Fig. 1). A com-
parison of Eq. (13) with the experiments of Andersen et al. (1972)
(Fig. 2) also shows a good agreement (in the interval 20< yuτ/
ν<250).
The evaluation of Eq. (17) close to detachment/reattachment points

(where τw→0) furnishes

= +u
u

u
u u v

yu¯ 10. 8
2

10.8 .
c

p

c c w

c
3

3 2

2

3 3 (20)

Yang et al. (1994) performed LDA measurements on separated-re-
attaching flows over a backward-facing step (BFS) with uniform normal
mass injection; three non-zero injection rates were discussed. The no-
injection data show that the characteristic scales proposed by
Stratford (1959) furnish similarity. Wall injection, on the other hand,
suggests that uc must be the appropriate velocity scale (Fig. 3 (b)).
Equation (20) is the first scaling law presented in literature that

considers the effects of wall transpiration in the regions of vanishing
wall shear stress.

3.2. Mean temperature profile

The temperature law of the wall is obtained through an analogy
with the fluid dynamic model.
Consider that the turbulent heat flux can be written as the sum of

two components,

= +q q q ,t e vw (21)

where qe is associated with the larger, turbulent-energy-carrying eddies
and qvw represents the bulk influence of transpiration in qt.
The first term on the right-hand side of Eq. (21), qe, is modelled with

a thermal analogy for Boussinesq’s hypothesis,

=
+

q c u
y

u
T
y

,e p cp T
w

dP
dx

c
2

w

(22)

where ℓT= ϰTy is the thermal mixing length and the factor (τw+ ydPw/
dx)/ ucp

2 is justified in Section 3.3.2.
The remaining term is modelled through simple dimensional ana-

lysis, that is,

=q c v T˜ ,v p w cw (23)

where ˜ is a proportionality factor of order unity and Tc is a char-
acteristic temperature scale given by,

Fig. 1. Mean velocity profiles for adverse pressure gradient boundary layer flows with wall transpiration. =+V v u/w w ; =+P u u( / )p
3.

Fig. 2. Mixing length profiles for adverse pressure gradient boundary layer flows with wall transpiration accordingly to the proposed theory. =F v U/w .
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=T
q
c u

,c
w

p c (24)

where uc is calculated from Eq. (9) with a thermal proportionality factor
(=γT) for the pressure gradient term.
The total turbulent heat flux is then given by

=
+

+q c u
y

u
T
y

c v T˜ .t p c T
w

dP
dx

cp
p w c2

w

(25)

The hypothesis, Eq. (25), is readily compared with the experimental
data of Blackwell et al. (1972) and Orlando et al. (1974) in Fig. 4.
The energy equation for the near wall region is

= +q q c v T T( ).w p w w (26)

A first integration, with Eq. (25), yields

=
+

+T T
T

u
v

C̄ 1 ˜.w

c

c

w

yu

u
u

u

u u
yu

c

cp

p

cp c
c

ucpvw

Tuc u

2

2

3

2

2

2

(27)

and the constant of integration C̄ must guarantee solution boundedness
as uτ→0 with vw≠0 and the correct asymptotic behaviours as dPw/
dx→0 with vw≠0 and vw→0 with dPw/dx≠0 (Section 3.3).
The simplest possible proposition is

=C A¯ .T
u u

T
u u/ 3( / 1)cp cp

2 2 3 3
(28)

The new temperature law of the wall, Eq. (27), exhibits three con-
stants that need to be determined from experimental data ( ˜ is eval-
uated from Eq. (33)). The values adopted in the present work are γT =
3.1, AT = 0.6 and = 3.15.
Equation (27) is tested against the experimental data of

Blackwell et al. (1972) and Orlando et al. (1974) for strong and mild
APG boundary layers with wall injection and suction in Fig. 5.
Equation (27) furnishes a good fit to the data except for the higher
injection rate.
Equation (27) in regions of vanishing wall shear stress, reduces to

= + +T T
T

u
v yu

Aexp 1 ln 1 ˜.w

c

c

w
T

c
T

3 vw
Tuc

(29)

Fig. 3. Mean velocity profiles in the region of vanishing wall shear stress; (a) flat plate boundary layer non-transpired flows and (b) backward-facing step flows with
wall injection.

Fig. 4. Temperature mixing-length profiles for adverse pressure gradient boundary layer flows with wall transpiration.
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3.3. Limiting cases

3.3.1. Zero-pressure gradient flows with wall injection or suction
In the particular case dPw/dx = 0 and vw ≠ 0, Eq. (17) reduces to

= +u
u

u
u v

A yu¯ 1 .
c c w

c
2 vw

uc

(30)

Clearly, the classical logarithmic-law of the wall is recovered as vw
→ 0 provided

= A5 1 ln( ). (31)

Equation (30) is compared in Fig. 6 with the boundary layer data of
Andersen et al. (1972), Baker and Launder (1974), Kornilov and Boiko
(2014, 2016) for injection, Simpson (1967), Trip and Fransson (2014),
Bobke et al. (2016), Ferro et al. (2017) and Khapko et al. (2016) for
suction, the pipe flow with suction of Elena (1977) and the closed
channel flows with wall injection of Nikitin and Pavel’ev (1998),
Sumitani and Kasagi (1995) and Avsarkisov et al. (2014).
The values of the calibration constants are =A 0.35 and = 3.15.

The excellent collapse of the profiles suggests that self-similarity with
respect to the transpiration velocity is captured.
The mixing-length hypothesis advanced by Eq. (13) is corroborated

in Fig. 7.
The temperature profile, Eq. (27), becomes

= +T T
T

u
v

A yu 1 ˜,w

c

c

w
T

c
vw
Tuc

(32)

where AT is a constant of integration.
The numerical value of ˜ is obtained as Eq. (32) is considered in the

limit vw → 0, that is,

= C Pr A˜ ( ) 1 ln( ),
T

T (33)

and C(Pr) is the y-axis intercept of the temperature logarithmic law for
non-transpired flows (Pr is the molecular Prandtl number).
Mean temperature profiles for flows with various transpiration rates

are shown in Fig. 8 according to the injection and suction data of
Whitten (1967) and Sumitani and Kasagi (1995). A curve fit to the
temperature profiles furnishes =A 0.6T and = 3.15.

Fig. 5. Mean temperature profiles for adverse pressure gradient boundary layer flows with wall transpiration.

Fig. 6. Thirty two mean velocity profiles for zero-pressure-gradient (ZPG) transpired flows shown in similarity coordinates. The values of the transpiration para-
meters are in the range F0.00345 0.0164, +V0.065 0.87w .
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The validity of the mixing length hypothesis is tested against the
DNS data of Sumitani and Kasagi (1995) in Fig. 9 with ˜ obtained from
Eq. (33).

3.3.2. Variable pressure gradient flows with no injection or suction
Equation (17) under the conditions vw → 0 and dPw/dx ≠ 0 re-

duces to

= + + +u
u

u
u

yu u
u

yu f P¯ ln ( ),
c c

c p

c

c
2

2

3

3 (34)

where +f P( ) is a constant of integration (in yuc/ν).
Equation (34) is similar to previous formulations of other authors

(Simpson, 1983; Wilcox, 1989); in particular, it contains a combination
of logarithmic and linear terms. As experimental and DNS mean velo-
city data are shown in coordinates yuc/ν and u/uc, they appear to ex-
hibit a straight line behavior in a well-defined region but do not col-
lapse onto a single curve. The conclusion is that f is indeed a function of

+P .
To determine +f P( ), use is made of the intercept between the sub-

layer and the fully turbulent solutions, the point (ya, ua). In the viscous
sub-layer solution,

= +u
u

yu u
u

yu¯ 1
2

,p
3 2

(35)

an equation that can be used to express ua in terms of ya.
In the limit dPw/dx→0, yauτ/ν is 10.8. A generalization of this result

is

=
y u

10.8,a c
(36)

from which Eq. (19) follows.
Figure 10 compares Eq. (34) ( = 0.45 and = 3.4) with the data of

Kiel (1995), Marusic and Perry (1995), Na and Moin (1998),
Bernard et al. (2003), Willert (2015) and Gungor et al. (2016).
Many authors consider the mixing-length a rather restrictive pos-

tulate, in particular, for flows subjected to adverse pressure gradients.
The data of Marusic and Perry (1995), Dengel and Fernholz (1990),
Skote and Henningson (2002), and Gungor et al. (2016) show that ap-
plication of the mixing-length theory does not conflict with experiments
(Fig. 11).
Near to a separation or reattachment point, Eq. (34) takes on the

form

Fig. 7. Mixing-length profiles for ZPG flows with wall transpiration.

Fig. 8. Mean temperature profiles for ZPG transpired flows shown in similarity coordinates.
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= +u
u

yu¯ 10. 8
2

10.8 .
p

p 2

2 2 (37)

This result is different from Stratford’s half power law. However,
when mean velocity profiles are shown in a non-dimensional linear
coordinates system, a linear portion in the near wall region can be
identified (Fig. 3 (a), Stratford’s half power law is also shown for
comparison).
The experimental data of Blackwell et al. (1972) and Pak (1999)

suggest that the turbulent Prandtl number near the wall is a function of
the pressure gradient parameter. In an alternative approach to the use
of the turbulent Prandtl number concept, a new closure expression for
the turbulent flux of heat qt (= c v Tp ) based on simple order of
magnitude considerations and the mixing length model can be sum-
moned. Consider = = +v u v yu u y y dP dx¯/ / ( / ) / ,c w w
where the identities stem from the mixing-length theory for the transfer
of mean momentum. Equivalently, consider for the temperature fluc-
tuation, T yT T y/ ,T c so that qt can be cast as

= +q c dP
dx

y yT T
y

1 .t p
w w

T c
(38)

Integration of Eq. (38) together with the energy equation ( =q qt w)
leads to

= + +T T
T

u
u

yu u
u

u
u

yu C1 ln ln ˜,w

c T

c c

c

p

c

c
2

2

2

2

3

3
(39)

where C̃ must be determined so as to guarantee solution boundedness
as uτ→0 and the correct asymptotic behaviour as dPw/dx→0, that is,

= +C u
u

u
u

C Pr˜ 1 ln( ) 1 ln( ) ( ),
T

c
T

T c
T

2

2
3 3

(40)

where C(Pr) is the intercept of the temperature solution for zero pres-
sure gradient flows. Since u u/p c T

3 3 3 as uτ→0, the first term on the
r.h.s. of Eq. (40) assures boundedness in that limit; since uc/uτ→1 as
dPw/dx→0 the last two terms make the solution correct for zero
pressure gradient flows.
The temperature solution can then be written as

Fig. 9. Temperature mixing-length profile for channel flow with wall tran-
spiration.

Fig. 10. Mean velocity profiles for adverse pressure gradient boundary layer
flows.

Fig. 11. Mixing-length profiles for adverse pressure gradient boundary layer flows.
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(41)

Figure 13 (a) shows the data of Blackwell et al. (1972) and
Orlando et al. (1974) in comparison with Eq. (41). The thermal mixing
length hypothesis is corroborated in Fig. 12.
In the region of vanishing wall shear stress Eq. (41) reduces to an

inverse linear power law,

= + +T T
T

yu C Pr( ) 1 .w

p

T

T

p

T T T

1

(42)

A comparison between the data of Vogel (1984) for flow over a
backward-facing step, and Eq. (42) in Fig. 13(b) furnishes a good
agreement.
In Section 3.2 the equation for qe, Eq. (22), was introduced so as to

guarantee the correct asymptotic behaviour of qt and T as the limit
cases are considered.

4. Defect layer solution

To extend the near wall solutions to the defect region of turbulent
boundary layers, the intermittent character of turbulence is used.
All turbulent flows with a free boundary exhibit a distinctly sharp

and very thin region that varies continuously with position and time
and separates regions of turbulent (T) and non-turbulent (NT) flow
(Klebanoff, 1955; Corrsin and Kistler, 1955). The T/NT interface is
normally referred to as the viscous superlayer and is shown – depending
on the flow nature – to have its thickness scaled with the Kolmogorov
length, Taylor’s micro-scale or the friction length. An excellent review
on interface layers is found in da Silva et al. (2014).
The intermittency hypothesis of Sarnecki (1959) postulates that the

mean velocity profile in the outer region of a turbulent boundary layer
can be represented through,

= +u u u¯ (1 ) ,s sturb pot (43)

where uturb and upot are respectively the mean velocities whether the
flow is turbulent or potential (or non-turbulent). Sarnecki further con-
siders that =u Upot and uturb is obtained from the near wall solution.
These considerations imply that there is a discontinuous velocity jump

Fig. 12. Temperature mixing-length profiles for adverse pressure gradient boundary layer flows.

Fig. 13. Mean temperature profiles for adverse pressure gradient flows; (a) flat plate boundary layer and (b) backward-facing step at the reattachment point.
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at the interface. However, since the thickness of the superlayer is very
thin compared to the flow width, all field variables vary smoothly
across the boundary layer.
The intermittent factor (γs) is given by the error function,

=y y µ( / ) 1
2

1 erf / /
2 /

,s
(44)

where the boundary layer thickness δ is defined by

= =u x y U¯ ( , ) 0.99 . Experimental data reveal that parameters μ/δ and
σ/δ do not vary with the transpiration velocity or the pressure gradient
parameter and γs is a universal function of y/δ. Parameters μ and σ are
the mean and standard deviation in a Gaussian distribution of Y(t), the
position of the turbulent/non-turbulent (T/NT) interface. Appropriate
values are =µ/ 0.78 and =/ 0.14 (Klebanoff, 1955) and =µ/ 0.66
and =/ 0.11 (Chauhan et al., 2014).
In Fig. 14 all profiles are shown with =µ/ 0.66 and =/ 0.23. The

Fig. 14. Mean velocity profiles shown in outer coordinates; (a-c) ZPG flows with wall injection, (d-e) ZPG flows with wall suction, (f-h) strong APG and separated
non-transpired flows, (i) APG flows with wall injection or suction and (j) backward-facing step flows with wall injection.
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expressions provide an excellent fit to the data throughout the flow
field, including the near wall region (y/δ<0.1 approximately). Profiles
in regions of reverse flow are known to be particularly difficult to
predict, in particular in the small portion where ū is negative. The
present approach, however, is noted to furnish good predictions. In the
particular case of a flow with =v 0w and =p x¯ / 0 the intermittency
hypothesis of Sarnecki (1959) coincides with the two-state model pro-
posed by Krug et al. (2017).
In the defect region, an expression for the mean temperature profile

is proposed based on a straight analogy with the velocity case. Consider
that the temperature difference T Tw can be expressed by the fol-
lowing equation,

= +T T T T T T( ) (1 )( ),w w wturb (45)

where T Tw turb is obtained from the near wall solution and φ is the
thermal intermittent factor.
Equation (45) is refereed to as the thermal intermittency hypothesis. φ

is given by

=y
y µ

( / ) 1
2

1 erf
/ /

2 /
,T

T (46)

where μT and σT are analogous to μ and σ but are associated with the
transfer of heat.
The temperature intermittent hypothesis must represent the scalar

gradient T/NT interface as made clear by Silva and da Silva (2017).
Figure 15 shows comparisons between mean temperature profiles

obtained through the temperature intermittent hypothesis (with
=µ 0.6T and = 0.3T ) and the experimental data of Whitten (1967),

Blackwell et al. (1972), Orlando et al. (1974) and Vogel (1984). The
excellent agreement between theory and the data shows that φ is a
universal function of y/δ; thus, φ does not depend on the transpiration
rate, the pressure gradient parameter or the Reynolds number.

5. Final remarks

The present work has proposed some new scaling laws for tran-
spired turbulent flows with non-zero pressure gradients and wall heat
transfer. With the proposed scaling, mean velocity and temperature

profiles are self-similar with respect to the transpiration rate in the
entire flow domain.
In the proposed formulation, all free parameters are constants that

do not vary with the transpiration rate or the pressure gradient para-
meter. The intermittent character of turbulence was used to extend the
domain of validity of the near wall solutions to the outer region of the
domain. The intermittent factor is found to be a universal function of the
wall normal direction scaled by the boundary layer thickness.
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