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The present work introduces the Statistical Moments Transport (SMT) Model for a description of the 

mean and standard deviation values of bubble and liquid slug lengths in horizontal, inclined and vertical 

flows. The model considers gas depressurization and the interaction (coalescence) between long bubbles. 

Results are compared to three other theoretical approaches – unit cell, slug tracking and slug capturing 

models – and six different experimental data sets. The gain in computing time as compared to the slug 

tracking model even in relatively short pipes is of two orders of magnitude. 
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. Introduction 

Horizontal slug flow has been a subject of major concern over

he last 50 years. This is a very complex flow, characterized by

lternated long bubbles and aerated liquid plugs traveling down-

tream. For the typical gas and liquid flow rates practiced in indus-

ry, information on the local flow conditions are impossible to ob-

ain due to the very small time and length scales that would have

o be resolved. Whereas for single phase flows resolving the small

issipative scales may be an option for low and moderate Reynolds

umbers, multiphase flows pose the additional difficulty of cor-

ectly representing phase interfaces and their related phenomena. 

Fortunately, to many problems of practical interest, predictions

f volume ( or time ) averaged properties suffice to most design

nd operational requirements. As a natural consequence, the

evelopment of mechanistic and one-dimensional models based

n the equations for mass, momentum and energy conservation

as been diligently pursued by the scientific community. These

odels normally furnish data on liquid and gas fractions, pressure,

elocities and temperatures and can be divided ( apud Nydal, 2012 )

etween those that “avoid small-scale phenomena” (e.g., unit cell

odels) and those that “resolve all scales” (e.g., capturing and

racking methods). 

The purpose of the present work is to discuss a method that

ses transport equations to obtain the statistical moments of
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ubble and liquid slug lengths. The length distributions of long

ubbles ( L B ) and liquid slugs ( L S ) can be obtained from methods

hat resolve all flow scales, but these methods require a large com-

utational time. The Statistical Moments Transport Model (SMT)

urnishes data on the average values of L B and L S and their stan-

ard deviations, at a very modest computational time. The present

ormulation is compared to the unit cell model of Orell (2005) ,

he slug tracking model of Cook and Behnia (20 0 0) , the slug

apturing model of Evje and Flåtten (2003) and the experimen-

al data introduced by Grenier (1997) , Cook and Behnia (20 0 0) ,

jang et al. (2006) , Mayor et al. (2008) , Gonçalves et al. (2018) and

an Hout et al. (2003) . 

In fact, most model formulations differ greatly in regard to

heir constitutive hypotheses and implementation details. Many

ifferent propositions can be easily identified for unit cell, slug

racking or slug capturing models. The above selection, nonethe-

ess, offers a good representation of what is available in the

iterature for slug flow prediction. 

To hamper misunderstandings on the implementation of the

uoted models, their general premises and a few details are dis-

ussed in a specific section. The early models developed to predict

he phase velocities and pressure gradient were based on the

nit cell concept initially advanced by Wallis (1969) . Dukler and

ubbard (1975) proposed the first comprehensive model. Shortly

ublished subsequent papers strove on variations of the same

oncept. In, Fabre et al. (1989) proposed a different approach

ased on a statistical cell unit (see also Fabre and Liné, 1992 ).

he developments just described quickly improved the ability of

cientists and engineers to predict important flow parameters such

https://doi.org/10.1016/j.ijmultiphaseflow.2019.103086
http://www.ScienceDirect.com
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as the pressure gradient, the mean phase velocities and the mean

volume fractions. However, the same methods did not improve

on the knowledge of the slug structure, i.e., very little advance

was obtained on the prediction of the statistics of bubble and slug

lengths and their evolution along a pipe. 

Interesting early experimental works by Dhulesia et al. (1991) ,

Nydal et al. (1992) and Grenier (1997) , provided statistical descrip-

tions on slug flows. Fagundes Netto (1999) studied the behavior

of isolated bubbles in a liquid horizontal flow, focusing on the de-

scription of the bubble shape and the interaction between bubbles.

Possibly, the most popular approach to assess the evolution

of the slug structure is the slug tracking method, where the

volume and position of each individual bubble and slug are

followed through the pipe length. The bubbles expand as pres-

sure decreases and coalescence may occur. The flow structure is

determined after a simulation time that ensures the passage, at

any pipe position, of a large enough number of cells for a reli-

able statistical study. Grenier (1997) , Nydal and Banerjee (1996) ,

Barnea and Taitel (1993) , Straume et al. (1992) and others applied

this method to describe the slug structure evolution along a

pipe. The present alternative approach, as mentioned before, uses

transport equations for the statistical moments of bubble and

liquid slug lengths. The present method takes into account gas

depressurization and the interaction between bubbles. As shown

next, the SMT predictions furnish very good results as compared

with the slug tracking method, the new approach being much

simpler and faster. A comparison between the two methods yields

a gain on computing time of two orders of magnitude. 

2. Closure relations 

Any model that aims at predicting the flow structure needs to

resort to a number of closure laws, in particular, to express bubble

velocity and shape. 

2.1. Bubble velocity in fully developed flow 

The velocity of a long bubble in a fully developed hor-

izontal slug flow was extensively studied in the past. This

velocity can be expressed through the equation proposed by

Nicklin et al. (1962) (vertical flow): 

 = C 0 U + C ∞ 

√ 

gD , (1)

where V is the bubble nose velocity, U is the mixture velocity of

the liquid slug ahead of the bubble, g is the gravity and D the pipe

diameter. Nicklin et al. (1962) proposed C 0 = 1.2 for turbulent

flow and C ∞ 

= 0.35. 

For horizontal flow, Bendiksen (1984) proposed the use of two

sets of coefficients, depending on the Froude number ( F r ) defined

as: 

F r = 

U √ 

gD 

(2)

For Froude numbers above a critical value F r crit 
, C 0 is equal to

1.2 and the drift coefficient C ∞ 

vanishes. For low Froude numbers,

C 0 is equal to unity and the drift coefficient becomes a function of

the Eötvos number, as proposed by Moissis and Griffith (1981) : 

 ∞ 

= 0 . 54 − 1 . 76 E −0 . 56 
o , (3)

where the dimensionless number E o is defined as: 

E o = 

(�ρ) gD 

2 

σ
(4)

and σ and ρ are, respectively the superficial tension and density. 

To ensure continuity, the critical Froude number is 

F r critical = 

0 . 54 − 1 . 76 E −056 
o (5)
0 . 2 
For air and water flowing in a 53 mm pipe section at atmo-

pheric pressure, the Eötvos number is about 390. In this case, the

oefficients of Eq. (1) are: 

 0 = 1 . 0 and C ∞ 

= 0 . 48 for U < 2 . 4 

√ 

gD 

 0 = 1 . 2 and C ∞ 

= 0 for U ≥ 2 . 4 

√ 

gD 

(6)

.2. Influence of the slug length on the bubble velocity 

Moissis and Griffith (1962) presented the first study on the in-

uence of the liquid slug length on bubble velocity. These authors

tudied vertically ascendant flows to propose 

 (L S ) = 8 . 0 e −1 . 06 L S /D , (7)

here variable L S is the length of the liquid slug that precedes the

ubble whose dimensionless velocity v and is defined as 

 (L S ) = 

V B − V B ∞ 

V B ∞ 
(8)

The velocity V B is the actual bubble nose velocity and V B ∞ 

is the

ubble nose velocity behind an infinite long liquid slug ( L S → ∞ ).

Several authors used their own results to calibrate equations

ith the basic format of Eq. (7) , including horizontal flows. 

Nydal and Banerjee (1996) proposed a slug-tracking model that

s deemed valid for any pipe inclination and adopts Eq. (7) in its

riginal format. Barnea and Taitel (1993) used a similar expres-

ion, but with different coefficients for the horizontal case; the

roposed expression was 

 (L S ) = 5 . 5 e −6 . 0 L S /L STAB , (9)

here L STAB is the minimum length of a stable slug and was

onsidered equal to 10 D for the tested low mixture velocity

0.26 ms −1 ) and 15 D for the tested higher velocity (1.5 ms −1 ). 

Grenier (1997) also proposed a slug-tracking model for the

orizontal case. The proposed expression for bubble velocity was

ased on Eq. (7) , with modified coefficients as to better fit his

xperimental data on the flow of water and air in a pipe with

3 mm internal diameter and 90 m in length. The expression used

y Grenier (1997) was 

 (L S ) = 0 . 4 e −0 . 5 L S /D (10)

Cook and Behnia (20 0 0) presented an article comparing their

lug-tracking model with experimental results obtained in a hor-

zontal pipe with 50 mm i.d. and 16 m in length. The data were

btained at a position 10 m downstream of the inlet position. For

heir slug-tracking model, they proposed the following relation

etween bubble velocity and slug length 

 (L S ) = 0 . 56 e −0 . 46 L S /D (11)

Fagundes Netto et al. (2001) carried out an experimental study

n the behavior of two isolated air bubbles traveling in water flow

nd separated by a short distance. The test section consisted of a

0 m horizontal pipe with 53 mm internal diameter. A system of

ontrol valves allowed the injection of bubbles with a given length

nd separating distance. Capacitance sensors were distributed at

wo measuring positions (3 and 65 m downstream of the inlet

ocation) to evaluate the size of the bubbles, their velocities and

eparating length. The experiments show that bubbles separated

y liquid slugs shorter than a critical value coalesce. Conversely,

or liquid slugs bigger than the critical value, the trailing bubbles

ere observed to move slower than the leading bubbles so that

he distance between them increased. 

Fig. 1 shows the experimental data of Fagundes Netto

t al. (2001) on L S / D at positions 3 ( x -axis) and 65 ( y -axis)

eters downstream of the flow inlet. The graph basically illus-

rates the distance between two consecutive bubbles at these two
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Fig. 1. Evolution of slug length at positions 3 m ( Section 1 ) and 65 m ( Section 2 ) 

from the inlet. Data of Fagundes Netto et al. (2001) . 
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(L S ) i = F i − R i (21) 
ositions. Provided at position 3 m, the distance between the two

ubbles is shorter than 6.3 D , coalescence occurs so that L S / D = 0

t 65 m. On the other hand, for L S / D > 6.3 D , the distance between

ubbles increases, evidencing that the trailing bubble moves

lower than the leading bubble. The data, in particular, suggests

hat an exponential relationship between bubble velocity and slug

ength, as proposed by Moissis and Griffith (1962) for vertical flow,

s not appropriate for horizontal flow. To overcome this difficulty,

agundes Netto et al. (2001) proposed the relation: 

 (L S ) = 0 . 22 [ 1 − L S / (6 . 3 D ) ] e −0 . 16(L S /D ) (12)

.3. The coalescence process 

Most of the slug tracking models do not consider the actual

hape of the bubbles and consider that, in the event of coales-

ence, the resulting bubble length is the sum of the two original

ubbles lengths. 

However, Fagundes Netto (1999) has shown that as two bubbles

erge in a horizontal flow, the length of the resulting bubble is

maller than the sum of their lengths. The reduction in length is

aused by the drainage of the liquid film originally located under

he nose of the trailing bubble. To estimate this difference ( �L C )

he following correlation was advanced: 

�L C 
D 

= 1 . 225 

(
1 − 1 √ 

F r 

)(
L B 1 + L B 2 

2 D 

)2 / 3 

, (13)

here L B 1 and L B 2 are the lengths of the two original bubbles and

 is the pipe diameter. 

In the present work this equation is modified to: 

�L C 
D 

= 1 . 225 

(
1 − 1 √ 

F r 

)(
�L B 

D 

)2 / 3 

(14) 

. Slug flow models 

.1. Unit cell 

Unit cell models estimate the averaged slug flow parameters

y approximating the transient, chaotic phenomenon through

 steady periodic structure that is repeated downstream. As

entioned before, distinct models are available in literature,

ased on hypotheses that may exhibit considerable differences.

onçalves et al. (2018) discuss in detail the physical hypothe-

es and the mathematical constrains that support the models

f Dukler and Hubbard (1975) and Orell (2005) . As it turns

ut, the model of Orell (2005) is of easier numerical imple-

entation and has a “bigger” validity domain (please refer
o Gonçalves et al., 2018 for a discussion on the physical and

easible validity domains of unit cell models). The models an-

lyzed in Gonçalves et al. (2018) had their full physical and

athematical formulations (with adequate notation) explained in

andeira et al. (2017) . For a detailed description on the formulation

f the models of Dukler and Hubbard (1975) and Orell (2005) the

eader is referred to the origin sources or to Bandeira et al. (2017) .

The model of Orell (2005) combines a separated flow region

n which the film region is described as a flat, stratified geometry

nd a mixture model in the slug region. The model furnishes pre-

iction for the average holdup and pressure drop. Specifically, the

odel yields slug and bubble fractions L S / L u and L B / L u . For com-

arison with the other methods, a formulation for the frequency

f passage of slugs is required so that the quantity L u = U t /νs can

e estimated; here, the correlation of Schulkes (2011) is used. This

orrelation is relatively new and is based on an ample data set

ith 1200 experimental points. The expression takes into account

he dynamic and geometric properties of flows and is given by 

s = �(α)�(Re L )	(θ, F r L ) 
U 

D 

, (15)

here α = flow volumetric gas fraction, Re L = liquid slug Reynolds

umber, Fr L = liquid slug Froud number, θ = pipe slope. 

The auxiliary functions are defined through: 

(α) = 0 . 016 α(2 + 3 α) (16)

(Re L ) = 

{
12 . 1 Re −0 . 37 

L 
, Re L < 40 0 0 

1 . 0 , Re L ≥ 40 0 0 

(17) 

(θ, F r L ) = 

{ 

1 + 

2 
F r L 

sgn (θ ) 
√ | θ | , | θ | ≤ 0 . 17 

1 . 8 
F r L 

(0 . 6 + 2 θ − θ2 ) , | θ | > 0 . 17 

(18)

.2. Slug tracking 

The model of Cook and Behnia (20 0 0) is based on the work

f Barnea and Taitel (1993) . Both models determine the statistical

istribution of slug lengths from an empirical expression that

efines the rate of collapse of short slugs as a function of their

engths; their basic distinction is the specification of distinct

volution laws. Cook and Behnia (20 0 0) used their own exper-

mental data whereas Barnea and Taitel (1993) fitted the data

f Moissis and Griffith (1962) . The model is purely evolutionary.

nce the translational velocities of the front and rear of randomly

istributed slugs are assigned through the working empirical

xpressions, the motion of the slug can be described through a

imple marching process. The models at no instant resort to the

rst principles; thus, no dynamic equation of motion is solved. 

The position of a slug rear ( R ) and front ( F ) is updated through

he propagation equations: 

 

t+�t 
i 

= R 

t 
i + V R i �t (19)

here V R is the velocity of a bubble behind a slug (obtained from

q. (11) ) and 

 

t+�t 
i 

= F t i + V F i �t and V F i = V R i −1 
(20)

espectively. 

A slug collapses as R i approaches F i . As a natural consequence

f this event, the collapsed slug is removed from the pipe and all

pstream cells are renumbered ( Cook and Behnia, 20 0 0 ). 

The length of each individual slug is given by: 
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3.3. Slug capturing 

The slug capturing approach aims at naturally reproducing the

physics of slug generation through the solution of a two-fluid

model for separated flow. The method was introduced by Issa and

Kempf (2003) and has been further applied successfully by other

authors for the prediction of slug length distributions (see, e.g.,

Nieckele et al., 2013 ). 

The model considered here in based on the formulation of

Evje and Flåtten (2003) . The continuity equation for each phase

k (= G, L ) is given by: 

∂(ρk αk ) 

∂t 
+ 

∂(ρk αk U k ) 

∂x 
= 0 (22)

The momentum conservation equation assumes the form: 

∂(ρk αk U k ) 

∂t 
+ 

∂ 

∂x 
(ρk αk U 

2 
k + (p k − p i k )) + αK 

∂ p i 
k 

∂x 
= Q k , (23)

where p k 
i 

is the pressure at the gas-liquid interface, and Q k repre-

sents the momentum sources due to gravity and friction. 

The friction factors follow the recommendations of Issa and

Kempf (2003) ; the expressions of Taitel and Dukler (1976) are

chosen for the calculation of gas-wall and interfacial stresses, and

for the liquid-wall term, the correlation of Spedding and Hand

(1997) is used. 

Once the volume fraction and velocity field solutions have

been obtained, a post-processing procedure has to be applied to

determine whether each position is part of a liquid slug or a gas

long bubble. A region was considered to be part of a liquid slug

when the liquid holdup was over the threshold of 98%. 

4. Experimental studies: Data for model validation 

4.1. Grenier (1997) 

Grenier (1997) studied experimentally the evolution of the slug

flow structure in horizontal pipes. His experiences were performed

with water and air in a 90 m PVC transparent pipe with 53 mm

of internal diameter. The system was kept at atmospheric pressure

and the four measurement stations were located at 24, 44, 64 and

84 m from the injection point. Two different injection systems

were used: a horizontal “Y” connection where the gas phase

flowed in the upper branch and a system where liquid and gas

were mixed at the bottom of a vertical 2.5 m pipe, the end of

which was connected to the horizontal test pipe. 

Several tests were carried out, with changes in the injection

system and the flow rates of the phases. To every condition, a

large enough number of bubbles and slugs was considered to

ensure a reliable estimation of statistical parameters. 

Grenier (1997) noted that the type of injection has no influence

on the flow structure downstream of 24 m from the injection

point. He suggested that the structure formation of slug flows is

such that the initial condition is somehow forgotten after a certain

development length. The evolution of the bubble and slug length

distributions along the pipe was also analyzed by Grenier. He

observed that the coalescence process is very active in the slug

formation region, resulting in an increase in bubble and slug mean

lengths. Downstream of the 44 m mark, the coalescence process

disappears and the mean slug length becomes constant. The slug

length standard deviation, however, always decreased along the

last half part of the pipe. Grenier referred to this phenomenon as

a “calibration process”, which was observed in every studied case. 

4.2. Cook and Behnia (20 0 0) 

Cook and Behnia (20 0 0) performed experiments for the as-

sessment of slug length distributions in a near-horizontal pipe.
he apparatus consisted of a 16 m long transparent tube, with

0 mm internal diameter. Experiments were performed with air

nd water; the authors measured the slug length distributions at

 section positioned 11 m downstream of the inlet. Measurements

ere performed through conductance probes, for three operational

onditions. 

.3. Ujang et al. (2005) 

Ujang et al. (2006) evaluated the effects of pressure (1, 4 and

 bar) and superficial velocities on the distributions of slug lengths

nd the time intervals between slug arrivals. The flows were of

ir in water. The test section was a 37 m horizontal pipe, with

nternal diameter of 78 mm. Measurements were performed using

onductive probes, at 14 positions. 

In the present work, the three experiments performed at near

tmospheric pressure are considered for comparison with model

redictions. The authors do not furnish the averaged statistics for

he measured quantities, showing instead the parameters of the

tted distributions. Following Gonçalves et al. (2018) , the means

nd standard deviations of the data were estimated from the

roperties of the log-normal distribution. 

.4. Mayor et al. (2008) 

The studies of Mayor et al. (2008) were conducted in a vertical

ipe for air-water co-current slug flow. The experiments were

erformed in 6.5 m acrylic columns with internal diameters of

2 and 52 mm ( Table 2 ). The experimental data were collected

t two positions, 3.25 and 5.40 m from the base of the column.

he superficial gas and liquid velocities were varied up to the

aximum values of 0.26 and 0.20 ms −1 respectively. 

The expansion of the gas in the column was estimated disre-

arding the pressure drop due to the effects of friction at the wall

nd the wake of the bubbles. Therefore, the pressure distribution

long the column considers only the hydrostatic pressure gradient.

.5. Gonçalves et al. (2018) 

To compare different methodologies for estimation of slug

roperties distributions, Gonçalves et al. (2018) performed experi-

ents of air and water in an horizontal tube with 12 m length and

nternal diameter of 44.2 mm. Liquid and gas superficial velocities

anged from 0.72 ms −1 to 1.81 ms −1 and 0.2 ms −1 to 0.8 ms −1 ,

espectively. Bubble and slug lengths were measured through a

hadow Sizer System. 

.6. Van Hout et al. (2003) 

van Hout et al. (2003) measured bubble velocity and slug

nd bubble length distributions in inclined pipes with internal

iameters of 24 and 54 mm and total length of 10 m. Inclination

aried between 2–90 ◦ from the horizontal, and measurements

ere performed in several positions along the pipe. 

The authors present comparisons with theoretical predictions

or inclinations of 10, 30 and 90 ◦, for the operational conditions

f U SL = 0.01 ms −1 , U SG = 0.41 ms −1 , D = 24 mm; the same set of

onditions was considered for the validation herein. 

.7. Summary of experimental conditions 

A summary of the horizontal and vertical experimental con-

itions discussed in the present work is presented in the flow

attern maps introduced in Fig. 2 . 
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Fig. 2. Summary of the experimental flow conditions. (a) Horizontal flow pattern ( Taitel and Dukler, 1976 ). (b) Vertical flow pattern ( Taitel et al., 1980 ). 

Fig. 3. Unit cell. 
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a  
. The statistical moments transport model 

Slug-tracking models transport individual long bubbles down-

tream a pipe. The simulation time must then be such as to ensure

he passage, at each pipe position, of a number of bubbles large

nough to allow a reliable estimation of statistical parameters.

he entire process is normally very time-consuming. To avoid

his problem, a completely new approach is proposed, based on

quations that are set to transport directly the statistical moments,

ather than individual bubbles. 

.1. Definitions 

A unit cell is defined as a bubble and the upstream liquid slug,

s shown in Fig. 3 . The variable x represents the cell location,

eferred from the pipe inlet. 

Let L S ( x, i ) be the length of the i th liquid slug observed at

osition x . For a fixed observer, the flow is composed of a time

equence of unit cells. L S is then the random variable that repre-

ents the liquid slug length and its statistical distribution can be

stimated at any pipe position. 

The distribution function F ( L S , x 0 ) represents the probability of

aving a liquid slug shorter than L S at position x 0 of the pipe: 

 (L S , x 0 ) = P B (L ≤ L S ; x = x 0 ) (24)

The probability density function (PDF), f ( L S , x 0 ), is defined as: 

f (L S , x 0 ) = 

∂F 

∂L S 

∣∣∣∣
x 0 

(25)

These two functions are defined only for positive values of L S .

o represent properly this condition, the PDF may be written as: 

f (L S , x ) = 

H(L S ) f N (L S , x ) 

1 − F N (0 , x ) 
, (26)

here H ( L S ) is the Heaviside function and f N is a continuous PDF

unction defined in (−∞ , + ∞ ) . 
Coalescence occurs as L S → 0. To capture the coalescence of

ubbles, f (0, x ) must be greater than zero. The implication is that

he model fails if Lognormal or Inverse-Gaussian distributions are

sed. 

Function f ( L S , x ) is thus normalized and reduced to zero for

egative values of L S ( Fig. 4 ). 

Another modeling possibility would be to consider a minimum

table L S instead of 0. By this manner, a slug length below which

lugs disintegrate could be defined, say, one or two pipe diam-

ters. Through this artifice, log-normal distributions could then

e used (log-normal distributions are notoriously the most likely

istributions for slug length). 

.2. Coalescence rate 

The usefulness of the present approach depends sensitively on

 proper description of the coalescence process and its influence

n the flow structure evolution. The first step is to define a

oalescence rate, �C , that measures the relative number of liquid

lugs that disappear per unit of pipe length: 

C = − 1 

N 

δN 

δx 
(27) 

The coalescence rate is equal to the probability P B of disappear-

nce of a slug in an observation window of length dx , divided by
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this length, or, in limit terms, 

�C (x 0 ) = lim 

�x → 0 

P B (L ≤ 0 ; x = x 0 + �x ) 

�x 
(28)

However, 

P B (L ≤ 0 ; x = x 0 + �x ) = P B (L ≤ −(d L/d x )�x ; x = x 0 ) 

= F (−(d L/d x )�x ; x = x 0 )) 

∼= 

− f (0 ; x 0 )(d L/d x ) | (0 ;x 0 ) �x (29)

Based on the above definition, the coalescence rate represents

the probability of collapse of slug units within an observation

window of width δx , so that, 

�C (x 0 ) = − f (0 , x 0 ) 
dL s 

dx 

∣∣∣∣
(0 ;x 0 ) 

, (30)

�C (x 0 ) = f (0 , x 0 ) 
v (0) − v (L S ) 

v (L S ) + 1 

(31)

and the overline indicates an averaged value. 

5.3. General equation for the SMT model 

The transport equations for liquid slugs and large bubbles are

derived next. They are used as basis for the introduction of a

general transport equation. 

5.3.1. Transport equation for the length of liquid slugs 

Let Y ( L, x ) be any function of the slug length L at any position

x of the pipe; its average is a function of the pipe position x and

is given by 

 (x ) = 

∫ ∞ 

−∞ 

Y (L ) f (L ; x ) dL (32)

The gradient of Y ( x ) may then be written as 

d Y (x ) 

dx 
= −

∫ ∞ 

−∞ 

Y (L ) H(L ) ∂L 
∂x 

∂ f N 
∂L 

dL 

1 − F N (0 , x ) 
+ �C Y (33)

with 

�C = 

1 

1 − F N (0 , x ) 

(
∂F N 
∂L s 

∂L s 

∂x 

)∣∣∣∣
(0 ,x ) 

(34)

Solving the integral by parts and realizing that f N vanishes for

L s = ±∞ , one gets 

d Y (x ) 

dx 
= Y ′ ∂L s 

dx 
+ 

1 

1 − F N (0 , x ) 

(
∂L S 
∂x 

f N 

)∣∣∣∣
(0 ,x ) 

Y 0 + �C Y , (35)

where Y 0 is the average of Y considering just those cell units whose

slug lengths tend to zero. 

Eq. (33) is then cast as 

d Y (x ) 

dx 
= �C ( Y − Y 0 ) + 

(
dY 

dx 

)
(36)

5.3.2. Transport equation for the length of long bubbles 

To describe the behavior of long bubbles consider Y a function

of L B . After the observation of a sufficiently large number of bub-

bles, one may write 

 = 

1 

N 

N ∑ 

i =1 

Y i (37)

The derivative of the above expression is readily shown to be 

d Y 

dx 
= − 1 

N 

dN 

dx 

( 

1 

N 

N ∑ 

i =1 

Y i −
d 

∑ N 
i =1 Y i 

dN 

) 

+ 

1 

N 

N ∑ 

i =1 

dY i 
dx 

(38)
 

hat is 

d Y (x ) 

dx 
= �C ( Y − Y 0 ) + 

(
dY 

dx 

)
(39)

ith 

 0 = 

d 
∑ N 

i =1 Y i 
dN 

(40)

.4. General equation 

Quantity Y changes with position due to at least three effects:

ressure drop, bubble-bubble interaction and coalescence, that is,

dY 

dx 

)
= 

(
dY 

dx 

)
P 

+ 

(
dY 

dx 

)
I 

+ 

(
dY 

dx 

)
C 

(41)

As coalescence occurs, an entire unit cell disappears and the

ollowing unit increases in size. If L ∗s represents the slug length of

he precedent unit, one may write: 

dY 

dx 

)
C 

= δ(L ∗S ) 
dL ∗S 
dx 

(Y a f ter − Y be f ore ) , (42)

here Y after and Y before are the values of Y of the unit that follows

he one that disappears, immediately after and before the coales-

ence process, respectively. 

The general equation for the Statistical Moments Transport

odel is given by: 

d Y 

dx 
= �C ( Y + �C Y ) + 

(
dY 

dx 

)
P 

+ 

(
dY 

dx 

)
I 

, (43)

here �C Y is the difference between the value of Y of a slug unit

esulting from coalescence and the sum of the Y values of the two

riginal cells. 

C Y = Y after − (Y 0 + Y before ) (44)

The coalescence of bubbles impacts the statistical moments

hrough two effects: (i) it reduces the number of slug units and,

onsequently, increases the average length, (ii) the length of the

esulting bubble after coalescence is smaller than the sum of the

wo original bubble lengths. As a corollary, the resulting liquid

lug is bigger than the original slug due to the drainage of the

iquid under the nose of the trailing bubble. 

The last two RHS terms of Eq. (43) represent the influence on Y

f the pressure and of the interaction between bubbles. 

.5. Hypotheses 

The following hypotheses are considered in this work: 

1. The pressure gradient dP / dx in the pipe is known. As a

result of this hypothesis, the present formulation must be

complemented by one of the several available methods

in literature to estimate the pressure evolution. For ex-

ample, unit cell models such as those described in either

Dukler and Hubbard (1975) or Orell (2005) can be used. 

2. The liquid slug length is not affected by depressuriza-

tion. This hypothesis results from two other hypotheses:

(i) the liquid slug is free from aeration, (ii) the liquid is

incompressible. 

3. Liquid slugs that immediately follow those that disappear

have the same average length than the totality of slugs. 

4. Bubble and slug lengths are two independent random vari-

ables. The lengths of liquid slugs and bubbles are correlated

in the entrance region of a pipe. As the flow develops

downstream and successive bubble coalescence occurs, any



J.R. Fagundes Netto, G.F.N. Gonçalves and A.P. Silva Freire / International Journal of Multiphase Flow 120 (2019) 103086 7 

 

 

 

 

 

 

 

5

 

 

t

5

 

c

 

 

t  

b

(
 

w  

f  

c  

v

 

c

5

 

 

L

�

a(

(

(

(

a

o

5

 

 

s

�

 

t

a  

α  

g(
o(

w  

g  

T

C

 

i  

p

 

c  

p

existing variable dependence tends to be weakened. To

simplify the present model, the lengths of liquid slugs and

bubbles were considered independent random variables 

5. As coalescence occurs, the lengths of leading and trailing

bubbles are two independent random variables. 

6. Bubbles that immediately follow slugs that disappear have

the same average length than the total added lengths of

bubbles. 

7. Bubbles that immediately precede slugs that disappear have

an average length shorter than the total added lengths of

bubbles. 

.6. Average and standard deviation of bubble and slug lengths 

Eq. (43) must be developed for Y = L S , L B , (L S − L S ) 
2 and

(L B − L B ) 
2 . 

As a result, expressions may be developed for the evolution of

he mean and standard deviation of slug and bubble lengths. 

.7. Mean slug length 

Under the previous hypotheses and for Y = L S , Eq. (43) be-

omes: 

d L S 
dx 

= �C ( L S + �C L S ) + 

(
dL S 
dx 

)
I 

(45)

The last term is due to the interaction between bubbles, i.e., to

he difference between the velocities of leading and trailing bub-

les. 

For one particular slug, one may write: 

dL S 
dx 

)
I 

= v ( L ∗S ) − v (L S ) , (46)

here v represents the interaction law given by any equations

rom Eqs. (7)–(11) and L ∗S is the length of the slug of the previous

ell. As L S and L ∗
S 

have obviously the same distribution, the mean

alue of this term is equal to zero. Therefore, 

1 

L S 

d L S 
dx 

= �C 

(
1 + 

�C L S 

L S 

)
(47) 

This expression shows that the average slug length only

hanges when coalescence occurs. 

.8. Slug length standard deviation 

The evolution of the slug length variance is obtained doing Y =
(L S − L S ) 

2 . Just before coalescence, the two slug lengths are 0 and

 S 0 . Hypothesis 3 leads to: 

C Y = 

[
(L S0 + 0 + �C L ) − L S 

]2 −
[
(L S0 − L S ) 2 + (0 − L S ) 2 ) 

]
= �C L 

2 − L S 
2 

(48) 

nd 

dY 

dx 

)
I 

= 2(L S − L S ) 

[(
dL S 
dx 

)
I 

−
(

dL S 
dx 

)
I 

]

= 2(L S − L S ) 

(
dL S 
dx 

)
I 

(49) 

Using Eq. (46) , the average is then 

dY 

dx 

)
I 

= 2(L S − L S ) 

(
dL S 
dx 

)
I 

= 2 L S (v (L ∗
S 
) − v ( L S )) − L S 

(
dL S 
dx 

)
(50) 
I 
The last term of Eq. (50) is zero, as seen before. 

dY 

dx 

)
I 

= 2( L S v ( L ∗S ) − L S v ( L S ) ) (51) 

Since L S and L ∗S are independent variables, 

dY 

dx 

)
I 

= 2( L S v (L ∗
S 
) − L S v ( L S ) ) (52) 

nd Eq. (53) follows immediately, 

1 

σ 2 
S 

dσ 2 
S 

dx 
= 

1 

σ 2 
S 

d (L S − L S ) 2 

dx 

= �C 

( 

1 + 

�C L 
2 − L S 

2 

σ 2 
S 

) 

+ 2 

L S v (L S ) − L S v ( L S ) 
σ 2 

S 

(53) 

r 

1 

σS 

dσS 

dx 
= 

�C 

2 

( 

1 + 

�C L 
2 − L S 

2 

σ 2 
S 

) 

+ 

L S v (L S ) − L S v ( L S ) 
σ 2 

S 

(54) 

.9. Bubble length average 

For Y = L B , the general equation becomes 

dL B 
dx 

= �C ( L B + �C L B ) + 

(
dL B 
dx 

)
P 

(55)

As coalescence occurs, the resulting bubble is shorter than the

um of the two original bubble lengths, 

C L B = −�C L S (56) 

The bubble length gradient due to depressurization depends on

he pressure and the pressure gradient at position x , its length L B 
nd the ratio between the mean void fraction in the film region

G and the void fraction at the bubble tail, αGT . Considering ideal

as: 

dL B 
dx 

)
P 

= 

1 

AαGT 

dW B 

dx 
= − W B 

AαGT 

1 

P 

dP 

dx 
= −A αG L B 

AαGT 

1 

P 

dP 

dx 
(57) 

r 

dL B 
dx 

)
P 

= C S 
L B 
L P 

, (58) 

here L P = −P/ ((d P ) /d x ) is a characteristic length, constant for a

iven position x. W B is the bubble volume and A the pipe section.

he coefficient C S is defined as: 

 S = 

αG 

αGT 

(59) 

This coefficient depends on the bubble length, the liquid veloc-

ty in the slug and the bubble velocity. Fagundes Netto (1999) pro-

oses to consider C s constant and equal to 0.85. 

Differently from the slug length, the mean bubble length

hanges not only because of coalescence but also due to pipe de-

ressurization: 

1 

L B 

d L B 
dx 

= �C 

(
1 − �C L S 

L B 

)
+ C S 

1 

L P 
(60) 
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Fig. 5. Phase diagram on a plane defined by the mean value and the standard de- 

viation of the liquid slug length according to the ST model of Grenier (1997) . j L = 

1.1 ms −1 , j G = 1.0 ms −1 . 
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5.10. Bubble length standard deviation 

To obtain the evolution of the bubble length variance, Y = (L B −
L B ) 

2 , 

�C Y = 

[
(L B 1 + L B 2 − �C L ) − L B 

]2 −
[
(L B 1 − L B ) 2 + (L B 2 − L B ) 2 

]
(61)

Under Hypotheses 5, 6 and 7, Eq. (61) may be simplified to 

�C Y = ( L B − �C L )(C B L B − �C L ) , (62)

where C B = (2 λ − 1) and λ is the ratio between the average

length of the bubbles that precede a slug that coalesces and the

average overall bubble length ( L B 2 = λL B ). 

Grenier (1997) measured the structure of the flow at different

positions in the pipe. He reported that close to the injection

point, where coalescence is observed, the bubble length is strongly

correlated with the following slug length. In other words, short

slugs follow short bubbles and long slugs follow long bubbles.

He also observed that the slugs that disappear are the shortest.

The conclusion is that bubbles reached by trailing bubbles are,

in average, shorter than the total length of bubbles. Based on

his experimental observations and on results obtained through a

slug-tracking model, Grenier (1997) established the mean length

of these bubbles to be about 60 to 75% of the global average

length. In the present model, the best results were achieved using

λ = 2/3 so that C B = 1/3. 

The pressure dependent term may be written as (
dY 

dx 

)
P 

= 2(L B − L B ) 

(
dL B 
dx 

)
P 

= 2 

C S 
L P 

L B (L B − L B ) = 2 

C S 
L P 

σ 2 
B (63)

The general equation becomes 

1 

σB 

dσB 

dx 
= 

�C 

2 

(
1 + 

( L B − �C L )(C B L B − �C L ) 

σ 2 
B 

)
+ 

C S 
L P 

, (64)

where C B = 1/3 and C S = 0.85. 

5.11. Summary of the model 

Given an initial distribution for both the bubble and slug

lengths, the flow structure evolution may be estimated using the

following equations: 

1. The coalescence rate: Eq. (31) . 

2. The average slug length: Eq (47) . 

3. The slug length standard deviation: Eq. (54) . 

4. The average bubble length: Eq. (60) . 

5. The bubble length standard deviation: Eq. (64) . 

The following laws are proposed for use of the model: 

1. Bubble-bubble interaction: 

(a) For vertical flow: Eq. (7) 

(b) For horizontal flow: Eq. (12) 

2. Bubble shrinking due to coalescence 

(a) For vertical flow (cylindrical bubbles): �L C /D = 0. 

(b) For horizontal flow: Eq. (14) 

The modeling of the coalescence rate requires the specification of

the probability density function f at L S = 0. That is to say, a certain

distribution law needs to be specified to determine the value of f (0,

x ), given the mean value of L S and the standard deviation σ S . In

literature, the normal consideration is that the liquid slug length is

adequately described by Lognormal ( Nydal et al. (1992) or Inverse-

Gaussian ( Dhulesia et al. (1991) ) distributions. Unfortunately, both

distributions vanish for L S equal to zero so that they are unable to

correctly represent the coalescence process. To avoid this problem,
 Normal distribution defined only for positive values of L S was

sed. 

The average value of v ( L S ) and L S v ( L S ) are easily determined at

ny position x of the pipe: 

 (L S ) = 

∫ ∞ 

0 

v (L ) f (L, x ) dL (65)

nd 

 S v (L S ) = 

∫ ∞ 

0 

L v (L ) f (L, x ) dL (66)

. Results 

.1. Influence of the initial condition 

The data of Grenier (1997) suggests that the flow structure

ar away from the pipe inlet is independent of the initial length

istribution observed immediately after the mixing point. A set

f simulations were performed for fixed liquid and gas flow rates,

nd varying initial slug length distributions. Fig. 5 shows the re-

ults based on the slug tracking (ST) model. This figure represents

he projection of the space of phases of the liquid slug length on

 plane defined by the mean value and the standard deviation.

he curves show that the trajectories of the structure evolution

end to the same asymptotic solution, where the mean value is

onstant while the standard deviation decreases. This behavior

as repeatedly observed by Grenier (1997) . 

In Fig. 6 the same result is apparent as the SMT model is

onsidered. The values estimated 30 m downstream of the inlet

re shown; the conclusion, based on the model, is that the flow

tructure does not depend on the initial condition at a distance of

bout x / D = 566 downstream of the mixing point. 

The behavior of the liquid slug distribution far from the inlet

ay be understood based on Eqs. (31) , ( 47 ) and ( 54 ). The slug

ength becomes stable only as the coalescence rate vanishes. This

ccurs whenever the ratio between the mean slug length and its

tandard deviation is such that the probability density function at

 S = 0 is negligible. In fact, as L S - 3 σ ( L s ) > 0, one may consider

 (0) ≈ 0 for the majority of the usual distribution functions. In

his case, the evolution of the standard deviation is described by

he expression: 

1 

σS 

dσS 

dx 
= 

L S v (L S ) − L S v ( L S ) 
σ 2 

S 

(67)

To evaluate this term, consider that the slug length distribution

s weakly dispersed around its average, so that the value of v ( L )
S 
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Fig. 6. Phase diagram on a plane defined by the mean value and the standard de- 

viation of the liquid slug length according to the SMT model. j L = 1.1 ms −1 , j G = 

1.0 ms −1 . 
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ay be represented by the first two terms of a Taylor expansion

entered on the mean slug length: 

 (L S ) ≈ v ( L S ) + (L − L S ) v ′ ( L S ) (68)

A combination the above expressions leads to: 

1 

σS 

dσS 

dx 
= −v ′ ( L S ) (69) 

Provided the function representing the interaction between

ubbles is purely exponential, as suggested by Moissis and Grif-

th (1962) , its derivative is always negative. In this case, the

tandard deviation always increases, the coalescence process is

ept active and the average slug length increases. However, if an

xpression such as Eq. (12) is used instead, the derivative is always

ositive for L S large enough. In this case, the standard deviation

ecreases with the pipe position, characterizing a phenomenon

hat aborts any possibility of further coalescence. 

.2. Model validation 

The above remarks imply that unless experimental measure-

ents are obtained at positions further downstream of about

 / D = 560, the distributions of liquid slug and bubbles depend

n the initial conditions. Unfortunately, most of the data avail-

ble in literature do not fulfill this condition. This is the case

or the data of Cook and Behnia (20 0 0) , Ujang et al. (20 06) ,

ayor et al. (2008) and Gonçalves et al. (2018) . 

Hence, the comparison between the ST and SMT models is

ade in two parts. In the first part, results provided by both

odels are compared directly so that relative performances can

e evaluated. In the second part, the SMT model is fully validated

nd compared to the other mentioned methods and experimental

atabases. 

.3. Numerical implementation details 

Provided the flow statistics at several positions are available,

he slug length distribution parameters - mean and standard

eviation for the SMT, or minimum and maximum values for the

T - were adjusted as to reproduce as closely as possible the mean

alues of slug and bubble length at the most upstream station.

therwise, the initial slug length is specified through an uniform

istribution between 0 and 10 D . 
For horizontal flows, the initial bubble length was calculated

ith the expression proposed by Cook and Behnia (20 0 0) : 

 B = 

U SG 

(1 − αL ) V − U SG 

L S (70) 

here the mean film holdup αL is given by: 

L = 1 . 4 

V − U 

V 

(71) 

For vertical flows, the following expression was used: 

 B = 

U SG 

U SL 

L S (72) 

The ordinary differential equations were solved through the

unge-Kutta-Fehlberg method, which provides adaptive stepsize 

nd error control. Absolute and relative tolerances of 10 −2 and

0 −4 were used, respectively. The step size was also limited so 

hat positivity of the variables could be enforced. 

The slug tracking calculation was implemented with a linked

ist to represent the unit cells. Bubbles were inserted in the

omain until the statistics were converged and the number of

amples k reached a minimum value of 30. The sampling was

tarted as soon as the first cell left the pipe. The following criteria

ere used for the uncertainties εS and εB in the average slug and

ubble lengths: 

S = 

σS √ 

k 
< 10 

−2 L S (73) 

nd 

B = 

σB √ 

k 
< 10 

−2 L B (74) 

A step of 0.001 s was used for time advance. 

.4. Comparison of the SMT model with conventional slug tracking 

The considerations introduced here for the implementation of

he slug tracking methodology are very close to the closure equa-

ions and boundary conditions that are used in industrial codes.

ence, it is naturally expected that the present slug tracking

omputations provide results close to those otherwise obtained

hrough industrial predictive codes. 

To reproduce the results of the model proposed by Cook and

ehnia (20 0 0) , a few adjustments are made. 

1. The coalescence velocity is given by Eq. (11) . 

2. The inlet conditions are adjusted to match the slug tracking

simulations. 

3. The bubbles are considered cylindrical. 

4. The pressure gradient is set to zero, meaning that compres-

sion effects are neglected. 

A comparison between results obtained through the SMT and

T (C&B) methods is presented in Figs. 7 and 8 . The maximum

ifferences between mean slug and bubble lengths are less than

0% and 15%, respectively. The discrepancies may be attributed to

he assumption of the normality of the slug length distribution

nd the simplifications regarding the conditional probabilities. 

The distributions of liquid slug lengths are shown in Fig. 9 .

gain, the solutions agree very well, except for a small difference

t L s / D = 10. The slug tracking model uses this value as a threshold

or stable slugs, leading to a discontinuity in the coalescence

elocity. 

Since the SMT model directly provides the statistical features

f the unit cells, likely it should exhibit a lower computational

ost as compared to the stochastic simulations. To verify the

caling of the computational cost with domain size, the same

onditions were used and the total pipe length was extended
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Fig. 7. Comparison of slug length results obtained through the SMT and ST (C&B) 

methods, with U SL = 0.6 ms −1 , U SG = 0.6 ms −1 . The inset figure shows the behavior 

of the standard deviation against position. 

Fig. 8. Comparison of bubble length results obtained through the SMT and ST (C&B) 

methods, with U SL = 0.6 ms −1 , U SG = 0.6 ms −1 . The inset figure shows the behavior 

of the standard deviation against position. 

Fig. 9. Comparison of distributions of L s / D obtained through the SMT and ST (C&B) 

methods, at x = 10m, with U SL = 0.6 ms −1 , U SG = 0.6 ms −1 . 

 

 

 

 

 

 

 

 

Fig. 10. Scaling of computational cost with pipe length for the SMT and ST (C&B) 

methods. 

Table 1 

The experimental data of Grenier (1997) for two distinct experimental 

conditions. The overline indicates an averaged value. σ stands for the 

mean-root squared value of an averaged quantity. 

j G (ms −1 ) ATM 1.0 1.0 

j L ms −1 0.5 1.1 

L B /D 62.5 15.2 

Station 1 σ B / D 22.2 5.5 

L S /D 19.0 14.5 

24 m σ S / D 6.9 4.8 

P (mbar) 1120 1350 

L B /D 68.9 18.4 

Station 2 σ B / D 23.8 6.6 

L S /D 20.5 17.0 

44 m σ S / D 6.0 4.8 

P (mbar) 1096 1280 

L B /D 71.4 21.5 

Station 3 σ B / D 24.8 7.0 

L S /D 20.6 16.9 

64 m σ S / D 5.46 4.3 

P (mbar) 1054 1180 

L B /D 73.8 23.8 

Station 4 σ B / D 20.3 7.6 

L S /D 25.1 17.0 

84 m σ S / D 4.7 3.9 

P (mbar) 1020 1090 

t  

o

6

e

 

2

 

t  

p  

d  

w

 

S  

r  

i  

l  

o

 

w  

w  
from the original 16 m to modified values of 32 and 64 m. Fig. 10

shows a comparison of simulation running time, between the SMT

and ST (C&B) methods. Time was normalized with the running

time of the slug tracking simulation for a pipe length of 16 m. A

reduction over ten fold in running time was observed between

the SMT and ST (C&B) approaches. The computational cost for the

SMT method barely increases with pipe length, while for the slug

tracking method the increase in time is roughly proportional to
he domain size. For the 64 m simulations, a difference of two

rders of magnitude in computing time was noted. 

.5. Validation of the SMT method against other procedures and 

xperimental data 

The present validation study was performed against a total of

1 data sets, from 5 different references. 

In works where the experimental flow statistics were available,

he inlet conditions for the numerical simulations of slug length

redictions were adjusted to reproduce the mean and standard

eviation as closely as possible. Otherwise, a uniform distribution

ith L S ranging from 2 to 10 D was considered. 

The evolution of bubble and slug lengths predicted by the

MT and ST models were compared with the experimental results

eported by Grenier (1997) and described in Table 1 . In the follow-

ng, the experimental data are represented by symbols. The dotted

ine represents predictions obtained through the ST model; results

btained with the SMT model are illustrated by the solid line. 

Figs. 11–14 show that both SMT and ST models predict

ith good accuracy the measured L S , which is in turn not

ell predicted by the unit cell model. For the lower value of
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Table 2 

The experimental conditions of Mayor et al. (2008) . H L is 

the no slip hold up and dP / dx is the hydrodynamic pres- 

sure gradient considering no slip condition. 

Cond. ID U LS U GS H L dP / dx 

(mm) (ms −1 ) (ms −1 ) 

1 32 0.10 0.09 0.53 52.2 

2 32 0.10 0.26 0.28 27.3 

3 52 0.07 0.10 0.43 41.7 

4 52 0.10 0.21 0.32 31.7 

Fig. 11. Predictions of L S / D for the experiment of Grenier (1997) , with U SL = 

0.5 ms −1 , U SG = 1.0 ms −1 . The inset figure shows the behavior of the standard devi- 

ation against position. 

Fig. 12. Predictions of L B / D for the experiment of Grenier (1997) , with U SL = 

0.5 ms −1 , U SG = 1.0 ms −1 . The inset figure shows the behavior of the standard devi- 

ation against position. 

Fig. 13. Predictions of L S / D for the experiment of Grenier (1997) , with U SL = 

1.1 ms −1 , U SG = 1.0 ms −1 . The inset figure shows the behavior of the standard devi- 

ation against position. 

Fig. 14. Predictions of L B / D for the experiment of Grenier (1997) , with U SL = 

1.1 ms −1 , U SG = 1.0 ms −1 . The inset figure shows the behavior of the standard devi- 

ation against position. 

Fig. 15. Coalescence rate obtained with the SMT model for the experiments of 

Grenier (1997) . 

U  

p  

1  
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a  
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F  
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t  

b  

n

 SL ( = 0.5 ms −1 ), the average length of the bubbles, L B , is under

redicted by 28% by the SMT model. For the higher value of

.1 ms −1 , the SMT prediction is very good for most of the pipe

ength, with a maximum error of 25% at the 90 m position. The

T model does not predict well L B , a parameter for which the unit

ell model furnishes acceptable predictions. 

The success in well estimating the experimental data of L S 
esults from the coalescence relations that are used, which were,

n any case, derived directly from the same data they are expected

o predict. 

The SMT model also furnishes the coalescence rate for each

ipe position. Fig. 15 shows that, for the studied cases, the coales-

ence process ceases at about 30 m from the pipe inlet. This result

uggests that the coalescence process is responsible for the flow

nsensitivity on the initial conditions far from the mixing point. 

Figs. 16–18 show a comparison between the measured

nd predicted distributions for the experiments of Cook and

ehnia (20 0 0) . For better comparison with the original work, the

umber of cells tracked in the ST model was set to 500. The

nit cell model predictions are illustrated by the vertical lines.

redictions obtained with application of the SMT and ST models

re good. The slug capturing method did not perform well for the

hown conditions. 

The mean and standard deviation values of L s / D in

igs. 16 through 18 are shown in Table 3 . The differences be-

ween predictions obtained through both methods are small and

he agreement with the experiments is good. The SMT apparently

etter predicts the standard deviation, but discrepancies are

ormally below 25%. 
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Fig. 16. Predictions of distributions of L S / D , at 10-m, for the experiment of 

Cook and Behnia (20 0 0) , with U SL = 0.6 ms −1 , U SG = 0.6 ms −1 . 

Fig. 17. Predictions of distributions of L S / D , at 10-m, for the experiment of Cook and 

Behnia (20 0 0) , with U SL = 1.0 ms −1 , U SG = 1.5 ms −1 . 

Fig. 18. Predictions of distributions of L S / D , at 10 m, for the experiment of Cook and 

Behnia (20 0 0) , with U SL = 1.5 ms −1 , U SG = 2.0 ms −1 . 

Table 3 

Comparison between the data of Cook and Behnia (20 0 0) 

and the ST and SMT models for predictions of L s / D . 

Figure Exp. ST (C&B) SMT 

L s / D Mean 16 11.25 12.50 11.17 

17 11.34 12.29 11.82 

18 13.32 12.50 11.91 

L s / D Std. Dev. 16 5.41 4.58 5.21 

17 5.81 4.64 5.36 

18 5.27 4.88 5.38 

Fig. 19. Predictions of L S / D for the experiment of Ujang et al. (2006) , with U SL = 

0.41 ms −1 , U SG = 2.36 ms −1 . The inset figure shows the behavior of the standard 

deviation against position. 

Fig. 20. Predictions of L S / D for the experiment of Ujang et al. (2006) , with U SL = 

0.61 ms −1 , U SG = 2.55 ms −1 . The inset figure shows the behavior of the standard 

deviation against position. 

Fig. 21. Predictions of L S / D for the experiment of Ujang et al. (2006) , with U SL = 

0.61 ms −1 , U SG = 4.64 ms −1 . The inset figure shows the behavior of the standard 

deviation against position. 
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i  

b  

t  

t  

t  

 

a  
A comparison between the experimental data of

jang et al. (2006) and the present numerical estimations is shown

n Figs. 19–21 . Results provided by the SMT model are clearly

etter than those obtained through the ST model. In the computa-

ions, no model constant has been particularly fixed; constants at-

ain the same values that were considered in the previous simula-

ions and that took as reference the experiments of Grenier (1997) .

Figs. 22–24 show the slug length distributions obtained

t 13.32, 20.57 and 34.55 m, respectively, for the conditions
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Fig. 22. Predictions of distributions of L S / D , at 13.32 m, for the experiment of 

Ujang et al. (2006) , with U SL = 0.61 ms −1 , U SG = 2.55 ms −1 . 

Fig. 23. Predictions of distributions of L S / D , at 20.57 m, for the experiment of 

Ujang et al. (2006) , U SL = 0.61 ms −1 , U SG = 2.55 ms −1 . 

Fig. 24. Predictions of distributions of L S / D , at 34.55 m, for the experiment of 

Ujang et al. (2006) , U SL = 0.61 ms −1 , U SG = 2.55 ms −1 . 

U  

p  

t  

t  

b

 

G  

Fig. 25. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 0.72 ms −1 , U SG = 0.27 ms −1 . 

Fig. 26. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 0.72 ms −1 , U SG = 0.5 ms −1 . 

Fig. 27. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 0.72 ms −1 , U SG = 0.78 ms −1 . 

l  

d  

m  

U  

e  

o

 SL = 0.61ms −1 and U SG = 2.55 ms −1 . At the first station, results

rovided by the SMT and ST are comparable and very close to

he experiments. However, as the bubbles move downstream,

he computations tend to underestimate the mean length of the

ubbles. At position x = 34.55 m the ST prediction is poor. 

The slug length distributions described in

onçalves et al. (2018) are shown in Figs. 25–33 . All mean
ength distributions were obtained at the same position (9 m

ownstream of the gas injection point) for nine different experi-

ental conditions (combinations of U SL and U SG ). For the lowest

 SL ( = 0.72 ms −1 ), the agreement between computations and

xperiments is very good. As U SL increases, however, predictions

f L / D tend to be overestimated by the models. 
S 
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Fig. 28. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 1.27 ms −1 , U SG = 0.22 ms −1 . 

Fig. 29. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 1.27 ms −1 , U SG = 0.42 ms −1 . 

Fig. 30. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 1.27 ms −1 , U SG = 0.68 ms −1 . 

 

 

 

 

 

Fig. 31. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , U SL = 1.81 ms −1 , U SG = 0.21 ms −1 . 

Fig. 32. Predictions of distributions of L S / D , at 9 m, for the experiment of 

Gonçalves et al. (2018) , with U SL = 1.81 ms −1 , U SG = 0.43 ms −1 . 

Fig. 33. Predictions of distributions of L S / D , at 9m, for the experiment of 

Gonçalves et al. (2018) , with U SL = 1.81 ms −1 , U SG = 0.65 ms −1 . 

v

ν  

 

p  

m  
A comparison of the SMT model with the vertical slug flow

data of Mayor et al. (2008) is presented next ( Figs. 34–37 ). The

author’s predictions with an ST model ( Mayor et al., 2007 ) are

also shown. As mentioned before, in all simulations, the SMT and

ST models consider a cylindrical bubble shape; the coalescence
elocity is given by: 

(L S ) = 2 . 4 e −0 . 8(L S /D ) 0 . 9 (75)

The initial distribution of L S considers L S /D = 5 and σ S / D = 2. 

For vertical flows in the pipe with ID = 32 mm, the overall

redictions of distributions of L S / D through the SMT and ST

odels are comparable to each other and tend to overestimate
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Fig. 34. Predictions of distributions of L S / D for the experiment of 

Mayor et al. (2008) , Conditions 1 ( Table 2 ; U LS = 0.1 ms −1 , U GS = 0.09 ms −1 , 

D = 32 mm). 

Fig. 35. Predictions of distributions of L S / D for the experiment of 

Mayor et al. (2008) , Conditions 2 ( Table 2 ; U LS = 0.1 ms −1 , U GS = 0.26 ms −1 , 

D = 32 mm). 

Fig. 36. Predictions of distributions of L S / D for the experiment of 

Mayor et al. (2008) , Conditions 3 ( Table 2 ; U LS = 0.07 ms −1 , U GS = 0.10 ms −1 , 

D = 52 mm). 

Fig. 37. Predictions of distributions of L S / D for the experiment of 

Mayor et al. (2008) , Conditions 4 ( Table 2 ; U LS = 0.1 ms −1 , U GS = 0.21 ms −1 , 

D = 52 mm). 

Fig. 38. Predictions of distributions of L S / D , at several positions and inclinations, for the data of van Hout et al. (2003) , with U SL = 0.01 ms −1 , U SG = 0.41 ms −1 , D = 24 mm. 

The results predicted by van Hout et al. (2003) are shown through dashed lines. 



16 J.R. Fagundes Netto, G.F.N. Gonçalves and A.P. Silva Freire / International Journal of Multiphase Flow 120 (2019) 103086 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

B  

 

D  

 

D  

E  

F  

F  

 

F  

 

 

G  

 

G  

I  

M  

 

 

M  

 

M  

M  

N  

N  

 

N
N  

N  

O  

S  

S  

S  

 

T  

U  

v  

 

W

the experimental mean. For the 52 mm ID pipe, however, the ST

model yields sightly larger values of L S as compared to the SMT.

Both models predict relatively well the experimental data. 

Fig. 38 presents a comparison between the measured and

predicted data of van Hout et al. (2003) , together with predictions

obtained through the SMT model. The inclination-dependent

velocity expressions proposed by the original authors were used

for the current simulations. 

The SMT seems to perform as well, or better, than the tracking

method in most conditions. The largest discrepancies can be

noticed in the inclinations of 30 and 10 degrees, especially for the

station farthest downstream. In these conditions, both theoretical

predictions seem to overestimate the lengths of the long slugs.

Neither model is capable of predicting well the large number of

very short slugs near the inlet. 

7. Final remarks 

An alternative model to predict the slug flow structure is

proposed, based on the transport of the statistical moments along

the pipe. A set of five simple equations was developed and it was

shown that they are capable of describing the flow structure at any

position of the pipe with the same accuracy of the slug-tracking

model. The present approach has the advantage of a better com-

prehension of the process because it expresses the influence of

every relevant phenomenon – slug formation, interaction between

bubbles, gas expansion and bubbles coalescence – on the structure

evolution. A comparison between the SMT model and twenty four

distinct experimental data sets has shown the model to perform

very well. Furthermore, the SMT model offers an extreme economy

in the simulation time. Fig. 10 shows that even for relatively short

pipes (64 m) a gain of two orders of magnitude is obtained in

computing time as compared to slug-tracking models. The work

has also shown that an interaction law, derived from experiments

that investigate controlled isolated pairs of bubbles, allows the ST

and SMT models to predict well the evolution of slug flows. 
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