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CONJUGATE HEAT TRANSFER: ANALYSIS VIA INTEGRAL 
TRANSFORMS AND EIGENVALUE PROBLEMS

D. C. Knupp,a R. M. Cotta,b,c and C. P. Naveira-Cottab      UDC 536.1,536.2,519.6

An integral transform approach to the solution of the problem on conjugate heat transfer, combining the single-
domain formulation with the convective eigenfunction expansion basis within the total integral transformation 
framework, which leads to a nonclassical eigenvalue problem, is presented. The problem on the conjugate heat 
transfer in the transient two-dimensional incompressible laminar fl ow of a Newtonian fl uid in a parallel-plate 
channel is considered to illustrate the hybrid numerical-analytical approach. To demonstrate the improvement 
of the convergence rate achieved with the methodology proposed, a critical comparison against the traditional 
total integral transformation solution of the diffusive eigenvalue problem is provided, and results are presented 
and discussed for three representative situations realized with different Peclet numbers: Pe = 1, 10 and 100. 
A remarkable improvement of the convergence rate, obtained especially with the large Péclet numbers, offers 
evidence of the validity of the expansion constructed upon the nonclassical eigenvalue problem proposed.

Keywords: conjugate heat transfer, internal convection, single-domain formulation, convective eigenfunction 
expansion basis, integral transforms, nonself-adjoint eigenvalue problem.

Introduction. Simulation and analytical description of the conjugate conduction–convection heat transfer in the 
fl uid fl ow in a channel, defi ned by the partial differential equations for the energy balances in the fl uid and in the solid 
channel walls, is a fundamental mathematical problem of thermal sciences. The goal was also to solve the coupled differential 
equations and avoid the errors inherent in approximate formulations that either disregard the participation of the solid walls 
in the thermal process or simplify the participation of the fl uid in it by accounting for the convective heat transfer through 
the adoption of correlated results for the coeffi cients of heat transfer under limiting conditions. The A. V. Luikov Heat and 
Mass Transfer Institute (Minsk, Belarus) pioneered and guided research efforts in this area, as illustrated by the early works 
of Perelman [1] and Luikov et al. [2], which presented analytical solutions for simplifi ed models in the situations with both 
internal and external heat fl ows.

In recent years, problems on conjugate heat transfer have been revisited by Knupp et al. [3–5], which was mainly 
motivated by the microscale heat transfer applications [5–9]. A computational-analytical approach to the solution of conjugate 
problems through the combination of integral transforms with the single-domain strategy was then advanced. Basically this 
strategy involves the reformulation of the problem on the conjugate heat transfer in the fl uid fl ow in a channel to be solved 
by rewriting the energy balances for the solid and fl uid regions as a single partial differential equation for the whole spatial 
domain, whose parameters are represented as space variable functions with abrupt transitions at the fl uid–wall interface so as 
to take into account the transition of the solid and fl uid physical properties. Then the generalized integral transform technique 
(GITT) [10] was recalled to provide a hybrid numerical-analytical solution of this single energy equation for the whole 
domain. In most contributions using this solution so far, the energy equation is integrally transformed only in the direction 
transversal to the fl ow, and the resulting transformed partial differential system is then solved numerically. This partial 
transformation scheme is preferred to avoid the slower convergence of the eigenfunction expansions in the longitudinal 
direction, since the convective term would be actually treated as a source term if the traditional total transformation scheme 
is employd. To overcome the slower convergence in the total transformation of highly convective functions, Cotta et al. 
[11] recently advanced a computational-analytical approach to the solution of convection–diffusion problems via integral 
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transforms, incorporating convective effects into the chosen eigenvalue problem that forms the basis of the eigenfunction 
expansion proposed, bringing a new perspective for the total transformation of conjugate problems under the single-domain 
formulation.

The present work is directed towards the indicated direction and presents a combination of the single domain 
formulation with the convective eigenvalue problem within the total integral transformation framework. As an illustration, 
the problem on the conjugate heat transfer in the transient two-dimensional fl uid fl ow in a parallel-plate channel is considered 
[4]. For the purpose of demonstrating the improvement in the convergence rate achieved with the new methodology, the 
traditional total integral transformation solution method, employing the classical diffusive eigenvalue problem, is also 
presented. In both solution alternatives there arise eigenvalue problems with arbitrary space variable coeffi cients, which are 
solved through the GITT.

Formulation of the Problem. The problem investigated here is similar to the problem considered in [4]. The problem 
involves an incompressible internal laminar fl ow of a Newtonian fl uid between parallel plates, which undergoes a convective 
heat transfer due to the temperature Tw prescribed at the outer surface of the channel wall. The channel wall participates in 
the heat transfer through the transverse and longitudinal heat conductions. The fl uid fl ow at the input of the channel has a 
temperature Tin and a completely developed velocity profi le uf(y) (Fig. 1). The fl ow is assumed to be dynamically developed 
and thermally developing. 

The conjugate heat transfer in the two-dimensional fl uid fl ow in the parallel-plate channel is defi ned by a single-
domain model with coeffi cients representing variable space functions experiencing abrupt transitions at the fl uid–solid wall 
interface [3–5]. The problem on the conjugate heat transfer in the transient fl uid fl ow, symmetric at y = 0, in the single-domain 
formulation with space variable coeffi cients has the form
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we represent the problem in the dimensionless formulation for Tw = Tin:
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Solution of the Problem. Two ways of solution of problem (9)–(15) via integral transforms were investigated. The 
fi rst way is realized with the use of the traditional GITT [10]. It involves consideration of the classical diffusive auxiliary 
eigenvalue problem with space variable coeffi cients (representing a special case of the general Sturm–Liouville problem), thus 
transferring the information on the space variation of the original problem coeffi cients to the eigenfunction expansion basis 
but not taking into account any information regarding the convective term treated as a source term. The second methodology 
is based on the reformulation proposed by Cotta et al. [11] in which the auxiliary eigenvalue problem incorporates convective 
effects in addition to the information on the space variation of the coeffi cients of the original problem in the single-domain 
formulation, which, in the present case, leads to the nonclassical eigenvalue problem. Both eigenvalue problems do not allow 
for explicit analytical solution, and the GITT itself is employed [5, 10].

Solution via the diffusive eigenvalue problem. Following the traditional GITT formalism for the total transformation 
scheme, the transform–inverse pair used for solving problem (9)–(15) is defi ned as 
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Fig. 1. Schematic representation of the conjugated problem.
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The following eigenvalue problem has been obtained by direct application of the separation of variables to the purely diffusive 
version of problem (9)–(15) so that the information concerning the transition of the two original domains W(Y ) and K(Y ) is 
accounted for by eigenvalues and eigenfunctions:
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Problem (20)–(22) is the classical Sturm–Liouville problem which does not allow for explicit analytic solution because of 
the presence of the space variable coeffi cients W(Y ) and K(Y ) in it. Nonetheless, the GITT itself can be employed to provide 
a hybrid numerical-analytical solution for this eigenvalue problem [5, 10]. Once this solution is made available, problem 
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with the transformed initial conditions
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Equations (23)–(25) form an infi nite system of coupled ordinary differential equations, which can be solved analytically by 
an appropriate method of algebraic eigensystem analysis after the truncation to an order N or numerically using solvers of 
the initial value problem with error control to determine the transformed temperatures ( ).iθ τ  The Mathematica platform 
[12] provides the routine NDSolve for numerical solution with automatic control of absolute and relative errors. Once 
the transformed potentials are numerically computed, the Mathematica routine automatically provides an interpolating 
function object that approximates the behavior of a solution depending on the variable τ in the continuous form. Then, the 
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inversion formula (17) can be recalled to yield the dimensionless temperature θ(X, Y, τ) at any desired position (X, Y ) and 
time τ.

Solution via the convective eigenvalue problem. Following the formalism introduced by Cotta et al. [11], we transform 
the coeffi cients in problem (9)–(15) with the use of the exponential factors
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and, as a result, obtain problem (9)–(15) in the generalized diffusive form 
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Separation of variables in problem (28)–(32) with ( , ) ( ) ( , )X Y t X Yθ = Γ ξ  yields the problem 
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and the nonclassical eigenvalue problem 
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The eigenvalue problem given by Eqs. (34)–(36) is not self-adjoint, and the eigenfunctions ( , ),i X Yζ  i = 1, 2, 3, ... , 
do not follow one and the same orthogonality property as for the classical Sturm–Liouville problem. Moreover, the 
corresponding eigenvalue spectrum is not known a priori, and complex quantities can be present eventually in it. There are 
a number of works dealing with analytical solution employing different nonclassical eigenvalue problems on heat transfer
[12–21], but unfortunately none correspond to the present formulation, and the majority of them do not attempt to prove 
the assumption that the eigenfunctions obtained originate a complete set, which requires fi nding an associated adjoint 
problem, and essentially verify a solution by comparison with alternative numerical solutions. Therefore, just assuming 
that the eigenvalue problem given by Eqs. (34)–(36) originates a complete set of eigenfunctions, we write a solution of 
problem (28)–(32) in the form
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which, when truncated to a fi nite order N, can be solved for the coeffi cients Ai, and the expansion given by Eq. (37) can be 
used to calculate the dimensionless temperature θ at any position (X, Y) and time τ.

Solution of eigenvalue problems via integral transforms. The eigenvalue problems given by Eqs. (20)–(22) and 
Eqs. (34)–(36) do not allow for explicit analytical solution. Hence the GITT [10] is employd. For both problems, we use an 
auxiliary basis given by the simpler self-adjoint eigenvalue problem
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and solve problems (20)–(22) and (34)–(36) , respectively, with the integral inverse–transform pairs
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Then, operating on Eqs. (20) and (34) with 
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The algebraic problems (46) and (49) can be numerically solved on truncation to a suffi ciently large fi nite order M for the 
eigenvalues μ2 and β2 and the eigenvectors ψ  and ,ζ  respectively. The eigenvectors ψ  form the expansion coeffi cients 
for the eigenfunctions ( , )X Yψ  in Eq. (42), and the eigenvectors ,ζ  form the expansion coeffi cients for the eigenfunctions 

( , )X Yζ  in Eq. (44). It should be noted that the matrix C related to the nonclassical eigenvalue problem (34)–(36) is not 
symmetric unlike the matrix A related to the classical eigenvalue problem (20)–(22), which is symmetric as expected, always 
yielding real eigenvalues.

Results and Discussion. As a test case for obtaining numerical results, we considered the problem on the conjugate 
heat transfer in the water fl ow in a parallel-plate channel with acrylic walls [4] at s f/ 0.25k k =  and s f/ 0.35.w w =  The 
fl uid–wall interface was set at the dimensionless position Yi = 0.5, and the coeffi cients U(Y), W(Y), and K(Y) with abrupt 
transitions were simulated using the expressions

 f s f ( )
1( ) ( ) ( ) , ( ) ,

1 e iY YY Y Y −γ −φ = φ + φ − φ δ δ =
+

  (52)

where φ represents the desired coeffi cients U(Y ), W(Y ) or K(Y ). Equations (52) provide an abrupt, yet smooth, transition at the 
position Yi where the parameter γ controlling the abruptness of this transition has the value γ = 500 adopted by the numerical 
results presented here. The use of a smooth function for simulation of abrupt transitions of the indicated coeffi cients presents 
some advantages because derivatives of these coeffi cients appear in Eqs. (27), (47), and (50), which was demonstrated in the 
previous works [22, 23].

Numerical results are now presented to provide comparisons regarding the convergence of the eigenfuncion 
expansions of the integral-transform solutions via the diffusive and convective eigenvalue problems. In all the cases, 
M = 75 was used as the truncation order in the eigenvalue problem solution via the GITT. For further verifi cation, independent 
purely numerical results obtained with the commercial CFD solver Comsol Multiphysics are also presented. In this solver, the 
conjugate problem is treated classically (unlike the single-domain formulation) with the coupling of the two physical effects 
(the heat transfer in the solid and the heat transfer in the fl uid) assigned previously to the channel wall and the fl uid fl ow in 
it, and a mesh is generated automatically under the "extremely refi ned" option of the physically controlled mesh-generation 
features.

Three representative situations were analyzed: Pe = 1, 10, and 100, starting with the smallest Péclet number, at which 
the convective term is less signifi cant and the traditional solution of the diffusive eigenvalue problem via integral transforms 
is expected to show a good convergence behavior. This case can also be used to present a co-verifi cation with the novel 
solution way via the convective eigenvalue problem. Table 1 illustrates the convergence behavior of the solution employing 
the convective eigenvalue problem for Pe = 1, demonstrating that only with N = 18 a complete convergence of fi ve to six 
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signifi cant digits is attained at the selected positions. The convergence behavior regarding the traditional solution method via 
the diffusive eigenvalue problem is also illustrated in this table, and it is substantially slower even in this small Péclet number 
scenario, demanding N = 60 to achieve a similar convergence pattern. As the complete convergence was achieved in both solution 
ways, it is interesting to observe that these solutions correlate with each other to fi ve to six signifi cant digits. Figure 2a and b 

TABLE 1. Convergence Behavior of the Calculated Temperatures at XPe = 0.05, τ = 0.01, and Pe = 1

N Y = 0.2 Y = 0.3 Y = 0.4 Y = 0.6 Y = 0.7 Y = 0.8

Convective eigenvalue problem

3 0.256079 0.252575 0.256287 0.328441 0.330669 0.269604

6 0.257835 0.259193 0.263403 0.304034 0.307831 0.284545

9 0.257596 0.259685 0.264093 0.310626 0.316237 0.290713

12 0.259063 0.260886 0.265352 0.310019 0.315476 0.290549

15 0.259085 0.260927 0.265346 0.309965 0.315517 0.290559

18 0.259077 0.260928 0.265353 0.309960 0.315529 0.290546

21 0.259077 0.260928 0.265353 0.309961 0.315527 0.290547

24 0.259077 0.260928 0.265353 0.309964 0.315531 0.290551

Diffusive eigenvalue problem

3 0.258367 0.254450 0.257331 0.328549 0.330834 0.269522

6 0.260024 0.260914 0.264427 0.304115 0.307841 0.284516

9 0.259803 0.261335 0.265009 0.310101 0.315886 0.290971

12 0.259409 0.261247 0.265544 0.310081 0.315537 0.290504

15 0.259315 0.261151 0.265533 0.310025 0.315506 0.290556

18 0.259356 0.261113 0.265515 0.309998 0.315517 0.290556

21 0.259349 0.261126 0.265501 0.309993 0.315520 0.290555

24 0.259355 0.261129 0.265489 0.309970 0.315530 0.290551

27 0.259353 0.261131 0.265485 0.309946 0.315552 0.290555

30 0.259139 0.260969 0.265377 0.310018 0.315505 0.290571

33 0.259115 0.260972 0.265388 0.309979 0.315533 0.290556

36 0.259120 0.260970 0.265385 0.309975 0.315535 0.290559

39 0.259126 0.260966 0.265380 0.309970 0.315533 0.290554

42 0.259127 0.260968 0.265376 0.309967 0.315535 0.290553

45 0.259127 0.260967 0.265377 0.309965 0.315534 0.290554

48 0.259128 0.260966 0.265374 0.309963 0.315534 0.290553

51 0.259127 0.260966 0.265374 0.309964 0.315535 0.290551

54 0.259127 0.260966 0.265372 0.309963 0.315533 0.290552

57 0.259090 0.260932 0.265344 0.309989 0.315510 0.290574

60 0.259079 0.260930 0.265356 0.309968 0.315533 0.290551

63 0.259080 0.260929 0.265356 0.309968 0.315533 0.290552

66 0.259080 0.260930 0.265356 0.309968 0.315533 0.290552

69 0.259080 0.260930 0.265357 0.309969 0.315533 0.290552
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TABLE 2. Convergence Behavior of the Calculated Temperatures at XPe = 0.05, τ = 0.01, and Pe = 10

N Y = 0.2 Y = 0.3 Y = 0.4 Y = 0.6 Y = 0.7 Y = 0.8 

Convective eigenvalue problem

3 0.210106 0.217457 0.234580 0.323458 0.328714 0.272011

6 0.211044 0.223159 0.241558 0.302504 0.307638 0.284495

9 0.210796 0.223583 0.242205 0.309022 0.316087 0.290680

12 0.212114 0.224704 0.243447 0.308494 0.315314 0.290522

15 0.212132 0.224737 0.243437 0.308459 0.315344 0.290520

18 0.212124 0.224738 0.243443 0.308454 0.315355 0.290508

21 0.212125 0.224737 0.243444 0.308457 0.315358 0.290512

24 0.212125 0.224737 0.243444 0.308458 0.315358 0.290512

Diffusive eigenvalue problem

3 0.229845 0.233831 0.243907 0.326646 0.331598 0.269901

6 0.230173 0.238731 0.251185 0.303308 0.307737 0.284213

9 0.230108 0.238477 0.250818 0.304177 0.312796 0.293083

12 0.214841 0.227951 0.245312 0.308835 0.316078 0.290226

15 0.213696 0.226549 0.245162 0.309034 0.315266 0.290469

18 0.214189 0.226154 0.244914 0.308830 0.315243 0.290606

21 0.214114 0.226286 0.244763 0.308769 0.315288 0.290585

24 0.214174 0.226318 0.244649 0.308533 0.315355 0.290516

27 0.214154 0.226339 0.244605 0.308313 0.315556 0.290543

30 0.212690 0.225221 0.243833 0.308800 0.315297 0.290557

33 0.212465 0.225154 0.243788 0.308600 0.315382 0.290564

36 0.212516 0.225135 0.243753 0.308565 0.315395 0.290592

39 0.212581 0.225096 0.243701 0.308523 0.315380 0.290547

42 0.212590 0.225115 0.243665 0.308490 0.315402 0.290536

45 0.212589 0.225110 0.243670 0.308470 0.315389 0.290541

48 0.212598 0.225100 0.243648 0.308452 0.315392 0.290531

51 0.212583 0.225100 0.243643 0.308457 0.315402 0.290516

54 0.212587 0.225099 0.243631 0.308452 0.315385 0.290528

57 0.212280 0.224821 0.243404 0.308662 0.315192 0.290705

60 0.212187 0.224795 0.243488 0.308501 0.315384 0.290519

63 0.212198 0.224785 0.243488 0.308501 0.315386 0.290528

66 0.212207 0.224788 0.243486 0.308498 0.315381 0.290527

69 0.212205 0.224790 0.243497 0.308503 0.315383 0.290527

illustrates the convergence behavior of solutions by presenting their transversal temperature profi les, calculated with different 
truncation orders (N = 3, 6, 9 and 12). It is seen that N = 9 is enough to deliver curves fully converged to the graph scale in 
both solution ways. Figure 2c demonstrates the excellent agreement between the solutions obtained by the integral transform 
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method with the purely numerical solution obtained using the Comsol Multiphysics solver, providing verifi cation of the 
single-domain formulations adopted here.

As Pe = 10, the convergence behavior of the solution via the convective eigenvalue problem is practically identical 
to that obtained in the previous case, also achieving a convergence to fi ve to six signifi cant digits at the selected positions, 
as demonstrated in Table 2, reconfi rming the importance of the incorporation of the convective term into the eigenvalue 
problem. On the other hand, the convergence behavior of the classical solution, employing the diffusive eigenvalue problem, 
slows down substantially, achieving approximately four signifi cant digits at N = 69. This result increases the importance of 
the convective term treated as a source term in the traditional solution. The graphical illustration of the convergence behavior, 
presented in Fig. 3a and b, is also very interesting. While the solution employing the convective eigenvalue problem shows 
a complete convergence to the graph scale only N = 9, the traditional solution fails to achieve good results with such a 
small truncation order. It should be also noted that the convergence behavior of the classical solution is much worse in the 
fl uid region (0 < Y < 0.5), especially near Y = 0, where the fl uid fl ow has higher velocities because of the increase in the 
Péclet number. In Fig. 3c the solutions via the convective eigenvalue problem with N = 9 and the solution via the diffusive 
eigenvalue problem with N = 69 are also compared to that obtained using the Comsol Multiphysics solver, showing an 
excellent agreement.

The case where Pe = 100 was analyzed by the data presented in Table 3 and Fig. 4 by analogy with the previous 
cases, but the difference between the solutions via the convective and diffusive eigenvalue problems in convergence behavior 

Fig. 2. Transversal temperature profi les calculated employing the convective eigenvalue 
problem (a) and the diffusive eigenvalue problem (b) with N = 3 (red lines), 6 (black 
lines), 9 (green dashed lines) and 12 (cyan dash-dotted lines) and employing the 
Comsol Multiphysics (green lines), the convective eigenvalue problem with N = 9 
(black dashed lines), and the diffusive eigenvalue problem with N = 69 (red dash-
dotted lines) at Pe =1.
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was even larger. While the solution via the convective eigenvalue problem converges completely to fi ve to six signifi cant 
digits at a truncation order as small as N = 18, the classical solution via the diffusive eigenvalue problem converges only to 
two to three signifi cant digits at the largest truncation order N = 69 considered in this work. The slower convergence of the 
traditional solution is clearly seen from Fig. 4b: the calculated temperature profi les do not converge to the graph scale at the 
truncation order N = 9 required for the solution via the convective eigenvalue problem to converge to the graph scale (Fig. 4a). 
Nonetheless, even in this highly convective situation, if larger truncation orders are used (N = 69), the classical solution also 
succeeds in graphical matching the solution via the convective eigenvalue problem and the solution obtained using Comsol 
Multiphysics solver (Fig. 4c).

Conclusions. We combined the single-domain formulation strategy with the convective eigenvalue problem 
formulations to tackle the problem on transient internal conjugate convection-conduction heat transfer. The data obtained 
for the three representative situations with Pe = 1, 10, and 100 demonstrate a remarkable convergence improvement in 
comparison with the classical solution via the diffusive eigenvalue problem. Despite the lack of formal proof regarding the 
completeness of the set of eigenfunctions, the results presented in this work bring enough evidence on the validity of the 
expansion constructed upon the nonclassical eigenvalue problem proposed.
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Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Financial Code 001 as well as from the CNPq and 
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Fig. 3. Transversal temperature profi les calculated employing the convective eigenvalue 
problem (a) and the diffusive eigenvalue problem (b) with N = 3 (red lines), 6 (black 
lines), 9 (green dashed lines) and 12 (cyan dash-dotted lines) and employing the Comsol 
Multiphysics (green lines), the convective eigenvalue problem with N = 9 (black dashed 
lines), and the diffusive eigenvalue problem with N = 69 (red dash-dotted lines) at 
Pe =10.
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TABLE 3. Convergence Behavior of the Calculated Temperatures at XPe = 0.05, τ = 0.01, and Pe = 100

N Y = 0.2 Y = 0.3 Y = 0.4 Y = 0.6 Y = 0.7 Y = 0.8

Convective eigenvalue problem

3 0.003741 0.021366 0.084100 0.296500 0.295620 0.280568

6 0.008122 0.029257 0.087402 0.289878 0.316661 0.288770

9 0.008837 0.028693 0.086863 0.292425 0.314506 0.290178

12 0.008819 0.028761 0.087426 0.292684 0.313462 0.290293

15 0.008837 0.028817 0.087474 0.292616 0.313595 0.290154

18 0.008853 0.028836 0.087467 0.292643 0.313572 0.290172

21 0.008854 0.028835 0.087468 0.292644 0.313575 0.290177

24 0.008853 0.028835 0.087469 0.292644 0.313574 0.290177

Diffusive eigenvalue problem

3 0.035549 0.077739 0.124173 0.288812 0.332060 0.283718

6 0.021022 0.061520 0.128831 0.293968 0.307020 0.280323

9 0.024414 0.056592 0.124450 0.278804 0.300961 0.298172

12 0.006758 0.036123 0.102760 0.281234 0.324817 0.295941

15 0.002775 0.027560 0.095919 0.295227 0.315820 0.286695

18 0.007258 0.024736 0.092961 0.296046 0.312206 0.291148

21 0.006506 0.026208 0.091243 0.295428 0.312691 0.290913

24 0.006978 0.026460 0.090371 0.294088 0.313559 0.290248

27 0.006721 0.026742 0.090026 0.293208 0.314674 0.289590

30 0.008928 0.028412 0.090795 0.292538 0.315290 0.288825

33 0.009008 0.029836 0.089682 0.293304 0.313915 0.290327

36 0.009399 0.029672 0.089438 0.292920 0.314083 0.290612

39 0.009433 0.029942 0.089093 0.293266 0.313421 0.290605

42 0.009430 0.030087 0.088898 0.293044 0.313782 0.290248

45 0.009425 0.030036 0.088944 0.292863 0.313666 0.290305

48 0.009488 0.029963 0.088763 0.292726 0.313679 0.290222

51 0.009410 0.029923 0.088763 0.292769 0.313782 0.290179

54 0.009432 0.029918 0.088709 0.292690 0.313659 0.290228

57 0.008790 0.029345 0.088379 0.293132 0.313380 0.290570

60 0.008639 0.029085 0.088285 0.292984 0.313603 0.290320

63 0.008734 0.029075 0.088248 0.292995 0.313702 0.290264

66 0.008789 0.029104 0.088261 0.292976 0.313672 0.290253

69 0.008775 0.029121 0.088341 0.293011 0.313686 0.290256



72

NOTATION

K, thermal conductivity; T, temperature; t, time variable; u, x component of the velocity fi eld; w, volumetric heat 
capacity; x, longitudinal coordinate; y, transverse coordinate; α, thermal diffusivity; β, eigenvalue corresponding to ζ; 
ζ, eigenfunction of the convective eigenvalue problem; θ, dimensionless temperature; λ, eigenvalue corresponding to Ω; 
μ, eigenvalue corresponding to ψ; τ, dimensionless time variable; ψ, eigenfunction of the diffusive eigenvalue problem; 
Ω, eigenfunction of the auxiliary eigenvalue problem. Subscripts: f, fl uid; s, solid wall.
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