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An implicitly coupled pressure-velocity transient scheme for the solution of the Eulerian multi-fluid
model with any number of phases (MIC) was developed and implemented in OpenFOAM®. The numerical
methodology is based on the phase-intensive momentum equations for the phase velocities and a pres-
sure equation using a deferred-correction approach of the Rhie-Chow interpolation. An extension of the
compact momentum interpolation method (CMI) to a system with any number of phases was developed.
The developed methodology was tested against a segregated multiphase solver (MS) and a steady-state
single phase solver, in cases considering up to four phases. The proposed method has proven to be more
robust and accurate than the segregated counterpart, being able to converge in cases with large drag
coefficients, providing time-step independent steady-state solutions.
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1. Introduction

A multiphase flow simulator that embraces all possible flow
regimes and number of phases would be of great use for research
and development in several industries. However, after more than
three decades since the development of the first two-phase CFD
models [32], problem-specific modeling and solution strategies are
preferred both in segregated and in dispersed flows. The explana-
tions for the lack of generalization fall into two main categories.
The first is the physical complexity of the multiphase flows, which
commonly leads to scale filtering approximations during the de-
velopment of the models, leading to physical uncertainties and the
need of parameter fitting, reducing its range of applicability. The
second is the poor robustness of the solution algorithms, when
changes in the value of physical coefficients may lead to conver-
gence difficulties or even failure by divergence of the numerical
solution.

Regarding the physical model, one of the main strategies em-
ployed for the simulations of multiphase flows is the usage of an
Eulerian multi-fluid model [15]. As it is still unfeasible to accu-
rately solve all the scales of the multiphase flow in industrial ap-
plications, an averaging procedure is applied to the mass and mo-
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mentum conservation equations and the resulting interfacial mo-
mentum exchange terms are modeled through closure laws, in-
stead of directly calculated from the solution. Then, the physical
uncertainties arise mainly from the development and selection of
the appropriate closure models [15] for the inter-phase transfer
laws, stress tensor, turbulence, etc.

However, even for cases where the closure laws yield a rea-
sonable physical description of the system, it may be possible
that the numerical procedure is not robust enough, leading to
wrong, or even non-physical results. For instance, there exist sev-
eral pressure-based algorithms to solve the pressure-velocity cou-
pling in incompressible single phase flows and each algorithm can
be potentially extended to a multiphase flow model [23]. As each
formulation has its own advantages and drawbacks, it is very diffi-
cult to develop a single methodology that applies to all cases.

Most modern solution algorithms are based on a collocated
variable arrangement, where both the pressure and velocity are
stored in the center of the computational mesh cells. However,
during the finite volume discretization, it is necessary to compute
the volumetric fluxes at the cell faces, and the application of an
inappropriate numerical discretization scheme may lead to decou-
pling of the pressure and velocity fields, leading to non-physical
pressure oscillations. This problem was solved by Rhie and Chow
[27] for steady single phase incompressible flows. They introduced
a special interpolation scheme for the evaluation of the volumet-
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Nomenclature

() cell to face interpolation operator

A cross section area divided by particle volume (m~1)
A main diagonal submatrix of the linear system ob-

(o)

Co
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tained from discretization of part of the momentum
conservation equation (s~1)

drag coefficient

Courant number

dispersed phase diameter (m)

pressure equation coefficient (kg=! s m3)

error

body force vector (m s—2)

gravitational acceleration (m s~2)

off-diagonal part of the linear system obtained from
discretization of part of the momentum conserva-
tion equation, Y5 — (Y4 —A)u (m s2)

generalized drag coefficient (kg m—3s1)

interfacial momentum transfer term (kg m—2 s=2)
number of control volumes in the mesh

number of iterations

pressure (kg m~! s-2)

number of phases

number of parallel processes

phase fraction

Reynolds number

speedup

face area vector (m?)

time (s)

velocity component (m s~1)

velocity vector (m s~ 1)

position vector (m)

Greek letters

RAD <> OS0 b

¢

variation

transient deviation

parallelism efficiency

ratio of numerical coefficients

tolerance

kinematic viscosity (m? s=1)

density (kg m~3)

viscous stress tensor per unit mass (m?2 s—2)
numerical coefficients of the linear system obtained
from the discretization of part of the momentum
conservation equation (m s2)

volumetric flux at the cell faces (m3 s=1)

Subscripts

=X ™ K

mTh g 0

inner

outer
pU

relative to phase o

relative to phase 8

relative to phase or variable yx

indicates the coefficient matrix of a discretized lin-
ear system

continuous phase

dispersed phase

relative to the drag term

face value

relative to the body force term

inner iterations

relative to the mixture

outer iterations

relative to the pressure-velocity inner loop
X component

y component

r relative quantity

S indicates the source vector of a discretized linear
system

T relative to the temporal term

Superscripts

* modified

- pseudo (velocity or flux)

abs absolute

C correction

comp computational

k value at present (k) iteration

k-1 value at previous (k — 1) iteration

rel relative

t—-1 at the previous time instant

T transpose

tot total

Abbreviations

AAMG Agglomerative algebraic multigrid

BES Backward-facing step

CFD Computational fluid dynamics

CMI Compact momentum interpolation

GAMG Generalized algebraic multigrid

HC Horizontal channel

IPSA Inter-Phase Slip Algorithm

MIC Multiphase implicitly coupled

MS Multiphase segregated

OpenFOAM Open source field operation and manipulation

PEA Partial Elimination Algorithm

puUC Pressure-velocity implicitly coupled

PISO Pressure-implicit with splitting of operator

SAMG Selective algebraic multigrid

SIMPLE Semi-implicit method for pressure-linked equa-
tions

ric face fluxes, applying a correction for the pressure gradient term
that is commonly referred as Rhie-Chow interpolation.

Later, this interpolation method was extended and modified for
several other applications. It was shown by Majumdar [21] and
Miller and Schmidt [22] that the results obtained using the Rhie-
Chow interpolation are dependent on the value of the relax-
ation factors, and they both proposed different solutions for the
problem. Choi [2] verified that the direct extension of the Rhie-
Chow interpolation to transient problems yielded time-step size
dependent solutions, proposing a modified momentum interpola-
tion method to remove this dependency. However, it was later
shown by Kawaguchi et al. [19] that the approach proposed by
Choi [2] was still dependent on the time-step size, being the first
to propose a momentum interpolation method that is both inde-
pendent on the time-step size and relaxation factor values. How-
ever, before the analysis performed by Kawaguchi et al. [19], Shen
et al. [30] reported an improved Rhie-Chow interpolation method
for unsteady flows that can be considered the first to provide so-
lutions that are truly independent from the time-step size.

More recently, Cubero and Fueyo [4]| developed the so-called
compact momentum interpolation procedure, an alternative mo-
mentum interpolation approach that yielded converged solutions
that were also independent of the time-step and relaxation factor
values. This methodology is based on a special interpolation prac-
tice for the numerical coefficients that arise from the discretiza-
tion of the temporal term, leading to a new correction formula
for the volumetric face fluxes that considers not only the pressure
gradient, but also the contributions from the time discretization
and relaxation schemes. The main advantages of the approach of
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Cubero and Fueyo [4] over the one presented by Kawaguchi et al.
[19] is the possibility to treat both linear and inertial relaxation
factors and the easy generalization of the temporal correction term
to higher-order time discretization schemes.

Another key aspect in the solution of the Navier-Stokes equa-
tions is the choice of an adequate solution algorithm for the sys-
tem composed by the momentum and continuity equations. For
years, the most popular algorithms were those based on the SIM-
PLE procedure [25]. These methods are commonly referred as seg-
regated algorithms, being based on the separate solution of the
momentum and pressure equations that are iterated until conver-
gence. However, as pointed out by Darwish et al. [8], with the
increasing availability of computer memory and due to scalabil-
ity problems in the segregated methods, the implicitly coupled
methods have gained renewed interest. Darwish et al. [8] imple-
mented an implicitly coupled scheme for the solution of steady
single phase flows, showing that the CPU times of the coupled ap-
proach are substantially smaller than those of the segregated one,
with larger speedups for finer meshes.

When dealing with multiphase flows, care must be taken not
only with the pressure-velocity solution algorithm, but also with
the interfacial momentum coupling method. A common practice is
to consider also a Rhie-Chow-like correction for the drag and the
body force terms [23]. Cubero et al.[5] have extended their com-
pact momentum interpolation formulation for unsteady two-phase
flows by using a special interpolation practice for the drag coeffi-
cient, which included a drag correction for the face flux equations,
resulting in the compact momentum interpolation method (CMI).
They have shown that the absence of the drag correction led to
spurious relative velocities, that created non-physical oscillations
in the volumetric phase fraction fields. Their method was based on
the most popular solution algorithm for two-phase flows, the Inter-
Phase Slip Algorithm (IPSA), which is a generalization of the single-
phase SIMPLE method for unsteady two-phase flows [32]. How-
ever, the IPSA method has some drawbacks, as it converges very
slowly when the interfacial momentum transfer term is dominant.
This problem was solved by the development of the Partial Elimi-
nation Algorithm (PEA) [33], which creates an explicit approxima-
tion for the phase velocity that can be substituted into the other
phase momentum equation to enhance the coupling between the
phases. However, the PEA method is not easily generalized to a
many phase system and it can only be applied to decouple one
phase pair at a time [24]. A remedy for this issue is to use an
implicitly coupled method to solve all the momentum equations
simultaneously, also coupling the inter-phase momentum transfer
terms implicitly. Darwish and Moukalled [6] have implemented a
steady two-phase implicitly coupled solver considering the simul-
taneous solution of the pressure and the phase velocities, obtaining
speedups between 1.3 and 4.6, in comparison to the segregated so-
lution approach. Usually, the smaller the particles, the stronger is
the coupling between the phases. Thus, several applications that
deals with small particles present critical interfacial momentum
coupling issues, such as gas-solid particle flows [35] and emulsion
flows [9].

In this work we developed a solver for the solution of the un-
steady multi-fluid model with any number of phases. This was
achieved by combining a generalization of the CMI method [5] to
a many phase system with the implicitly coupled solution for the
pressure and all phase velocity fields. The CMI is used on the de-
velopment of a volumetric face flux equation that is used to de-
velop the multiphase pressure equation, that considers the pres-
sure, temporal, drag and body force corrections. The methodology
was implemented using the block-coupled matrix structure imple-
mented in foam-extend, a fork of the OpenFOAM® software. The
developed code is tested and verified against a steady implicitly
coupled single phase and a multiphase segregated solver, being the

latter developed by extending the conventional segregated code,
twoPhaseEulerFoam, that is available in foam-extend. The
parallel scalabilities of both the coupled and segregated multiphase
solvers were also evaluated.

2. Eulerian multi-fluid model
2.1. Multi-fluid equations

In this work we use the Eulerian multi-fluid model, which is
a generic framework for the treatment of multiphase flows with
any number of phases. For a system of P incompressible phases
and neglecting mass transfer between phases, the phasic mass and
momentum conservation equations reduce to [13]:

a(r,

Q0P) 4V (aputia) =0, M
0(re Paly)

ot +V. (Ta PaUaUy) = —-1sVp-V. (TaPaTa) +TaPug + My

(2)
where r is the volumetric phase fraction, p is the density, u is the
velocity, p is pressure shared by all the phases and g is the gravity
field. The stress tensor per unit mass 7 for a laminar flow, assum-
ing a Newtonian functional form, is given as:

Ty = Ve [ZDa _ %(v -ua)l] 3)

Dy = %[Vua + (Vug)'], (4)

where v is the kinematic viscosity. The interfacial momentum
transfer terms are written in the following form:

P

M, = Z Ma.ﬁ (5)
B=1
B#a

where M, g is the momentum exchanged between phases «

and B, such that M, g = —Mg . Usually, these interfacial transfer
terms are decomposed in drag, lift and virtual mass forces, among
others, but in this work we considered only the drag force, since
in the current analysis we were interested in cases where it is the
dominant term. Then, M, g is written as:

Ma,ﬂ = rarngaﬂur,aﬂ (6)
where K, is the generalized drag coefficient and u, g = ug —uy
is the relative velocity between phases « and S. For cases where

phase inversion is possible, Weller [36] proposed the following
symmetric model for the generalized drag coefficient:

1
Kaﬁ = i(rapﬁAaCa_ﬁ + rapﬂAﬁCﬁu) |uw/3| (7)

where C,, g is the drag coefficient considering phase « as the dis-
persed phase and phase 8 the continuous phase, Ay is the a-phase
particle projected area normal to the relative velocity divided by its
volume. For a spherical particle with diameter d,, we have:
3

24, (8)
The drag coefficient was calculated using a modified formulation
of the Schiller and Naumann [29] correlation:

Ay =

24 0.687
Cy.p = Max [0.44, m(l +0.15Re}7) 9)
where the particle Reynolds number is defined by:
paur,aﬂda
Rey, g = —————— (10)
o.f H’ﬁ

where u is the dynamic viscosity.



G.G.S. Ferreira, PL.C. Lage and L.ELR. Silva et al./Computers and Fluids 181 (2019) 188-207 191

3. Numerical formulation

In this section we describe the numerical formulation used in
this work, detailing the two different coupling algorithms consid-
ered for the multiphase flow solution.

3.1. Phase intensive formulation

In the current work we applied the phase-intensive formulation
for the momentum equations, the same used by Rusche [28] and
Silva and Lage [31]. It is obtained by dividing Eq. (2) by pq and ry
and making some rearrangements:

9 \Y
alll‘a+v (uaua)_ua(v ua)— (Va raua)
Ta
+u, V- <va Vr“) — V. (0, Vuy)
o
Vre ¢ Mg
+V. T + T = ——V + 1
Ta * Ta Po Pa pre ( )

where the stress correction term, t$, is defined by
2
6 = —u| (V)T = SV -ul . (12)

Then, in order to stabilize the gravity source term in cases with
large buoyant forces, we applied a modified formulation of the
gravity and pressure gradient term [28]. The formulation is based
on the definition of a modified pressure, given as:

p*=p—pm(g-X) (13)

where pp, is the mixture average density, pm = ZZ=1 TaPo» and X
is the position vector with respect to an inertial reference frame.
Using Eq. (13), we can find that [12,28]:

——V + _——V +F;,, 14
e VPTE=— p* +Fy, (14)
with the modified body force Fj;, being written as:
1 Pm
F;, =——(g-x)V +< ——) 15
Ba =~ (&-X)Vpm 0n )8 (15)
Using Eq. (14), Eq. (11) can be rewritten as:
Jdu Vr,
ata + V. (uguy) —uy (V- uy) — (Va - +0t8 ua>
Vr,
+V.tl+ hL: . = M. V'
g +68 TePo  Pu
1 Pm
- —(g-x)Von + ( - —) 16
o (&-X)Vom O g (16)

where § is a positive small parameter introduced to avoid division
by zero.

3.2. Phase fraction equations

The phase fraction equation formulation is based on the one
introduced by Weller [36]. It was later generalized to a multiphase
mixture with any number of phases by Silva and Lage [31] to yield:

ar, :
aa + V@) + V| Y rplatgg
B
B#a

|
o

(17)

where u is the mixture average velocity, defined by u=
Zg=1 rqUy. This formulation has the advantage of ensuring bound-
edness of ry, since the terms are written in a conservative form,
and a better coupling between the phases is achieved by the pres-
ence of the relative velocities [28].

Eq. (17) was discretized in the following form:

P
Zur,aﬂrﬁ[ra] =0 (18)

p=1
pra

F[arf]JHV-(ulra])H v

where the terms written as |[[{]] are discretized implicitly with
respect to variable ¥. Eq. (18) was sequentially solved for each
phase after the solution of the pressure and velocity discretized
equations in both the segregated (MS) and implicitly coupled (MIC)
solvers.

3.3. Segregated pressure-velocities coupling scheme

In this section we describe the numerical methodology applied
for the multiphase segregated (MS) solver.

3.3.1. Multiphase momentum equations

The MS scheme used as a reference implementation in this
work is mainly based on the implementation of Silva and Lage [31].
The main differences arise from the consideration of the symmet-
ric drag formulation (Eq. (7)), the usage of the modified pressure
(Eq. (13)) and the absence of the lift and virtual mass momentum
transfer terms. Despite these differences, we adopted a similar dis-
cretization procedure and solution algorithm. The discretization of
the left-hand side of Eq. (16) gives [28]:

Y, = f[“;‘]J 1Y el )] ~ LV o)l ]

Vra
Y hoq rpKaplua]

_|V. av o B#a
LV (e V[ue])] + o

+{V-(Uam)[ua]J+V o Vla (19)

Ta +8 ra+8 ¢

where Y, represents the numerical coefficients of the linear sys-
tem obtained in the discretization. Considering that the linear sys-
tem of equations are stored in Y, in the form

(Toz)Aua = (Ta)Ss (20)

the matrix coefficients of (Y )4 and the source term (Y )s can be
used to assemble the following approximation to Eq. (16):

Y1 TpKapUp
Mua_Ha:_Vi_m+(1 /Om) +ﬁ#"7
Pa Po Pu Po

(21)

where A, represents the diagonal coefficients of (Yy)s and Hy is
calculated explicitly using the current-level of iteration value of u
by Hy = (Yo)s — (Yo )yUa, being (Yq)y the non-diagonal part of
the matrix (Y¢)a, that is (Ye)y = (Ya)a — A

Then, using Eq. (21) we can write the following explicit approx-
imation for the phase velocities:
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Z%:l rﬂKaﬁuﬂ
Bra

A" PaBa

(22)

which is used to derive the face-flux equations, as will be detailed
in the next section.

H,  Vp (g~x)me+(17Lm) g
Ay PaBa PaBa Pua

3.3.2. Pressure equation and face flux update
The pressure equation is derived by enforcing the global conti-
nuity. The global continuity equation can be expressed as:

P
V. <Z raua> =0 (23)
a=1

Applying the finite-volume discretization to the divergence opera-
tor in Eq. (23), it is rewritten as:

V. <X:raua> = Z (i ro,fuaf~Sf) =Vp- (ZP:(ra)f¢a>,

f a=1 a=1
(24)

where ¢y = Uy - Sy is the volumetric face flux, the subscript f in-
dicates that a variable is evaluated at a face of the control volume,
whereas (); represents the face value approximated by an inter-
polation scheme using the neighbor cell-centered values. The op-
erator (Vp-) represents the discretized divergent operator, being
defined for notational convenience.

The face fluxes are obtained using the Rhie and Chow [27] in-
terpolation, rather than by linear interpolation of the velocity pre-
dicted by Eq. (22). This enhances the pressure-velocity coupling,
since the pressure gradient at the cell faces is calculated based
on a reduced stencil using the cell centered values of the pressure
at the neighbor control volumes, instead of interpolating the cell-
centered pressure gradient values. This reduced stencil formulation
for discretization of the gradient at the face centers is written here
as V. Then, the volumetric face fluxes are calculated assuming the
following equation:

Po = Pu + B + P 4 Vip* - Sy (25)

_
P (Ba) ¢

Bu = (%)f (26)

(&-X) Vi Pm pm\ 8 |
Sf*[(l‘pa)fma)f} 3

pa(Aa)f
P (rp) p(Kup) s
RELAE LSS 27
t LA, Y @7
B#a

¢ = -

The ¢ddtCorr term is a correction of the volumetric face fluxes as-
sociated to the interpolation errors in the explicit part of the dis-
cretization of the transient term, similar to the one developed by
Choi [2] but with an additional empirical factor. The form of the
temporal correction term depends on the time integration scheme
employed [4], but for the first-order Euler implicit method it is
given as:

ddtCorr __ L 1 -1 _ -1\ .
(Jtt - At (Aa)f[ gt (ult)l )f Sf:l (28)

where the empirical factor y is defined as:

=1 _ (gt-1) .S
V:l—min<|¢ (), f|,1> (29)

[$eTT+3

where the superscript t — 1 stands for the value of the variable at
a previous timestep. Substitution of Eq. (25) into Eq. (24) provides
the following pressure equation:

.
Vo - (Dr9/1p°]-$7)] = Vi [Z ra(f + 5+ ¢2d“°“)} (30)

a=1
where
P
(rot)f
Dp = _— 31
P rwrwy GV

After the solution of the pressure equation, the volumetric fluxes
are calculated with Eq. (25) using the updated pressure field, and
the cell centered velocities are explicitly updated as:

H, . 1 .
Uy = AO( + [¢0{ + ,Oot(AOt)fop Sf}fﬁ)c (32)
where the subscript f— ¢ denotes a vector field reconstruction at
the cell centers from face flux values. A solution algorithm based
on the PISO approach of Issa [16] was applied for the pressure-
velocity coupling. Further details of the solution algorithm are
given in Section 4.5.

3.4. Implicit coupling scheme

In the following we describe the numerical methodology devel-
oped for the multiphase implicitly coupled (MIC) solver.

3.4.1. Momentum equations

For the multiphase system with P phases, we had to extend the
CMI developed by Cubero et al. [5]. First, we separate the temporal
and drag coefficients from the A, and H, operators of the semi-
discretized momentum equation (Eq. (21)), obtaining the following
equation:

Vp*

o

P
=+ FEQ + Z ADozﬁu,B
B=1
pra

[ACl +AT04 +AD0l]uOt _HOt _HToz = -

(33)

where the total drag coefficients Ap, and the other phases drag
Ap,p are defined by:

P

rgK
Ape = 3 Apup. Apep = 2L (34)
pa Lo
ot

Considering a first-order Euler scheme with a fixed time step, the
explicit temporal coefficient is given by Hr, = Ar,us !, Following
Cubero et al. [5], we divide both sides of Eq. (33) by A, to obtain:

P

R F; Vp*
14+ 01y +Op)uy =iy + Y Opygug + Orgul !+ —Bx _
( T Do) g papUp + Or, A Dohu
B
(35)
where the pseudo-velocities i, are defined by:
. H
iy = A—“, (36)
o
and the coefficient ratios, ©, as:
A A A
Ora= 7" Ope="3" Opup= 7" (37)
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Then, the following approximation for the velocities is obtained:

,
1 . i F Vp*
U= Uy + Y Opyplig + Opguiyt 4 B2
T 14O +Ope | ; PapTp T TR TR, T paBy
Bra

(38)

3.4.2. Momentum interpolation
Following Cubero and Fueyo [4] and Cubero et al. [5], we define
the velocities at the cell faces u, ; by:

u, ;= (Ug)y + (Uy) (39)

where (ug)r is the linearly interpolated velocity at the faces and
(uy) is the velocity correction term. Depending on how the mo-
mentum equation is written, different correction terms can be de-
rived. The derivation of a correction term is obtained by rewriting
Eq. (39) as

<uoz> =Uy f— (ua)fs (40)

Then, Eq. (38) can be substituted into the above equation to
yield:

() = ol - ~
“ 1+®Ta.f+®Dot.f 1+®T(x+®Da f

Zﬂ 1 Opgp U g Zﬂ 1 Opgplp
Ba Ba

1+®Ta,f+ODa,f 1+ Ory + Opy
f
" OTot fuaf B ( @Tallt 1 >
14 Orq r+ Opy 5 1+ Ory + Opy P

T FEO( S _ ( Fga )
(] + Orq. f+ Opa. f)A(X‘f (1+ O1¢ + Opy)Aa ¥

Vp; Vp
(1 + Orqy. f+ Opa. f),oaAa f (1+ Org + Opy) PaAx f
(41)

which is exact and could have been directly applied. However, we
applied several approximations in the above equation. As there is
no better approximation for the face value of many of the variables
in Eq. (41) than the linear interpolation of the cell-centered values,
this was assumed for these terms. Hence, the cell face value of the
numerical coefficients Oy, f, Opy, 5, Opgep, 5 and Ay, y are approxi-
mated as:

®Ta.f = (®Ta)f; ®Da,f = (®Do¢)f§ ®Dotﬁ,f = (®Da/3)f§
Ay ;= (Ax)y (42)

The values of the face velocities u,  are not actually needed be-
cause, in the derivation of pressure equation, only its dot product
with the face area vector, Sy, which defines the volumetric face
flux, ¢4, is necessary. The face pressure and density gradients are
calculated from the cell-centered values of the volumes that share
the face. Then, Vp’} = V;p* and the modified body force at the
faces Fj, f is calculated by:

Fgaf_

Pm
o (&%) Vypm + 1 . )fg, (43)
Besides that, in order to save computational time, it is very com-
mon in CFD codes to consider that ([; ¥;); = [1;(¥;). This sim-
plification introduces second order errors that are of little con-
sequence for discretization schemes up to second order accurate.
Since it simplifies code implementation and speeds up calculations,

it was used in most of the correction terms.

Applying the above simplifications, the correction for the
pseudo-velocities, tiy, vanishes and Eq. (41) simplifies to:

(ua) = <ua>D + (ua)T + (ua)FB + (ua)Vp* (44)

where (uy)p, (Ua)71, (Ua)p, and (Uq )y, are the drag, temporal,
body force and pressure corrections, respectively, which are given
by:

Y o1 (Opap)[ug s — (up)y]

_ _bra

e Y I IEICT )
B (Or0) [u | — (Ui 1)f]

et = T @)y + (Op); o
— (F5)y

w _ Bocf Ba 47

e = L (Gra)s + (Oa)y B, “n

(b = (VD" )y = Vip* (48)

[1+ (Ora)s + (Opa) 5| pu (Ba)s

3.4.3. Pressure equation

In order to derive an implicitly coupled scheme, we use the ve-
locity correction deduced in Eq. (44) to evaluate the volumetric
face fluxes in the global continuity equation (Eq. (24)). Then, the
volumetric face fluxes are written as:

Qo = [(ua)f + <uoc>] -8y (49)

The above relation is substituted in Eq. (24) to yield:

P
VD' (Z(ra)f[(ua)fJF(ua)]'Sf) =0 (50)
a=1
which, using Eqs. (44)-(48), gives the following equation for the

pressure:

P
VD . [Dprp* Sf] = VD . <Z(ra)f(ul¥)f Sf)

a=1

+ Vb - [Dp(Vp*)s - Sf]

P Z%=1 (®pap)s[ps — (Wp)s - Sy]
#a
Vo | 2 s | e O,
(Ora)f[dL" — (i 1); -]

1+ (Org)s+ (Opg) s

[ Ba,f (FBa)f] )j| (51)

+
[1 + (Orq)f + (®Da)f](Aa)f

where the pressure equation coefficient is given by:

P

(ra)y
Dp = E . 52
T A1+ Or)s + Opa)s]oa(Aa); 2)

4. Implementation of the implicit coupling
4.1. Block coupled matrix structure

The finite volume discretization of a single transport equation
results in a linear system of the following form:

Apy = Ap (53)

where Ay, is the coefficient matrix, y is a vector of unknowns rep-
resenting the cell center values for the field that is being solved
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for, and Ajp is a vector of sources. The coefficient matrix is a n xn
square matrix, while y and Apg both have dimension equal to the
number of discretization volumes n:

(@11 a2 - ain Y1
a1 Q22 -+ Qn Y2
Ap = . . . N y=| . |:
| A1 Qn2  --- Onn Yn
- b,
b,
Ap=1| . (54)
| bn.

As the finite volume method formulations are usually based on lo-
cal approximations using a small stencil of cells, matrix A, is a
sparse matrix, that is, most g; ; coefficients are equal to zero.

However, in a multi-variable block-coupled solution, there are d
unknowns for each cell value. In this work, we performed the im-
plicitly coupled solution of the momentum and pressure equations
for a system composed of P phases. This means that our block cou-
pled matrix has (3P + 1) x (3P + 1) coefficients for each cell, given
by the three cartesian components of the phase velocities and the
pressure equation (d = 3P+ 1).

For a two-phase flow, the variables are the phase velocity fields,
u, and u, and the modified pressure, p*. In the following, the ma-
trix coefficient arrangement is illustrated for the two-phase flow
case, where, for the i-index cell, we can write the sub-vector of
unknowns, y;, the sub-vector of source terms, Ag;, and the sub-
matrix of coefficients that relates this cell with the j neighbor cell,
AA.i,j* as:

ug,u Ug,u, ug,p*
b ant st
i=|wi | Api=|b" | Apij=|abt o at g
i ] Rl 1 Rl I I
i a gy G
(55)
where
Haxllpx - qllaclipy gl lipz
LU, 1, 1, 1,
blex uiy,uﬁx uiy.ulgy Uay,Ug;
Pt — b'—lay Uo Ug ij ij ij
i = i s ai{j - LiaZ,UﬂX d(vauﬁy aﬂtlvuﬁz ’
bb“‘z a.’ I a.”’
| D; ij 1] L]
_a?c}x-p* alpzuax
.y Uay,P* o T ap SUay
i A (a0 = | i
a'v] auaz)p* ’ a'-] apl,uaz (56)
ij ij

and a?f is the coefficient submatrix that represents the influence
of the variable & at cell j in the variable 7 at cell i.

The foam—-extend-4.0 version of OpenFOAM®has several fa-
cilities for the implementation of block-coupled solvers, which
were used in this work to fill the block-coupled matrix with the
appropriate coefficients [1,3,17]. The numerical treatment applied
to each equation is described in the next section.

4.2. Implicit terms in the momentum equations

As shown in Section 3.1, we employed the phase intensive for-
mulation of the momentum equation. The discretized version for a
phase « is given by:

Lala“;‘]J 17 (Uelta])] — [0 (V - [0 ])

“Te+6

2 " gk,
{v-(varai(s)[ua]} > 2 ]

_ LV, <U Ve [ua]>J =V (vaV[u ]|

p=1 ¢
B#o
P
rgk, 1
_ Z \‘ Blap [“ﬁ]J + Liv[p*]J
= Pa
BAa
__v.gcy Ve 18+ F, (57)

e, 8
where the terms inside brackets are treated implicitly, including
the drag terms from the other phases and the modified pressure
gradient. The terms at the right hand side of Eq. (57) are treated
explicitly. During matrix filling, for a given phase «, the operators
in [uy] feed values in a}f?’“" and b, while the pressure gradi-

ent term stores information into a;‘;."p* and, depending on the dis-
cretization method applied to the pressure gradient, maybe into
b}‘“. The drag term does not depend on neighbor cells and, there-

fore, feeds values only in the a:l:.l’uﬂ coefficients. All the explicit

terms are inserted into the source term b;'“. For a multiphase sys-
tem, the discretization of the phase momentum equations feeds
the first 3P rows of the submatrices Ay ; ;. The last row is fed by
the discretized pressure equation, which is described below.

4.3. Implicit terms in the pressure equation

In this work we follow the same approach of Cubero and Fueyo
[4] and Darwish et al. [7] to develop a pressure equation for the
implicit solution of the pressure-velocity coupling in incompress-
ible flows, which consists of applying the velocity correction equa-
tions to the global continuity equation in order to obtain a Poisson-
like equation for the pressure. A first step is the reorganization of
the velocity divergence term and part of the drag term in Eq. (51),
whose details are given in Appendix A. These terms are implicitly
discretized. Then, the terms that depend on the volumetric fluxes
or on the linear interpolation of the pressure gradient are treated
explicitly considering the current iteration values of ¢ and p*. Tak-
ing into account all these discretizations, Eq. (51) can be rewritten
as:

— | Vo (DpVylpl-Sy) |

P : (rg) s (Oppa) s
+(; Vo (r“)f_; 14+ (Orp)s + (Opp)s (D -5y
pra
=—Vp-[Dp(VDP")s-Sf]+ Pp + Pr + Py, (58)
where
» —ZZH (Opup) 1P
_ . 7o
o= Vo | 2001 16,3, T (@ 59
i (Oro) [ (W) - Sy — @]
1=V | L T @), + )y (60
: [(F3o)r —Fy, 1] Sy
,=Vp- 1Y () « o] (61)
PP Z] T+ Ora)s + (Opa)f](Ba);

In Eq. (58), the terms on the left hand side are discretized im-
plicitly with respect to the pressure and phase velocities, respec-
tively, whereas those on the right hand side are treated explicitly.
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The operator in [p*] can b*e recognized as the Laplacian, and it de-
fines the coefficients af}.’p and feeds information into b . The di-

vergence operator in [uy] sets up the coefficients af’;'“" and also
feeds values in blP*. As usual, the explicit terms are inserted into

the source bf’*. Note that Eq. (51) was multiplied by —1 to provide
Eq. (58). This was performed to force all the numerical coefficients
in the main diagonal of the block-coupled matrix, A,; ;. to have
the same sign, which is beneficial for the linear system solver.

4.4. Face flux correction equation

After solution of the block-coupled system to a given tolerance,
we obtain the new values for uy and p* fields, and the face fluxes
¢ are updated by combining Eqs. (44) and (49) into the following
equation:

z%:;@mﬂ)f[qsgl (), Sf]
1+ (Ora) s+ (Opa)s
(Ora)f[@5! — (i 1);-Sf]
1+ (Or¢)f+ (Opa)s
[Fs.s — (Fs)s] - Sy
[1 + (Ore)5 + (®Da)f](Aa)f
[(vp*k—1>f _ pr*k] -S;
[1+ (Ore) s + (Opa) ] oa (Aa) s

where the k — 1 superscript refers to the variable value at the pre-
vious iteration level, being calculated using the same numerical
values used in the assembly of the right hand side of the pressure
equation (Eq. (58)), while the k superscript refers to the values at
the current iteration level, which are obtained after solution of the
block-coupled system.

d’oz = (ua)f‘sf“"

(62)

4.5. Solution algorithms and convergence criteria

In order to carry out a fair performance analysis of the MS and
MIC solvers, they both employed the same error criteria for the
convergence of the solution within a time step. The convergence
of the pressure-velocity coupling was evaluated through the max-
imum error of the pressure and velocity fields between successive
inner or outer iterations using a mixed tolerance criterion given by
E)“gixed <1, where E;‘ixe‘i is the mixed error that is defined by:

k k-1
Emixed — max |X —X | 63
X <)\‘E)i(bs +)”;(EI|X’(| ( )

where A}bs and )Lg(e‘ are chosen values for the absolute and relative
tolerances. The convergence of the phase fraction fields was eval-
uated using the absolute error between the iterations, E;‘(bs, which
is defined by:

EP® =max (|x* — x*) (64)
Then, for each time step, the solution procedure applied for the
MIC and MS solvers is the following:

1. Outer loop iterations: For a given maximum number of itera-

tions, NJU3X ., or until E;’%ﬁfer < 1 for the modified pressure and
all components of the velocity fields and ES < A3bs o =
1,...,P

(a) Pressure-velocity coupling iterations: For a given maximum
. . . ed

number of iterations, Ngzla,)i(nner’ or until E)T‘i’l‘fner <1 for the

modified pressure and all components of the velocity fields.

o For the MIC solver:

L
5 INLET |h E
R WALLS H| OUTLET
L. E
@
L
g 1 :
S/ INLET WALLS H| OUTLET
L
(b)

Fig. 1. Test cases: (a) backward-facing step geometry and (b) horizontal channel.

(1) Update the drag coefficients, the momentum equation
operators Ay and H,, the numerical coefficients de-
fined in Eq. (37) and the explicit correction terms in
Egs. (59)-(61).

(2) Assembly the block-coupled matrix for p*—u,
with the coefficients from the discretization of
Egs. (57) and (58).

(3) Solve the block-coupled linear system for a given tol-
erance.

(4) Calculate the face fluxes using Eq. (62).

e For the MS solver:

(1) Update the drag coefficients, the matrix operators Ay
and Hy and assemble the pressure equation.

(2) Update the pressure field solving the pressure equa-
tion (Eq. (30)).

(3) Use Eqgs. (25) and (32), to correct the volumetric
fluxes and the velocities, respectively.

(b) For a given maximum number of iterations, N;Zai’;mer, or un-
i abs abs _ :
til Erouime]r < Amvmner, o =1,...,P, solve the phase fraction

equations (Eq. (18)).
2. Advance timestep.

In order to evaluate the convergence performance of both solvers,
for each time step we stored the number of outer iterations Noyter
and the total number of pressure-velocity inner iterations used by

o tot _ Nouter ) )
the algorithms, NpU’inner = 24" Npu,inner, i-

5. Simulation conditions
5.1. Test cases

The MIC and MS methods were compared in two-dimensional
test cases considering two different geometries: a backward-facing
step and a horizontal channel. The conditions considered in each
test case are detailed below.

5.1.1. The backward-facing step

This simple geometry was chosen because it has a relatively
complex flow pattern even in laminar flow conditions. The con-
sidered geometry, shown in Fig. 1(a), is the same tested by Silva
and Lage [31] using L =11H, | =H, h=H/2 and H = 0.01 m. Two
groups of test cases, BFS1 and BFS2, were performed considering
this geometry.

The BFS1 test cases were used to compare the results obtained
using the two coupling methods (MS and MIC) with those obtained
by the single phase steady-state implicitly coupled solver em-
bedded in the foam-extend distribution, the pUCoupledFoam
(pUC). These tests were performed in order to verify the temporal
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Table 1
Phase properties considered in the horizontal channel
cases.

Phases Properties
plkgm?  v[m?s] d[m]
Continuous ¢ 1000 10-° 104
Dispersed A 2000 104 104
B 50 104 104
C 2000 10-° 104
D 2000 104 105

consistency of the momentum interpolation, as it is expected that
the steady-state solution of a consistent transient method should
be the same as the converged solution of a steady-state solver [4].
For this case we considered a parabolic velocity profile at the in-
let with an average value of 0.5 m/s and a kinematic viscosity v =
10-5 m?/s, resulting in a Reynolds number of 500, and the gravita-
tional force field was neglected. The multiphase solver was forced
to simulate a single phase flow case considering a two-phase sys-
tem with the same properties for both phases. The inlet phase frac-
tions were 0.2 and 0.8 for the two phases, both with a diameter
of 1073 m. A mesh convergence analysis was performed consid-
ering uniform cartesian meshes with 4200 (M1), 8820 (M2) and
16,800 (M3) cells, for which (Ax, Ay) are equal to (5 x 1074 m,
5% 1074 m), (3.33 x 107* m, 3.571 x 10~ m) and (2.5 x 104 m,
2.5 x 10~% m), respectively.

The BFS2 test cases were carried out to verify the extension
of the numerical methodology to multiphase flows in both solvers
(MS and MIC). These test cases considered a two-phase flow with
a dispersed phase, a, and a continuous phase, b, with r; = 0.1 and
r, = 0.9 at the inlet. Different densities were considered for the
phases, with p, =900 kg/m? and p, = 1000 kg/m3. We also as-
sumed that r, =0 at t =0 for the whole domain, forcing density
gradients to exist in the beginning of the simulation. The results
of these two-phase simulations were compared to those from the
flow simulation of a three-phase system with two identical dis-
persed phases, al and a2, with half the original phase fraction
(rq1 =42 = 0.05 at the inlet). It should be noted that, in order to
make both cases comparable, we had to neglect the drag between
the dispersed phases al and a2. This analysis was carried out only
for the coarsest mesh M1 in order to enlarge the deviations be-
tween the two numerical methodologies. The temporal consistency
of the applied momentum interpolation methods was also inves-
tigated for this case by considering two different values for the
Courant number (0.2 and 0.4).

5.1.2. The horizontal channel

The flow in a horizontal channel of phases with different densi-
ties leads to inhomogeneities in the phase fraction fields, being an
interesting test case to compare the performance of the multiphase
flow solvers. We compared the performance of the MIC and MS
solvers considering continuous and dispersed phases with different
properties, which are shown in Table 1. The continuous phase is
referred below simply as phase c. The dispersed phase used as ref-
erence was phase A and the other dispersed phases were selected
in order to verify the performance of the MIC and MS approaches
for different values of density (B), viscosity (C) and diameter (D) of
the dispersed phase.

The horizontal channel geometry consists of a rectangular two-
dimensional channel with a length L=1.8 m and a height H =
0.025 m and is shown in Fig. 1(b). Gravity was aligned with
the y-axis pointing downwards with a magnitude of 9.8 m/s. A
mesh convergence analysis was performed considering four ny x ny
meshes, and the time steps were selected in order to keep the
maximum Co number in the mesh below 0.3: mesh 1 (M1) with

Table 2
Inlet conditions for the different test cases in the horizontal channel geometry.
Case  Dispersed phases  Phase fractions un [m/s]
HC1 A Tga =0.2
HC2 B rgp = 0.2
HC3 C Tgc =0.2
HC4 D Tgp = 0.2 0.1
HC5 B, C, D rgg = 0.1 14c = 0.05 rgp = 0.05

ny =250 and ny = 10 (total of 2500 volumes, with At =0.01 s),
mesh 2 (M2) with ny = 500 and ny = 20 (total of 10,000 volumes,
with At = 0.005 s), mesh 3 (M3) with ny = 1000 and ny, = 40 (to-
tal of 40,000 volumes, with At =0.0025 s) and mesh 4 (M4)
with ny = 2000 and ny = 80 (total of 160,000 volumes, with At =
0.00125 s). A uniform velocity profile of 0.1 m/s was assumed at
the inlet, resulting in a hydrodynamic residence time of 18 s. The
Reynolds number calculated based on the properties of the contin-
uous phase is 50. A total of five test cases were considered, whose
inlet conditions are summarized in Table 2. The initial conditions
for each case were generated from a 30 s simulation without con-
sidering the gravity force in order to develop the velocity and pres-
sure fields. These preliminary simulations were started using uni-
form fields with values equal to the inlet conditions for the veloc-
ities and phase fractions and a zeroed value field for the modified
pressure.

5.2. Numerical procedure

In all the cases, the numerical discretization schemes were sim-
ilar. The first-order implicit Euler method was used for tempo-
ral discretization. Laplacians, gradients and cell to face interpola-
tions were calculated considering a linear approximation. The im-
plicitly discretized velocity divergence in the pressure equation
was also discretized considering a linear, second-order approxi-
mation. The upwind scheme was used for the momentum and
phase fraction advection. When using the MIC solver, the block-
coupled linear system was solved by clustering algebraic multigrid
methods (AMG) [14,26]. Both the Block-Selective Algebraic Multi-
grid (SAMG) and aggregative (AAMG) methods were employed, be-
ing the former recently implemented by Uroi¢ and Jasak [34] in
foam-extend. The ILUCO smoother described in [34] was applied
for both methods. For the MS solver, a generalized AMG (GAMG)
method with geometric pairing and a simplified diagonal-based
Cholesky (DIC) smoother was applied on the solution of the pres-
sure equation. The iterations of these linear solvers were controlled
by specifying absolute and relative tolerances for the residual norm
of the normalized linear system [18]. The relative tolerance is op-
tional and simply defines the minimum ratio between the final
and initial values of this residual norm. A relative tolerance of
102 and an absolute tolerance of 10~2 were employed for the
implicitly coupled solver, whereas an absolute tolerance of 1010
was used for the segregated solver. The phase fraction equations
were solved using a preconditioned bi-conjugate gradient method
(PBiCG [10]) with a simplified diagonal-based incomplete LU pre-
conditioner [20] with an absolute tolerance of 10~12 for the nor-
malized residual of the linear system.

A maximum of six external corrections (NJIZX =6) and fifty
pressure-velocity coupling corrections (Ngb""’i‘nner =50) were used
for both the MIC and MS methods. The convergence of the
pressure-velocity correction loop was controlled by setting abso-
lute tolerance values of A2S =45 10-2 Pa and A2bs

p*,inner Uy ,inner =
-6 o rel _ grel —_10-5

2 x 107° m/s, and a relative tolerance of )\p*,inner = Aud,inner =10
for both variables. An absolute tolerance of )»?O'fsmner = 10> was ap-

plied to the inner loops in the solution of the phase fraction fields.
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Fig. 2. Pressure (a) and velocity magnitude (b) fields for the flow over the
backward-facing step and the lines used for sampling. The results shown are for
the MIC solver with mesh M3, mimicking a single phase flow by considering two
identical phases.

For the convergence of the outer loop the absolute tolerance values
for pressure and velocity were relaxed to A3Ps =45x10"1 Pa

p*,outer
and AS . =2 x 107 m/s, respectively, a relative tolerance of
)Lre*l

p.outer = arel = 10> was used for both variables and an ab-

{zi.outer
solute tolerance of A3 .-
fractions.

The simulations were run in an Intel Xeon X5675 with 32 phys-
ical cores running at 3.07 GHz CPUs and the CentOS 6.6 operat-
ing system with the Open MPI package [11] version 1.6.5 installed
for the parallel runs. The parallelism efficiency, 1, and the speedup
with respect to the serial case, S, were calculated using the execu-
tion time, t°™P, of the master processor for each case, being given
by:

=10"% was employed for the phase

comp S
S=@m - 1=3 (65)
parallel

where Q is the number of processes in the parallel run.

In order to detect the approach to a steady-state solution, a
transient deviation €, was defined by comparing the fields of a
generic variable x at two time instants separated by 100 time
steps, that is:

1 n
€y =2 \/ (Xi(0) = Xi(t — 100A0))? (66)
i=1
where n is the number of control volumes.

6. Results
6.1. Flow over a backward-facing step

The steady-state results for the modified pressure and the con-
tinuous phase velocity magnitude fields are shown in Fig. 2, and
were obtained with mesh M3 and MIC solver for the two-phase
flow of two identical phases, mimicking the single phase flow
(BFS1 test cases). Fig. 2 also shows the vertical and horizontal lines,
located at x = 0.045 m from the inlet and at y = 0.0075 m from
the bottom wall, respectively, used for sampling and comparing
the results for the different meshes and numerical methodologies.

Fig. 3 shows the steady-state values for the pressure at the hori-
zontal and vertical lines and the x and y-component of the velocity
at the vertical line for the BFS1 test cases using the three meshes.
It shows that the results obtained with the MIC solver have a very
good agreement with those generated by the pUC solver, with a
visually exact superposition of the profiles. On the other hand, we
observed that the MS algorithm show some deviations, which are
attributed to the differences in the numerical formulation. As the
mesh is refined, the difference between the methodologies also di-
minishes, suggesting that they should yield the same results on a
sufficiently fine mesh.

Fig. 4 show the dispersed phase fraction, pressure and veloc-
ity profiles along the vertical line for the BFS2 cases. The profiles
of the b-phase fraction at t =0.1 s and t = 0.4 s are displayed in
Fig. 4(a) and (b), respectively. They show that, despite the differ-
ent results between the MS and MIC methodologies, both of them
provide the same results when the two- and three-phase cases
are compared, showing that the generalization of the numerical
methodology to any number of phases was performed correctly.
The steady-state profiles of pressure and y-component of the ve-
locity are shown in Fig. 4(c) and (d), respectively. It can also be
observed that the results obtained with the a—b or al —a2-b
systems were the same in both formulations. The influence of the
time-step size on the steady-state solution obtained by the MS and
MIC solvers was also verified for the BFS2 cases. Fig. 5(a) and (b)
show, respectively, the steady-state profiles of the pressure and the
y-component of the velocity on the vertical line for the simulations
considering Courant number values of 0.2 and 0.4. As expected, the
MS methodology failed in achieving time-step independent results
since it does not apply a temporally consistent momentum inter-
polation technique. On the other hand, the MIC formulation pro-
vided the same results for the two employed Courant numbers.

6.2. Flow in a horizontal channel

First, the parallel scalability of both MIC and MS approaches
were evaluated. Table 3 displays the execution time, the speedup
and the parallelism efficiency considering the serial and parallel
simulations divided in up to ten processors. This analysis was per-
formed for case HC1 with M3 considering a transient simulation of
30 s. The comparison of the execution times spent with the AAMG
and SAMG shows that the later is from 10 to 25 times faster than
the former. As discussed by Uroi¢ and Jasak [34], the convergence
of the AAMG method stalls after few iterations. For this reason,
the number of iterations performed by the linear solver were al-
ways equal to the maximum allowed (10) without achieving the
prescribed tolerance, resulting in more pressure-velocities itera-
tions in the inner loop to achieve convergence. On the other hand,
the SAMG method is capable of reaching the prescribed tolerance
in few iterations, resulting in less iterations also in the pressure-
velocities coupling loop. The results for the MS solver are also
shown in Table 3, revealing that the MS approach was from 5 to 10
times faster than the MIC with SAMG. On the other hand, the MIC
method shows a better parallel scalability, as its efficiency is close
to 68% for the case with 10 parallel processes, while the MS effi-
ciency was below 35%. This suggests that the MIC solver with the
SAMG linear solver may eventually become faster than MS solver
for very large meshes.

In order to compare the results obtained with the MIC and MS
methods, the HC test cases were run for a total of 500 s in order
to achieve a steady-state solution. Due to the better performance
of the SAMG linear solver when compared to the AAMG method,
the former was used in the simulations with the MIC solver to gen-
erate the results given in the following.

The vertical lines used for sampling the velocity and phase frac-
tion fields were located at x =1 m and x = 1.65 m, respectively,
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Fig. 3. Verification of the multiphase methodologies against the single phase steady-state coupled solver for several meshes: (a) the pressure profile along the vertical line,
(b) the pressure profiles for the horizontal line, (c) the x- and (d) y-component velocity profiles along the vertical line.

Table 3

Comparison of the parallelism efficiency and computational times spent with the MIC using differ-
ent solution methods and comparison with the MS solver for several number of processes.

MIC MS
Q AAMG SAMG GAMG

teomp ] S n teomp [ S n teomp [s] S n
1 204,140 - - 13,431 - - 1434 - -
2 146,540 14 69.7% 7169 19 93.7% 855 17  83.9%
4 98,677 2.1 51.7% 3673 37  914% 554 26  64.7%
8 55,403 3.7 46.1% 2286 59 734% 442 32 40.6%
10 48,850 42  41.8% 1980 6.8 67.8% 424 34  339%

and the horizontal line used for sampling the modified pressure
was located at y = 0.0125 m, as displayed in Fig. 6. The results ob-
tained in the case HC1 are shown in Fig. 7. The velocity and pres-
sure profiles after 500 s of simulation are displayed in Fig. 7(a) and
(b), respectively, and show that the results obtained with the MIC
and MS solvers are similar regardless of the mesh spacing for this
case. The dispersed phase fraction profile is shown in Fig. 7(c). It is
also observed that the results obtained with the M3 mesh are very
similar to those using the M4 mesh. Hence, given the large compu-
tational cost of the simulations with M4, M3 was the finest mesh
used in the cases HC2, HC3, HC4 and HC5. As expected, Fig. 7(c)

shows that the denser dispersed phase deposits at the bottom of
the channel. As the mesh refinement is increased, the phase frac-
tion gradients increase and the phase fraction at the vicinity of the
bottom wall reaches a unitary value, while the phase fraction near
the top wall approaches zero. Despite these steep phase fraction
gradients, no convergence issues were observed for the MIC and
MS approaches in the HC1 cases.

The maximum transient deviations in the velocity, modified
pressure and phase fraction fields obtained with the M3 mesh are
displayed in Fig. 7(d). In the first 100 s of simulation, the transient
deviations of both methods have the same order of magnitude.
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Fig. 4. Multiphase flow simulation considering different number of phases and numerical formulations (mesh M1): b-phase fraction at (a) t = 0.1 s and (b) t = 0.4 s and the
steady state profiles for (c) the pressure and (d) the y-component of the velocity along the vertical line.

Then, after 100 s, rapid declines are noticed in the transient de-
viations of the velocity and phase fraction in the MIC solver, which
become negligible after 200 s. This faster convergence to steady
state may be credited to the better coupling between the phase
velocities in the MIC solver. The number of inner and outer cor-
rections performed by both solvers in each time step using the M3
mesh is shown in Fig. 7(e) and (f), respectively. During most of
the simulation time both methods performed only one outer itera-
tion per time step. Thus, these figures show only the beginning of
the simulation, where the number of iterations performed by both
methods were different. Except for the first time step, where the
maximum allowed number of pressure-velocity coupling iterations
(50) was employed, the MS method performed only one inner it-
eration per time step. On the other hand, the MIC solver executed
several iterations in the first second of simulation. This explains
the lower computational cost of the MS solver when compared to
the MIC solver, as shown in Table 3. Not only the cost per iteration
of the MS solver was lower, but also the number of inner itera-
tions required to achieve the convergence within the time step was
smaller. However, this is a case were both methods yielded a phys-
ically sound solution. There are simulation conditions where the
MS solver fails and the MIC method must be employed, as those
for the cases HC4 and HC5, which are analyzed below.

The test cases HC2 were designed to evaluate the performance
of the MIC and MS methods when exists a large density ratio be-
tween the dispersed and continuous phases (o¢/pgp = 20). The cor-
responding results are shown in Fig. 8. For this case, the MS solver
with M2 diverged at t =97 s and the steady state results could
not be compared for this mesh. However, the velocity and pressure
profiles shown in Fig. 8(a) and (b) reveal a good mesh convergence
between M2 and M3 using MIC. The results obtained with the MIC
and MS solvers were similar for M1 and M3.

The dispersed phase fraction profiles for the HC2 simulations
are displayed in Fig. 8(c). As expected, the phase fraction of the
lighter dispersed phase B is higher near the top of the chan-
nel. As in the previous case, the phase fraction gradient becomes
steeper as the mesh is refined. Observing the transient deviations
in Fig. 8(d) for the M3 mesh, it is noticed that both MIC and MS
solvers achieved state state solutions for which the pressure fields
still have some small fluctuations (e¢p, ~ 10-2). These fluctuations
are due to the large density gradients that emerge in this case. The
comparisons in the number of inner and outer loop iterations exe-
cuted by both solvers for the M3 mesh are shown in Fig. 8(e) and
(f), respectively. They reveal that the convergence with the MIC for
this case is more costly than in the base case HC1. Both MIC and
MS methods still perform only one iteration per time step for most
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Fig. 5. Verification of the time-step dependency of the multiphase methodologies:
profiles of (a) the pressure along the horizontal line and (b) the y-component of
the velocity along the vertical line for different Courant numbers using the MS and
MIC methodologies.

rq [-]
09 0.07 Gl || \?‘f?\ []]] \9'??\ \(\)‘4

B

Fig. 6. Lines used for sampling the data in the horizontal case channel. The dis-
persed fraction field shown is for the HC2 case using the MIC solver.

of the simulated time, but MIC performs 3 inner iterations for al-
most 75 s of simulation, while MS performs more than one inner
iteration only in the first 0.06 s of simulation.

The test case HC3 evaluates the effect of a different value
for the dispersed phase viscosity in the performance of the two
solvers. The obtained results are shown in Fig. 9. As in the previous
case, the velocity and pressure profiles have already achieved mesh
convergence for the M3 mesh, as shown in Fig. 9(a) and (b). The
dispersed phase fraction profile, shown in Fig. 9(c), is very similar
to that of case HC1, with the heavier dispersed phase C depositing
at the bottom wall, and the phase fraction gradients increasing as
the mesh is refined. However, the main difference in these two test
cases is the behavior of the transient deviations, shown in Fig. 9(c)

for the M3 mesh. When the steady state solution was achieved,
the transient deviations using the MS solver are about five orders
of magnitude larger than those using the MIC solver. This can be
explained by the fact that a lower dispersed phase viscosity cre-
ates larger relative velocities in the streamwise direction and, thus,
the continuous and dispersed phase velocity profiles have different
development. The better coupling between the phases in the MIC
solver yields a smoother convergence to the steady state solution.
The number of inner and outer iterations are shown in Fig. 9(e)
and (f), respectively, for the M3 mesh. As in the previous cases,
the MS solver required more iterations in the first few time steps,
while the MIC executed more inner iterations during the first 7 s
of simulation.

Fig. 10 shows the results for test case HC4, which was designed
for evaluating both solvers in the simulation of a dispersed phase
with small particles (or drops). Fig. 10(a) and (b) show, respec-
tively, the velocity and pressure profiles obtained from the MIC
and MS methods. The results from the MIC method have mesh
convergence but the results obtained from the MS method do not,
which are very different for the three meshes. The MS method pro-
vides a velocity profile that tends to be flat instead of parabolic,
as expected. This happened due to numerical limitations of the
MS solver when dealing with the large drag coefficients that oc-
cur for this case, as a result of the small value of the diameter
of the dispersed phase D. It must be pointed out that the toler-
ance criteria specified for controlling the inner and outer loop iter-
ations were fullfilled for all cases in all time steps. Therefore, the
MS solver convergence has stalled. The dispersed phase fraction
profile is shown in Fig. 10(c), which shows that the phase frac-
tion gradients are less steep than the previous cases due to the
smaller settling velocity caused by the decrease in the diameter
of the dispersed phase. As expected, the different velocity fields
provided by the MS and MIC solvers led to different phase frac-
tion profiles. Fig. 10(d) shows the transient deviations, which are
up to eight orders of magnitude larger for the MS method results
when compared to those obtained by the MIC method. However,
the number of inner and outer iterations in both the MIC and MS
solvers, shown in Fig. 10(e) and (f), respectively, are the same, that
is, only one iteration per time step, except at the beginning of the
simulations.

The results of the test case HC5 are shown in Figs. 11 and 12.
These tests were performed in order to evaluate the MIC and MS
solvers in a multiphase case with several dispersed phases includ-
ing large density differences and small particle sizes. Fig. 11(a) and
(b) show, respectively, the velocity and pressure profiles, which are
different for the MIC and MS methods, similarly to the HC4 case.
This is related to the presence of the small-diameter dispersed
phase D and the numerical limitations of the MS solver to deal
with large drag coefficients. However, for the HC5 case, the MS
solver results get closer to those obtained with the MIC solver as
the mesh is refined. This may be credited to the smaller fraction of
phase D in this test case when compared to HC4 case. The phase
fraction profiles of the continuous and dispersed phases C, D and E
are shown in Fig. 11(c)-(f), respectively. The results for both meth-
ods agree with what was qualitatively expected, with the lighter
dispersed phase B concentrating near the top wall of the channel
whereas the heavier dispersed phase C concentrated at the bottom
of the channel and the fraction of phase D followed the qualita-
tive pattern of the continuous phase fraction because of the small
settling rate of its particles.

The transient deviations for the M3 mesh are shown in
Fig. 12(a). Their values for the MIC solver are seven orders of mag-
nitude lower than those for the MS solver, indicating that, de-
spite the long simulation time, the latter did not converged to the
steady-state solution. The inner and outer iterations executed by
the MIC and MS solvers are shown in Fig. 12(b) and (c), respec-
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Fig. 7. Results for the case HC1: (a) continuous phase velocity, (b) modified pressure, (c) dispersed phase fraction, (d) transient deviations, (e) total number of inner iterations
and (f) number of outer iterations within the timestep.
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Fig. 10. Results for the case HC4: (a) continuous phase velocity, (b) modified pressure, (c) dispersed phase fraction, (d) transient deviations, (e) total number of inner
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Fig. 11. Results for the case HC5: (a) continuous phase velocity, (b) modified pressure, (c) continuous phase fraction and fraction of dispersed phases (d) B, (e) C and (f) D.
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Fig. 12. Results for the case HC5: (a) transient errors, (b) total number of inner
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with M3.

tively. Both solvers performed only one outer iteration during the
whole simulation. The MIC solver executed from 1 to 4 inner it-
erations, with an average of 2.5 iterations, in the interval between
0.0025 s and 68 s of the simulation, hence the number of itera-

tions plotted is the average of the total number of inner iterations,
Ngﬁmer, for this interval. After approximately 90 s, just one inner

iteration was executed until the end of simulation. On the other
hand, the MS solver performed several iterations only in the first
time step, using only one iteration for the rest of the simulation.
Therefore, the MS solver runned much faster, but yielded a wrong
solution.

7. Summary and conclusions

The implementation and verification of an implicitly coupled
solver (MIC) for the multi-fluid model was performed. The com-
putational code was implemented in C++ using the libraries
from foam-extend, a fork of the open-source CFD toolbox
OpenFOAM®. The numerical methodology developed in this work
is based on the simultaneous solution of the momentum and pres-
sure equations, being extended for systems with any number of
phases.

We performed a thorough verification of the code, compar-
ing it with a steady-state single phase flow solver and with an
extended multiphase version (MS) of the segregated solver for
the two-fluid Eulerian model implemented in foam-extend, the
twoPhaseEulerFoam solver.

The Aggregative AMG and the Block-Selective AMG [34] meth-
ods were tested for the solution of the block-coupled matrix in
the MIC solver. The SAMG has proven to be more effective on the
solution of the problem, reaching the prescribed tolerance with
few linear solver iterations. On the other hand, the AAMG solver
showed a poor convergence behavior, performing the maximum
allowed number of linear system iterations and requiring a large
number of pressure-velocity coupling iterations to reach the de-
sired accuracy.

The parallel scalabilities of the MS and MIC solvers were eval-
uated for the solution of a two-phase flow in a two-dimensional
horizontal channel using 1-10 processors. For this case, the MS
method has shown to be from 4.6 to 9.3 times faster than the MIC
solver. However, its parallel efficiency was half of the one obtained
for the MIC solver for the 10-processor runs.

The analysis of the convergence to the steady-state solution in
several test cases showed that the MIC method was more robust
that the MS solver. Considering cases with similar convergence
criteria, the MIC method was able to reach steady-state solutions
with smaller errors. The main advantage of the MIC solver over the
MS solver is its capability of achieving convergence even when the
drag coefficient is large. For these cases, the segregated pressure—
velocity coupling used in the MS solver fails, providing flat veloc-
ity profiles and wrong pressure fields. These wrong solutions pro-
vided by the MS solver occur irrespective of the convergence crite-
ria used for controlling the inner and outer iteration loops.
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Appendix A. Rearrangement of the velocity divergence and
drag terms

First, Eq. (51) is rewritten with the linearly interpolated veloc-
ity term of the drag correction moved into the velocity divergence
term, yielding:

Vi - [DpsVsp™ - S5] = Vb - (E) + Vb - [Dpr(VD") - Sy

> h-1 (Opap)s . .
+Vp - ZP:(rot) g#‘}‘ Pr (®T0‘)f[ ‘gl_(ugl)f'sf]
= 1 1+ (Ora)s + (Opa)s 1+ (Org)f + (Ope)s

(Fro.s — (F5)5] - Sy

Al
[1+(®Ta)f+(®Da)f](Aa)f (A1)
where
P Y1 (Opap)s(ug)y - Sy
E = (ra)s| (Wa)s-Sp— =22 (A2)

1+ (Ora) s+ (Opg) s

a=1

In order to simplify the deduction, consider a system with P =3
phases a, b and c. Then, we can write Eq. (A.2) as:
Z = (1) -(u )e.S;— (®pap)s(Up)f Sy (Opac)f(Uc)s - S¢
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By grouping the terms associated to each phase velocity, we get:
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This result can be straightforwardly extended to a system with any
number of phases, as considered in Eq. (58).
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