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Abstract

The continuous kinetic lumping models are traditionally solved by methods that dis-

cretize the mixture into a large number of pseudo-components. This works proposes

the usage of the adaptive characterization of continuous mixtures, grounded on the

direct quadrature method of generalized moments, in the solution of kinetic lumping

models, which allows a large reduction in the number of pseudo-components. Cata-

lytic hydrogenation and hydrocracking problems were used to evaluate this method-

ology, comparing its results with analytical solutions or results from a classical

numerical method. The results showed that the proposed methodology could accu-

rately solve those continuous kinetic models using a small number of adaptive

pseudo-components, leading to a large reduction in the computational cost of simula-

tion when compared to the classical numerical method.
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1 | INTRODUCTION

Processes in several industries (oil and gas, petrochemical, biotechnol-

ogy, pharmaceutical, etc.) have streams that are formed by continuous

reactive mixtures. The design, analysis, and optimization of such pro-

cesses may be carried by mathematical models that intend to describe

the physical and chemical phenomena as close as possible to reality.

The so-called continuous reactive mixtures are multicomponent

fluids composed by hundreds of species undergoing reactions. Since they

have similar properties, it is not practical, or even possible, to identify all

of them and their composition using customary quantitative analysis.1

In academic and scientific community, the modeling of continuous

reactive mixtures have been a recurrent subject, since it is not yet

fully understood and there is not a general consensus on the best way

to approach it. Therefore, the subject of this work is relevant to both

academic and industrial researches.

The thermodynamic and kinetic modeling of these mixtures often

starts from the application of an order reduction method. These

methods consist of characterizing a group of components through a

single compound, preserving some of the group physical properties

and its behavior in the relevant process.

Okino and Mavrovouniotis2 reviewed the order reduction methods,

classifying them into three types: sensitivity analysis, time-scale analysis

and lumping. This work focused on the lumping strategy, more specifi-

cally on the continuous lumping approach. Further details regarding the

other approaches can be found in Okino andMavrovouniotis.2

The continuous approach has been used for a long time for model-

ing the thermodynamic and kinetic behavior of multicomponent mix-

tures. Regarding the kinetic modeling, the next section describes how

this approach has evolved from a mathematical model often used for

the fragmentation of particulate systems.

This model is a special case of the population balance equation

(PBE), for pure particle breakage problems.3 The PBE is an integro-

differential equation that does not usually have an analytical solution.

Thus, suitable numerical methods are essential for its solution.

The quadrature-based moment methods (QBMM; quadrature method

of moments [QMoM], direct quadrature method of moments [DQMoM],

direct quadrature method of generalized moments [DQMoGeM], etc.)
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were originally proposed to solve PBEs, being used, extended and

improved for this purpose in the past few years.4-8

Additionally, Lage1 proposed an innovative application for the

quadrature methods of moments: the solution of continuous thermo-

dynamic problems. His work pointed out a remarkable characteristic

of these methods: the ability of adapting the mixture characterization

during the solution. Due to this, these adaptive methods are able to

achieve accurate solutions with a small number of quadrature points,

being more efficient than the fixed-abscissa quadrature rules or any

other method based on a fixed discretization.

Following Lage1 approach, Laurent et al.9,10 applied QMoM to

model the multicomponent droplet vaporization process. Later on,

Rodrigues et al.11 provided an adaptive scheme for the multistage

separation of continuous multicomponent mixtures and, according to

Petitfrere et al.,12 the adaptive feature of QMoM has proven to be

highly accurate for multiphase flash calculations.

The direct form of QMoM was also extended to field problems by

Jatobá et al.,13 widening its scope for continuous mixture characteri-

zation. However, there is no previous work, to the authors' knowl-

edge, that applied QMoM or one of its variants to solve kinetic

models of continuous mixtures, even though these models have

evolved from the population balance formulation.

Therefore, this work developed an alternate methodology to solve

kinetic models of continuous mixtures by using the adaptive QBMM

method called DQMoGeM.14 Three test cases were solved to verify its

accuracy. It performance was compared to that of the numerical method of

Laxminarasimhan et al.,15 which is often used to solve hydrocracking

reactions.

2 | MODELS FOR REACTIVE CONTINUOUS
MIXTURES

2.1 | Kinetic modeling based on continuous lumping

DeDonder16 was the first researcher to consider a multicomponent

mixture as a continuous one, discussing the theory of reactions of

continuous mixtures.17-20

While previous works addressed specific reactions, Aris and Gav-

alas21 were the first to show how to model any first-order reaction

(reversible or irreversible, isothermal or non-isothermal) using the con-

tinuous approach.

Considering the mixture distribution over a single conveniently

chosen variable I, the molar concentration of the entire mixture, C(t),

is obtained from:

C tð Þ=
ðImax

Imin

fC I,tð ÞdI ð1Þ

where fC is the distribution of the molar concentration of the mixture.

For parallel independent first-order reactions, the individual reac-

tion rates are given by:

∂fC I,tð Þ
∂t

= −k Ið ÞfC I,tð Þ ð2Þ

Ho and Aris22 initiated the discussion regarding the effect of

nonlinear kinetics of individual reactions on the kinetic modeling of

continuous mixtures. They showed that the simple and straightfor-

ward extension of the continuous modeling used for linear reactions,

Equation (2), to nonlinear reaction models causes inconsistencies due

to the fact that fC is a distribution and not a concentration.

Three different approaches were proposed to represent nonlinear

kinetic models for the concentration distribution of a continuous mix-

ture: cooperative nonlinear kinetics,23 double-distributed continuous

mixture24 and coordinate transformation.25

This work focused on the coordinate transformation method, which

proposed the introduction of the distribution function for the number of

components, D(I), whose definition implies that D(I)dI gives the differen-

tial number of mixture components in the [I, I + dI] interval. The idea

behind this approach is to decompose the concentration distribution

into two parts: the distribution D(I) and the concentration of an individ-

ual component, c(I), that is, fC(I) = D(I)c(I, t). Thus, the usual nonlinear

kinetic models can be easily extended to continuous mixtures. For

instance, a q-order decomposition reaction can be written as:

∂c I,tð Þ
∂t

= −k Ið Þ c I,tð Þ½ �q ð3Þ

which has the same form used for the reaction order of a single chem-

ical species. This approach was applied in a widely used model for

hydrocracking problems, described in the next section.

2.2 | Kinetic lumping modeling as a population
balance model

The cracking reactions of a continuous mixture can be modeled using

a special case of the PBE, which considers the evolution of a univari-

ate distribution due to a fragmentation process in a spatially homoge-

neous problem, as shown by3:

∂f I,tð Þ
∂t

= −bf I,tð Þf I,tð Þ+
ð∞
I
ν I0ð Þbf I0,tð ÞΩ I, I0ð Þf I0,tð ÞdI0 ð4Þ

where f is the particle number distribution function, bf is the breakage

frequency, ν is the average number of particles formed from the

breakup of a single particle of state I0 (ν = 2 for binary fragmentation)

and Ω is the probability distribution function for the daughter particles

generated by the breakup of one particle of state I0 have state I.

In Equation (4), f(I, t)dI means the number of particles per unit of

volume with label between I and I + dI. Thus, the total number of par-

ticles per unit of volume, pn(t), is given by:

pn tð Þ=
ðImax

Imin

f I,tð ÞdI ð5Þ

According to Ramkrishna,3 the same notions applied for particles

are also valid for molecules, cells or other entities. Thus, the number

density of particles in the kinetic context is actually the number
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density of molecules, which gives the molar concentration when

divided by the Avogadro number (NAv): C(t) = pn(t)/NAv. Therefore,

Equations (1) and (5) are equivalent with fC = f/NAv.

In the context of continuous reactions, Saito26 was the first to use

the fragmentation model, Equation (4), to describe a polymer degrada-

tion process27,28 in the following form:

∂fC I,tð Þ
∂t

= −κ Ið ÞfC I,tð Þ+2
ðImax

I
k I, I0ð ÞfC I0,tð ÞdI0 ð6Þ

where binary fragmentation was considered, the breakage frequency,

bf, was made equal to the overall rate function, κ, and k(I, I0) was inter-

preted as a stoichiometry coefficient, defined by:

k I, I0ð Þ= κ I0ð ÞΩ I, I0ð Þ ð7Þ

Being a probability distribution with Ω(I, I0) = 0, I > I0, it is clear that

ðI
0
Ω I, I0ð ÞdI=1 ð8Þ

leading to

κ Ið Þ=
ðI
0
k I, I0ð ÞdI ð9Þ

However, the classic breakage formulation is intrinsically for first-

order kinetics.15,29 For this reason, Laxminarasimhan et al.15 used the

coordinate transformation approach25 to propose a new model for

hydrocracking that can consider nonlinear reactions with general stoi-

chiometry. Their formulation was proposed in terms of the mass dis-

tribution, w, using the reactivity, k, as the distribution variable, as

follows:

dw k,tð Þ
dt

= −kw k,tð Þ+
ðkmax

k
p k,k0ð Þk0w k0,tð ÞD k0ð Þdk0 ð10Þ

where p(k, k0) is the yield distribution function, that accounts for

the formation of the component with reactivity k from the cracking

of the component with reactivity k0. Laxminarasimhan et al.15

pointed out that the usage of the distributions D(k0) and p(k, k0)

make their formulation general enough to consider the cracking of

any complex mixture. It should be noted that this model applies

equally for the normalized or non-normalized mass distributions. In

the former w is the mass fraction distribution and in the latter it is

just the mass distribution. Laxminarasimhan et al.15 analyzed the

experimental data for the cracking of hydrocarbon families

reported in the literature and proposed a skewed Gaussian function

to model the yield distribution p(k, k0), using three adjustable

parameters (a0, a1 and ψ ).

Laxminarasimhan et al.15 assumed that the reactivity is a function of

the normalized true boiling point temperature, θ, which is often experi-

mentally available for petroleum, using the following expression:

θ =
TBP−TBPmin

TBPmax−TBPmin
=

k
kmax

� �α
ð11Þ

where kmax is the highest reactivity in the mixture and α is a dimen-

sionless parameter. Since the number of components in any arbitrary

interval must be the same for any distribution variable, then:

D kð Þdk =D θð Þdθ ð12Þ

and the number of lumps is given by:

n=
ð1
0
D θð Þdθ ð13Þ

Assuming an uniform D(θ) distribution, one can derive:

D kð Þ= nα
kαmax

kα−1 ð14Þ

Thus, the Laxminarasimhan et al.15 model has five adjustable parame-

ters: α, kmax, a0, a1, and ψ . There are several works that reported good

results by using the model proposed by Laxminarasimhan et al.15 or

its extensions.30-38

3 | THE NUMERICAL SOLUTION OF
CONTINUOUS KINETIC MODELS

The governing equation for reacting continuous mixtures often has an

integro-differential form, for example, Equation (10), which does not

usually have an analytical solution. Two main numerical methodolo-

gies has been used to solve these models: the method of moments

(MoM)39 and a methodology proposed by Laxminarasimhan et al.15

that combines a fixed discretization and a Gaussian quadrature, which

is called here the fixed point quadrature method (FPQM).

The FPQM has been developed and mainly employed for hydro-

carbon cracking. It basically consists in a characterization of w(k, t)

using n lumps and the time integration of the discretized form of the

kinetic equation, Equation (10). The application of the FPQM to solve

continuous kinetic lumping models was given in detail by Elizalde and

Ancheyta.34

In this work, we proposed the application of the adaptive charac-

terization method1 to solve continuous kinetic reaction models for

the first time. This method uses a QBMM to choose the pseudo-com-

ponents. Here, we employed the DQMoGeM, which is a generaliza-

tion of the direct version of the QMoM,4 which in turn is a

modification of the original MoM.39

The QMoM was the first QBMM developed and successfully

applied to solve a wide range of population balance problems, due its

ability of overcome the known closure problem of the MoM by

approximating the integrals using the Gauss–Christoffel quadrature

rule,40 defined by:
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ðImax

Imin

g Ið Þf Ið ÞdIffi
XN
i=1

ωig Iið Þ ð15Þ

where g is any function and f is the weight function, which is the dis-

tribution itself.

Lage1 was the first to propose its usage to solve continuous ther-

modynamic problems as each quadrature point can be identified as a

discretized pseudo-component. Besides, Equation (15) is the optimal

quadrature for calculating the properties of a mixture with a molar

fraction distribution given by f(I).

However, the moment inversion problem in the QMoM is time-

consuming and its general solution for multivariate distributions is not

known. Thus, Marchisio and Fox5 developed the direct version of

QMoM (DQMoM) to eliminate the need for solving the moment

inversion problem during the time evolution of f.

Its basic idea is to track explicitly the weights and the abscissas of the

quadrature instead of the moments of the distribution. In order to achieve

that, the DQMoM replaces the distribution by its discrete approximation,

given by the following summation of NDirac delta functions:

f I,tð Þ=
XN
i=1

ωi tð Þδ I− Ii tð Þð Þ ð16Þ

which gives the Gauss–Christoffel quadrature approximation represented

by Equation (15) using the filtering property of the Dirac delta function:

ðImax

Imin

g Ið Þδ I− Iið ÞdI= g Iið Þ, 8Ii 2 Imin, Imaxð Þ ð17Þ

The replacement of the distribution by Equation (16) in the moments

of the PBE results in a system of differential equations for the weights

and abscissas. Thus, the DQMoM requires the moment inversion pro-

cedure only once to find the initial condition.

The DQMoGeM is a generalization of the DQMoM in which the

regular moments are substituted by the generalized moments, which

are defined by:

μj =
ðImax

Imin

Pj Ið Þf Ið ÞdI, j=0,…,2N−1 ð18Þ

where Pj, j = 0, …, ∞, are the j-order members of a family of orthogo-

nal polynomials in the same interval (Imin, Imax) in respect to a weight

function W, which satisfy the orthogonality property:

ðImax

Imin

Pi Ið ÞPj Ið ÞW Ið ÞdI=0, 8i 6¼ j ð19Þ

Using the Gauss–Christoffel quadrature, the generalized moments can

be written as:

μj =
XN
i=1

ωiPj Iið Þ ð20Þ

In the DQMoGeM, the moment operators are given by:

ðImax

Imin

Pj Ið Þ�dI, j=0,…,∞, ð21Þ

whose application to the PBE generates the system of differential

equations for the quadrature abscissas and weights.

The moments can be calculated from their definition using the

weights and abscissas of the quadrature rule (Equation 20), being usually

the only unknown variables that have to be determined. Sometimes,

though, it is necessary to reconstruct the distribution from its moments.

Grosch et al.6 were the first to reformulate the QMoM and

DQMoM by using generalized moments. They used only Laguerre

polynomials in semi-infinite domain problems, concluding that the

methods were only marginally more robust than the corresponding

methods using regular moments. On the other hand, Santos et al.14

analyzed problems in semi-infinite and finite domains, using Laguerre

and Legendre polynomials, respectively. They concluding that, for

finite domain problems, the usage of Legendre polynomial moments

improves the method robustness. The reformulated DQMoM was

named as DQMoGeM by Santos et al.14

4 | APPLICATION OF THE DQMOGEM

The application of the DQMoGeM can be summarized in the follow-

ing sequential steps:

1. For a known initial distribution function, calculate the initial

moments, from Equation (18), and solve the moment inversion prob-

lem to determine the initial values for the weights and abscissas.

2. Derive the system of differential equations for the weights and

abscissas by substituting the distribution function in the kinetic

model by its discretization (Equation 16), applying the generalized

moment operators (Equation 21) and the filtering properties of the

Dirac delta distributions:

ðImax

Imin

Pj Ið Þδ kð Þ I− Iið ÞdI= −1ð ÞkP kð Þ
j Iið Þ, k =0,1,… ð22Þ

3. Perform the time integration of the system of differential equations

obtained in Step 2 using the initial conditions calculated in Step

1 using an adequate method until reaching the desired final simula-

tion time. Optionally, calculate the moments using Equation (20).

4. If needed, reconstruct the distribution function.

The above procedure can be applied to solve any continuous

kinetic model in which the reactants and products are represented by

only one distribution function. It can be extended for more than one

family of compounds, as done by Becker et al.37 for FPQM.

However, the application of the Step 2 to nonlinear kinetic

models generates a system of differential equations that depends
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on the distribution function evaluated at the quadrature points. This

requires the reconstruction of the distribution by an accurate

method, preferably one embedded in other QBMM, as the Modified

Sectional DQMoM41 or the extend quadrature method of moments

(EQMoM).8

Since the focus of this work was to analyze the applicability of the

adaptive characterization method for reactive continuous mixtures

and to compare its performance with the method commonly

employed to solve these problems (FPQM), the above procedure was

applied for three test cases that were modeling with first-order kinetic

and only one distribution function. For the first two test cases, analyti-

cal solutions do exist and allow us to verify the model accuracy. The

third test case has no analytical solution and the DQMoGeM results

were compared to FPQM results and to available experimental data.

These test cases as well as the corresponding derivation of the

DQMoGeM system of differential equations (Step 2) are described in

the following sections.

4.1 | Test case 1—Distinct distributions for reactants
and products

According to McCoy and Wang,42 it is not only possible but some-

times necessary to distinguish the distributions of the reactants and

products.

Assume the following pseudo-first order irreversible hydrogena-

tion of the reactant family A in isothermal conditions to given the

product family B:

A Ið Þ+H2 !k Ið Þ
B Ið Þ ð23Þ

The rate equations for the consumption of reactant A and forma-

tion of product B can be expressed in terms of their molar concentra-

tion distribution, fAC and fBC , respectively (see Equation 2):

∂fAC I,tð Þ
∂t

= −k Ið ÞfAC I,tð Þ ð24Þ

∂fBC I0,tð Þ
∂t

= k Ið ÞfAC I,tð Þ ð25Þ

Assuming I to be the molar mass of the reactant A and I0 the molar

mass of the product B, the reaction stoichiometry and the molar mass

of H2 allows us to write:

I0 = I+2 ð26Þ

Following McCoy and Wang,42 the sum of Equations (24) and (25)

gives:

∂fBC I0 ,tð Þ
∂t

= −
∂fAC I,tð Þ

∂t
ð27Þ

and, therefore, fBC I0,tð Þ is easily obtained from fA(I, t) by integrating

Equation (27):

fBC I0,tð Þ= fAC I,0ð Þ− fAC I,tð Þ ð28Þ

But fAC I,tð Þ can be analytically determined by solving Equation (24),

being given by:

fAC I,tð Þ= fAC I,0ð Þexp −k Ið Þtð Þ ð29Þ

Thus, for a given initial distribution and a model for k(I), we can obtain

the concentration distributions for A and B families along the time. Here

we assumed a truncated gamma distribution for fAC I,0ð Þ, given by:

fAC I,0ð Þ= d I− Iminð Þa−1
baΓ að Þ exp −

I− Imin

b

� �
, Imin ≤ I≤ Imax ð30Þ

where d is a scaling factor that is determined by:

d=
ðImax

Imin

fAC I,0ð ÞdI=CA 0ð Þ, ð31Þ

and a power law model for k, given by:

k Ið Þ= σIβ ð32Þ

Since the parameter β is the most influential for the reactant conversion,

this test case was solved for three different values of β (0.1, 1.0 and 2.0),

keeping σ = 0.5 andusing the same initial distribution givenbyEquation (30)

with Imin = 44, a = 2.1, b = 26.7, and Imax = 250. The final time instant was

conveniently chosen accordingly to the β value in order to achieve a rele-

vant reactant conversion. Thus, the final simulation timeswere 1.0, 0.1, and

0.001 for β values equal to 0.1, 1.0, and 2.0, respectively.

The derivation of the DQMoGeM differential equations (Step 2)

started by replacing the fAC I,tð Þ in Equation (24) by its discrete form

(Equation 16) and expanding the derivatives to obtain:

XN
i=1

dωA
i tð Þ
dt

δ I− IAi tð Þ� �
−
XN
i=1

ωA
i tð Þδ0 I− IAi tð Þ� �dIAi tð Þ

dt

= −k Ið Þ
XN
i=1

ωA
i tð Þδ I− IAi tð Þ� � ð33Þ

Then, the generalized moment operators, Equation (21), are applied to

Equation (33) and the filtering properties of the Dirac delta function,

Equation (22), are used to obtain the system of differential equations

for the weights and abscissas that determine the moments of the fam-

ily A distribution:

XN
i =1

dωA
i tð Þ
dt

Pj I
A
i tð Þ� �

+
XN
i =1

ωA
i tð ÞdI

A
i tð Þ
dt

Pj
0 IAi tð Þ� �

= −
XN
i=1

ωA
i tð Þk IAi tð Þ� �

Pj I
A
i tð Þ� �
ð34Þ
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4.2 | Test case 2—Pyrolysis of coal tar in a batch
reactor

This test case corresponds to the first case analyzed by Mccoy43 using

the fragmentation model, Equation (4), to describe the evolution of

the molar mass distribution of a coal during a thermal cracking process

in a batch reactor. It assumes binary fragmentation, ν(I0) = 2, totally

random breakage, Ω(I, I0) = 1/I0 and equal reactivity for all reactants,

that is, kc(I) does not depend on I.42 Thus, Equation (4) can be rewrit-

ten in the following form:

∂fC I,tð Þ
∂t

= −kcfC I,tð Þ+2kc
ðImax

I

1
I0
fC I0,tð ÞdI0 ð35Þ

where Imax is chosen to be large enough in order to fC(I, t) = 0 for I > Imax.

Since the distributed variable, I, was assumed to be the molar

mass, the zeroth and first-order moments of the fC distribution are the

total molar and mass concentrations. The latter must remain constant

along the time for a batch reactor.

Mccoy43 considered the same initial gamma distribution reported

by Chen et al.44 with parameters obtained from available experimental

data. However, Chen et al.44 neglected the tail of the distribution,

I > 1,125, reasoning that it was responsible for less than 5% of the

total initial concentration.

Here we used the truncated gamma distribution (see Equation 30)

with the parameters values reported by Chen et al.44 (Imin = 125,

a = 1.58, b = 192), but using Imax = 1,200 in order to better compare

to Mccoy43 results. We used the same value of the kinetic rate

(kc = 0.01838) applied for the first test case analyzed by Mccoy,43

which corresponds to the result from the Arrhenius equation, pro-

posed by Chen et al.44 for the temperature of 660�C.

This case generates an uncoupled system of moment equations

than can be solved analytically, which allow easily comparison with

numerical results obtained by using the DQMoGeM and FPQM.

In the DQMoGeM Step 2, the distribution fC(I, t) is replaced by its

discrete form (Equation 16) to obtain:

XN
i=1

dωi tð Þ
dt

δ I− Ii tð Þð Þ−
XN
i=1

ωi tð Þδ0 I− Ii tð Þð ÞdIi tð Þ
dt

= −kc
XN
i=1

ωi tð Þδ I− Ii tð Þð Þ+2kc
XN
i=1

ð∞
I

1
I0
ωi tð Þδ I0− I0 i tð Þð ÞdI0

ð36Þ

Then, the generalized moment operators, Equation (21), is applied to Equa-

tion (36) and the filtering properties of the Dirac delta function, Equa-

tion (22), are used to obtain the following system of differential equations:

XN
i=1

dωi tð Þ
dt

Pj Ii tð Þð Þ+
XN
i=1

ωi tð ÞdIi tð Þdt
Pj

0 Ii tð Þð Þ

= −kc
XN
i=1

ωi tð ÞPj Ii tð Þð Þ+ 2kc
XN
i=1

ωi tð ÞGj Iið Þ
Ii tð Þ

ð37Þ

where

Gj Iið Þ=
ðIi
0
Pj Ið ÞdI ð38Þ

which can be analytically calculated.

4.3 | Test case 3—Hydrocracking of heavy oils

This case was originally presented by Elizalde and Ancheyta.34 They

made a review of the kinetic model developed by Laxminarasimhan

et al.,15 showing in detail the mathematical formulation of the FPQM

and how it is applied to hydrocracking problems assuming first-order

reaction for all pseudo-components.

Elizalde and Ancheyta34 estimated the parameters of the model

(α, kmax, a0, a1, and ψ ) using their own experimental data, collected

from a bench-scale plant during the moderate hydrocracking of Maya

crude oil. They used the Levenberg–Marquardt optimization algorithm

to fit the parameters to the resulting data from the application of

the FPQM.

In this work, the experimental data from Elizalde and Ancheyta34

and their adjusted values for the model parameters (α = 0.245,

kmax = 0.537h−1, a0 = 1.396, a1 = 22.0, and ψ = 4.46 × 10−5) were used

to compare the numerical solutions from both FPQM and DQMoGeM.

Since the DQMoGeM is based on the evolution of the distribution

moments, Equation (10) was first converted back to its form in terms

of the mass fraction distribution, that is, using Equations (11), (12) and

(14), Equation (10) can be rewritten as:

dfw θ,tð Þ
dt

= −kmaxθ
1=αð Þfw θ,tð Þ+ n

ð1
θ
p θ,θ0ð Þkmaxθ0 1=αð Þfw θ0 ,tð Þdθ0 ð39Þ

where, from the p(k, k0) definition,15 we can write:

p θ,θ0ð Þ= 1

S0 θ0ð Þ ffiffiffiffiffiffi
2π

p exp−
θ=θ0ð Þ a0=αð Þ−0:5

a1

" #2

−A+B θ,θ0ð Þ
8<:

9=; ð40Þ

A= exp − 0:5=a1ð Þ2
h i

ð41Þ

B θ,θ0ð Þ=ψ 1−
θ

θ0
� � 1=αð Þ" #

ð42Þ

S0 θ0ð Þ= n
ðθ0
0

1ffiffiffiffiffiffi
2π

p exp−
θ=θ0ð Þ a0=αð Þ−0:5

a1

" #2

−A+B θ,θ0ð Þ
8<:

9=;dθ ð43Þ

After replacing the distribution fw(θ, t) by its discrete form, Equa-

tion (39) can be converted to:

∂

∂t

XN
i=1

ωi tð Þδ θ−θi tð Þð Þ
" #

= −kmax

XN
i=1

ωi tð Þθ 1=αð Þδ θ−θi tð Þð Þ

+ nkmax

XN
i =1

ωi tð Þ
ð1
θ
p θ,θ0ð Þθ0 1=αð Þδ θ0−θ0 i tð Þð Þdθ0

ð44Þ
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Then, the application of the generalized moment operators, Equa-

tion (21), and the filtering properties of the Dirac delta functions,

Equation (22), transforms Equation (44) into:

XN
i=1

dωi tð Þ
dt

Pj θi tð Þð Þ−
XN
i=1

ωi tð Þdθi tð Þdt
Pj

0 θi tð Þð Þ

= −kmax

XN
i=1

ωi tð Þθi tð Þ 1=αð ÞPj θi tð Þð Þ

+ nkmax

XN
i=1

ωi tð Þθi tð Þ 1=αð ÞHj θi tð Þð Þ

ð45Þ

where

Hj θ
0ð Þ=

ðθ0
0
Pj θð Þp θ,θ0ð Þdθ ð46Þ

It is important to highlight that there is no n dependence in the last

term of Equation (45). This can be seen by the fact that p(θ, θ0), Equa-

tion (40), is inversely proportional to S0(θ0), Equation (43), which in

turn is proportional to n. Therefore, the n factor in the last term of

Equation (45) cancels out.

For this case, the DQMoGeM results were used to reconstruct

the distribution using the Fourier series,1 which can be directly com-

pared to our FPQM results. It should be noted that our FPQM results

are very similar to those reported by Elizalde and Ancheyta.34

5 | NUMERICAL PROCEDURE

The numerical procedures described in this section were implemented

in routines written mainly in the C# language, but using some routines

written in C and FORTRAN: the Differential-Algebraic System Solver

in C (DASSLC),45 ORTHPOL,46 and AUTOQUAD47 packages. All com-

putations were performed using double precision (16 significant digits)

on a laptop with an Intel Quadricore i7 processor at 2.8 GHz and 8 Gb

of RAM.

The three test cases described in the previous section involve distri-

butions in finite domains. Therefore, the DQMoGeM using the moments

based on Legendre polynomials was chosen for their solution.

The second and third test cases were solved using both

DQMoGeM and FPQM. For performance comparison, care was taken

to use the same numerical procedures for the similar tasks in both

methods and to employ the same criteria for verifying their accuracy.

5.1 | Calculation of the moments of the initial
distribution

Using Equation (18), the initial values of the Legendre generalized

moments were calculated by:

μj 0ð Þ=
ðImax

Imin

ℓj Ið Þf I,0ð ÞdI, j =0,…,2N−1 ð47Þ

Since it was not possible to obtain analytical expressions for these

moments for the test cases, the integrations in Equation (47) were

numerically computed using the adaptive domain-splitting scheme

using the interlaced set of Gauss–Kronrod quadratures implemented

in the AUTOQUAD routine.47 A relative accuracy of 10−12 was

requested for all moments.

5.2 | Calculation of the quadrature rule

The modified Chebyshev algorithm was chosen to obtain the quadra-

ture weights and abscissas from the moments of the distribution. The

computation was performed using the subroutines dcheb and dgauss

of the ORTHOPOL package.48

5.3 | Solution of the system of differential equations

The solution of the system of differential equations was performed

using the DASSLC package.45 This package uses the backward differ-

entiation formula (BDF) of variable order and adaptive time step to

guarantee a desired accuracy. For all variables in all test cases, we

employed values for the relative and absolute tolerances equal to

10−8 and 10−10, respectively.

5.4 | Reconstruction of the distribution function

The reconstruction of the distribution function was performed using

the simple functional reconstruction given by Lage.1 In this Fourier

series expansion method, the Legendre polynomials were calculated

from the three-term recurrence relation of orthogonal polynomials,

whose coefficients were calculated using the drecur subroutine of the

ORTHOPOL package.48

5.5 | Convergence analysis

Since the analytical solution is known for the first test case, the fol-

lowing equation was used to evaluate the time-average relative error

of each moment:

εj =
1
nt

Xnt
s=1

μaj tsð Þ−μj tsð Þ
μaj tsð Þ

					
					 ð48Þ

where μaj are the moments calculated from the analytical solution at

each time ts, using the same procedure described in section 5.1, and

nt is the number of time steps.

For the first test case, the number of quadrature points (nodes)

was progressively increased until the convergence criterion, which

was defined as εj < 10−6 for all calculated moments, was reached.

For the second test case, Equation (48) was also used to evalu-

ate the error. However, the convergence criteria was adopted only

for the first-order moment, that is, ε1 < 0.01. As discussed else-

where, the first-order moment is the total mass concentration and
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must remain constant along the time for a batch reactor, that is,

μ1 tsð Þ =μa1 0ð Þ= 1,8ts.
For the third test case, two convergence criteria were used for

both the FPQM and DQMoGeM. The first was given by ε0 < 5 × 10−4

using Equation (48). The second criterion was based in the average of

the squares of the errors in the cumulative mass distribution, Fw,

given by:

ζ =
1
n

Xn
s=1

Few,s−Fw,s

 �2

, Fw,s =

Ps
i=1

WiPn
i=1

Wi

ð49Þ

where the superscript e was used to represent the experimental

values. The second convergence criterion was ζ < 1.5 × 10−4. The

number of quadrature points, N, and the number of lumps, n, were
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F IGURE 1 Time-average relative error for all solved moments of
the reactant A concentration distribution, μj,j = 0, …, 2 N − 1, for test
case 1 with (a) β = 0.1, (b) β = 1.0, and (c) β = 2.0
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F IGURE 2 Reconstructed concentration distribution of the
reactant A for test case 1 with (a) β = 0.1 (N = 5 and np = 9), (b) β = 1.0
(N = 5 and np = 9), and (c) β = 2.0 (N = 7 and np = 13)
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chosen to be the smallest ones that give results that satisfied both

criteria.

Although the code was not fully optimized, the third case was also

used to compare the performance of FPQM and DQMoGeM, by using

the average CPU times of 3 runs.

6 | RESULTS AND DISCUSSION

6.1 | Test case 1—Distinct distributions for reactants
and products

Figure 1a–c presents the time-averaged relative errors for all moments

solved by DQMoGeM, εj, j = 0, …, 2 N − 1, of the reactant A concentra-

tion distribution for the simulations with β = 0.1, 1.0, and 2.0, respec-

tively. It can be seen that the desirable accuracy of 10−6 was reached

with N = 5 for β = 0.1 and 1.0, and with N = 7 for the case with more

abrupt variation in the reactant concentration (β = 2.0).

It can be seen that the numerical e analytical results agree very

well for the simulations with the three β values. However, the

abscissas were almost constant during the simulation and, therefore,

it was not possible to observe the DQMoGeM adaptability for this

case during the solution.

Figure 2a–c shows the reconstructed distributions obtained using

np = 2 N − 1 for the simulations with β = 0.1, 1.0, and 2.0, respec-

tively. They show that the Lage1 reconstruction method was adequate

to represent the distributions for these cases.

6.2 | Test case 2—Pyrolysis of coal tar in a batch
reactor

Figure 3a,b shows, respectively, the evolution of the zeroth and first-

order moments of the concentration distribution normalized by their

analytical values, μj=μ
a
j , j=0,1, obtained using the FPQM with several

numbers of lumps, n. It can be seen that the FPQM method needs at

least 75 lumps to achieve the desirable accuracy (ε1 < 0.01). On the

other hand, the DQMoGeM using N ≥1 gave results (not shown) for

which μj=μ
a
j −1e10−15, j=0,1, that is, their errors were almost in the

order of the machine precision, whatever the value of N.

Figure 4a shows the evolution of the approximated distribution cal-

culated using the FPQMwith n lumps whereas Figure 4b shows the evo-

lution for the reconstructed distribution obtained from the DQMoGeM
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F IGURE 3 Time evolution of the two first moments of the
concentration distribution (total molar concentration and total mass)
for the solutions of test case 2 obtained using the FPQM, (a) μ0=μ
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F IGURE 4 Time evolution of the reconstructed distributions for
the solutions of test case 2 obtained by the (a) FPQM (n = 75) and
(b) DQMoGeM (N = 5 and np = 9)
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results using the Fourier series.1 In this case, the number of quadrature

pointsNwas progressively increased up to the reconstructed distribution

using np = 2 N − 1 showed no further significant changes.

The shapes of the resulting distributions shown in Figure 4b are

very similar to those originally obtained by Mccoy43 by fitting the data

to gamma distributions. On the other hand, the FPQM was not able

to capture sudden variations like the concentration peak at the lower

bound of the domain for t = 10, which led to a significant error.

The time evolution of the abscissas and the weights are show in

Figures 5a,b, respectively. It is clear that the abscissas change along

the time for this case, demonstrating the adaptive characteristic of

the DQMoGeM.

6.3 | Test case 3—Hydrocracking of heavy oils

In order to directly compare our FPQM results and the experimental

data for the cumulative mass fraction distribution given by Elizalde

and Ancheyta,34 the Fourier series1 was used to reconstruct the distri-

bution from the DQMoGeM results, from which the cumulative distri-

bution was calculated.

Figure 6 shows the comparison among the experimental data and

the FPQM and DQMoGeM results obtained in this work. The agree-

ment with the experimental data is really good for DQMoGeM and even

better for FPQM. However, it is important to highlight that the FPQM

advantage over DQMoGeM was already expected, because the model

parameters were adjusted using the results of FPQM simulations.

As discussed by Elizalde and Ancheyta,34 the FPQM needed at

least 150 lumps to achieve the desirable accuracy in the mass balance

(ε1 < 5 × 10−4), which was the most restrictive criterion for the

FPQM. The second criterion, that is, ζ < 1.5 × 10−4 (see Equation 49)

was more easily satisfied.

On the other hand, the Appendix shows that the DQMoGeM

always satisfies the mass balance for all N values. However, it was

necessary to progressively increase the number of quadrature points

up to N = 5 in order to satisfy the second criterion, ζ < 1.5 × 10−4.

The CPU time for the FPQM simulation (n = 150) was about

11 min, whereas the DQMoGeM simulation (N = 5) took just 5 s,

clearly showing that the DQMoGeM is much faster than the FPQM.

This more than 100-fold increase in the model solution speed allows a

much faster model parameter estimation and the easier exploration of

new model functions for p and θ.

7 | CONCLUSIONS

This work shows that the proposed methodology can be used to solve

kinetic models of continuous mixtures. Due its larger accuracy, speedups

larger than 100 were obtained for the model solution when it was com-

pared to the solution method proposed by Laxminarasimhan

et al.15 (FPQM).

The DQMoGeM was able to carry out simulations that are

extremely accurate in terms of the mass balance for any number of

quadrature points, whereas the FPQM required more than 40 lumps

to achieve an acceptable accuracy for the mass conservation in the

analyzed hydrocracking problems.

The reconstruction by Fourier series1 proved to be sufficiently accu-

rate to analyze the DQMoGeM results when the distribution is needed.
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F IGURE 5 Time evolution of the (a) normalized abscissas, xj, and
(b) weights for the DQMoGeM solution with N = 5 for test case 2
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NOMENCLATURE

a parameter in the gamma distribution function

a0 parameter a0 of yield distribution function

a1 parameter a1 of yield distribution function

A function defined by Equation (41)

b parameter in the gamma distribution function

ℬ function defined by Equation (42)

bf breakage frequency

C molar concentration

c molar concentration of individual component in distribution

D distribution of the number of lumps

d scaling factor in Equation (30)

F cumulative distribution

f distribution function

G function defined by Equation (38)

H function defined by Equation (46)

I generic distribution variable (e.g., molar mass) or quadrature

abscissa

k kinetic rate or reactivity

kc constant kinetic rate

ℓ Legendre polynomial

N number of quadrature points (discretized pseudo-components)

n number of lumps

NAv Avogadro number

np number of terms of the Fourier series

nt total number of time steps

P polynomial

p yield distribution function

pn total number of particles per unit volume

q reaction order

S0 parameter S0 of yield distribution function

t time

TBP true boiling point temperature

w mass or mass fraction distribution

W weight function in polynomial orthogonality property

Wi mass of lump i

xj normalized quadrature abscissa, xj = (Ij − Imin)/(Imax − Imin)

GREEK LETTERS

α parameter in the mixture reactivity model

β parameter in Equation (32)

δ dirac delta function

ε time-averaged relative error

ζ mean square deviation of the cumulative mass distribution

Γ Gamma function

θ normalized TBP

κ overall rate function

μ generalized moment

ν the average number of particles formed from the breakup of a

single particle of state I0

ω quadrature weight

Ω probability distribution for the fragmentation

σ parameter in Equation (32)

ψ parameter in yield distribution function

SUBSCRIPTS

C molar concentration

max maximum value

min minimum value

w mass

SUPERSCRIPTS

A A FAMILY OF MIXTURE COMPONENTS

a analytical

B B family of mixture components

e experimental

NOTATION

BDF backward differentiation formula

DASSLC Differential-Algebraic System Solver in C

DQMoGeM direct quadrature method of generalized moments

DQMoM direct quadrature method of moments

EQMoM extend quadrature method of moments

FPQM fixed point quadrature method

LQMDA Long Quotient-Modified Difference Algorithm

MoM method of moments

PBE population balance equation

QBMM quadrature-based moment methods

QMoM quadrature method of moments
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