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ABSTRACT
The generalized integral transform technique (GITT) is employed in the
hybrid numerical-analytical solution of the two-dimensional Navier–Stokes
and energy equations in wavy walls channels. The flow is considered lam-
inar and incompressible for a Newtonian fluid with temperature-independ-
ent physical properties, while the walls temperatures are kept uniform
along the channel length. The streamfunction-only formulation is adopted,
which eliminates the pressure field and automatically satisfies the continu-
ity equation. A thorough convergence analysis is performed for the stream-
function field, temperature field, friction factor, and local Nusselt number
to illustrate the method robustness. The verification of the present GITT
results is also performed by comparing the centerline velocity, friction fac-
tor, average temperature, and local Nusselt number with equivalent results
from the COMSOL Multiphysics simulation platform, with overall very good
agreement. The influence of the governing parameters such as Reynolds
number and wavy-wall amplitude on the velocity and temperature fields is
also analyzed, demonstrating their importance in the convective heat
transfer behavior.
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1. Introduction

Heat transfer enhancement is a crucial factor in industrial processes that are intensive in thermal
energy usage, while low fabrication cost, passive operation, and compact design are essential char-
acteristics demanded from heat exchangers in such applications. Despite the increase in pressure
drop in comparison with parallel plates passages in compact heat exchangers, wavy channels have
been frequently considered as an alternative design toward heat transfer augmentation.
Furthermore, there are biological applications, such as kidney dialyzers and membrane oxygena-
tors, which involve the flow of a high viscosity fluid that remains in laminar regime along the
usually narrow wavy channels, in light of the fairly low Reynolds number condition [1].

Heat and fluid flow in wavy walls channels was the focus of investigation in various previous
studies on heat or mass transfer applications. Early experimental studies demonstrated the
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expected gains in convective heat transfer within irregular wavy channels for moderate Reynolds
number [1]. These results also pointed out the feasibility of approximating the flow as two-
dimensional for the cases when the walls waviness was sinusoidal. However, when the walls were
described by arc-shaped function, there was evidence on the formation of three-dimensional
recirculation zones. It was also experimentally observed that the heat transfer enhancement is
affected by the main geometrical parameters, such as amplitude, phase angle, and channel
height [2].

Momentum, heat, and mass transfer in channels with irregular geometries was theoretically
analyzed in different contexts and critically compared with experimental results. The sinusoidal
channel geometry was investigated and compared with the flat plates channel configuration in
[3], indicating that, for the low Reynolds numbers considered, the Nusselt number achieves
higher average values. For the same geometry, the in-phase configuration did not demonstrate
significant heat transfer enhancement in comparison with the out-of-phase configuration [4]. The
ADI finite difference scheme was applied to study heat and fluid flow in sinusoidal walls channels
[5], showing an increase on the Nusselt number for decreasing channel amplitude, and increasing
wavelength and Reynolds number. Also, the transient behavior of the flow and heat transfer was
analyzed for different geometric configurations by applying the finite volume method, leading to
the conclusion that more significant heat transfer enhancement was achievable using asymmetric
shapes [6–8]. For mass transport enhancement, a trapezoidal wavy wall was proposed and experi-
mentally tested, with marked improvements on the delivery of species to the reaction sites in a
redox flow battery [9]. Moreover, for a sinusoidal wavy wall, a significant improvement in mass
transport was recently reported in a numerical analysis [10].

Nomenclature

a wavy wall amplitude
cp specific heat at constant pressure
fRe product of the friction factor by the

Reynolds number
F(x,y) filter for the streamfunction field
k fluid thermal conductivity
k1, k2 streamfunction values at the channel walls
Mi normalization integral for the streamfunc-

tion field
Ni normalization integral for the tempera-

ture field
Nux local Nusselt number
NT truncation order for the tempera-

ture expansion
NV truncation order for the streamfunc-

tion expansion
p�, p pressure field
Pr Prandtl number
Re Reynolds number
T�, T temperature field
Tav dimensionless bulk temperature
�Ti transformed temperature field
T�
in dimensional inlet temperature

T�
w dimensional wall temperature

u�av average velocity
u1 dimensionless inlet longitudinal velocity
u�, u longitudinal velocity component
v�, v transversal velocity component
v1 dimensionless inlet transversal velocity

x�, x longitudinal coordinate
y�, y transversal coordinate

Greek letters
a dimensionless wavy wall amplitude
bi eigenvalues for the streamfunction field

in n-coordinate
ci eigenvalues for the temperature field

in n-coordinate
Ci eigenfunctions for the temperature field
m dynamic viscosity
mi eigenvalues for the streamfunction field
� kinematic viscosity
n transformed coordinate
ki eigenvalues for the temperature field
q density
/ filtered streamfunction field
�/ i transformed streamfunction field
w�, w streamfunction field
w1 fully developed streamfunction

distribution
x�, x vorticity

Subscripts and superscripts
i, j, k indices of the eigenvalue problems
‘ refers to fully developed situation
� dimensional variables
_ integral transformed quantities
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For the arc-shaped configuration, the SIMPLE scheme (semi-implicit method for pressure-
linked equations) of the finite volume method was applied, demonstrating that the recirculation
is amplified with increasing Reynolds number, while an increase on the geometric parameters
(channel height and wavelength) decreases the recirculation zone extent [11, 12]. Trapezoidal
walls channels were also studied for a nanofluid flow, considering different geometrical parame-
ters [13]. The results show that the Nusselt number increases with the nanoparticles fraction, the
Reynolds number, and the amplitude of the channel. In microchannels with wavy walls [14], at
Re¼ 200, it was reported that heat transfer was increased by 130%, whereas the friction factor
increased by 35%. Again, for microchannels and water flow [15], it has been observed, for
Re¼ 300 and 400, that the heat transfer enhancement could be achieved without significant pen-
alty on the pressure loss. Also, for an MHD (magnetohydrodynamics) situation [16], forced con-
vection and entropy generation were investigated for a water-Al2O3 nanofluid flow in a
sinusoidal wavy channel. It was demonstrated that increasing the applied magnetic field enhances
the Nusselt number, while adding more nanoparticles increases the Nusselt number, but also
increases the total entropy generation [16]. Heat transfer enhancement analyses involving the
flow of nanofluids were also considered in different irregular geometric configurations [17–21],
including the channel flow in turbulent regime [22, 23], and the entropy generation analysis in
MHD plane diffuser [24].

Usually, solutions to complex heat and fluid flow problems are obtained by purely numerical
methods. On the other hand, the GITT methodology [25–27] offers an interesting alternative
hybrid numerical-analytical tool, based on eigenfunction expansions such as in the classical inte-
gral transform method. Such hybrid approach was successfully applied to various heat and fluid
flow problems governed by either the boundary layer or the Navier–Stokes equations. Particularly
in flow problems governed by the Navier–Stokes equations, there has been a preference to
employ the streamfunction-only formulation instead of the primitive variables one, in two-dimen-
sional models, due to the convenience of automatically eliminating the pressure field and satisfy-
ing the continuity equation. For instance, using the streamfunction-only formulation, some
classical test problems have been analyzed, such as the lid-driven cavity flow [28], straight chan-
nel flow [29], the irregular gradual expansion channel [30], and MHD flow and heat transfer in
parallel plates channel [31]. More recently, a new vector eigenfunction expansion concept was
introduced for the GITT solution of the Navier–Stokes equations [32–35], aiming at extending
the advantages of the streamfunction formulation to more general flow problems. The different
possibilities of dealing with the Navier–Stokes equations under the GITT framework have been
recently reviewed [36] and illustrated with representative examples. With respect to the flow
problem in wavy channels, the GITT under the streamfunction formulation has already been con-
sidered for a sinusoidal profile and Reynolds number in the range of 100 to 500 [37]. Though
good agreement was obtained in comparison with previous numerical studies [5], it has been
more recently observed that both implementations [5, 37] could have been affected by numerical
inconsistencies introduced by the domain derivatives singularities at the junctions of the wavy
and straight sections [10]. The GITT was also applied to obtain an approximate solution for heat
transfer in a wavy channel [38], later on including conjugation effects [39], but these simulations
were performed for low enough Reynolds numbers to allow for employing an approximate vel-
ocity field based on a longitudinally variable polynomial profile that essentially satisfies the con-
tinuity equation.

The objective of the present work is to apply the GITT in solving both the Navier–Stokes and
energy equations for a wavy wall channel geometry. The streamfunction formulation is once
more preferred, with its inherent advantages for the proposed two-dimensional problem. The
solution verification is accomplished by comparing the results for the velocity and temperature
fields with those from the well-known COMSOL Multiphysics finite-elements-based commercial
platform. Relevant local quantities such as the product of the friction factor by the Reynolds
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number (fRe) and the local Nusselt number (Nux) are also computed and shown as functions of
the longitudinal coordinate along the channel length. Then, the influence of the main governing
parameters such as the Reynolds number (Re) and the wavy wall amplitude (a) is quantified in
terms of their importance to the heat transfer enhancement.

2. Mathematical formulation

The problem is defined by considering heat and fluid flow in steady state within a wavy walls
channel, with two parallel plates at the beginning and at the end of the wavy duct. The fluid is
considered to be Newtonian and the flow is assumed to be laminar and incompressible, subjected
to a uniform temperature along the walls. Figure 1 shows the main characteristics of the geom-
etry, coordinates system, and the boundary conditions.

2.1. Problem formulation

The continuity, Navier–Stokes, and energy equations for the analyzed problem, in dimensionless
form, are written as:

@u
@x

þ @v
@y

¼ 0, (1a)

u
@u
@x

þ v
@u
@y

¼ � @p
@x

þ 1
Re

@2u
@x2

þ @2u
@y2

 !
, (1b)

u
@v
@x

þ v
@v
@y

¼ � @p
@y

þ 1
Re

@2v
@x2

þ @2v
@y2

 !
, (1c)

u
@T
@x

þ v
@T
@y

¼ 1
RePr

@2T
@x2

þ @2T
@y2

 !
, �y1 < y < y2, x > 0 (1d)

These equations are subjected to the following boundary conditions (inlet, outlet, and walls):

x ¼ 0 :

u ¼ u1ðyÞ
v ¼ v1ðyÞ
T ¼ 1

; x ¼ xout :

@x
@x

¼ 0

v ¼ 0
@T
@x

¼ 0

; y ¼ �y1 :

u ¼ 0

v ¼ 0

T ¼ 0

; y ¼ y2 :

u ¼ 0

v ¼ 0

T ¼ 0

8><
>:

8><
>:

8>>>><
>>>>:

8>>>><
>>>>:

(1e--p)

Figure 1. Geometric configuration and boundary conditions for the wavy walls channel.
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The dimensionless groups here considered are:

x ¼ x�

b
; y ¼ y�

b
; u ¼ u�

uav
; v ¼ v�

uav
; p ¼ p�

qu2av
;T ¼ T� � T�

w

T�
in � T�

w
;w ¼ w�

uavb
;x ¼ x�b

uav
; xout ¼ x�out

b
;

y1ðxÞ ¼ y�1ðx�Þ
b

; y2ðxÞ ¼ y�2ðx�Þ
b

; u1ðyÞ ¼ u�1ðy�Þ
uav

; v1ðyÞ ¼ v�1ðy�Þ
uav

; Re ¼ uavb
�

; Pr ¼ �

a
(2)

Here, y1 and y2 are the functions that describe the channel walls positions, which were the
same as already studied in Refs. [5, 37], and are given as:

y2ðxÞ ¼ y1ðxÞ ¼
1, for 0 � x � xs
1þ a sin pðx� xsÞ½ �, for xs � x � xl
1, for xl � x � xout

8<
: (3)

where a¼a/b is the dimensionless wavy-wall amplitude, xs¼xs�/b and x1¼x1�/b are the dimen-
sionless positions for the beginning and the end of the wavy walls, respectively, and xout¼xout�/b
is the dimensionless channel length.

To avoid numerical inconsistencies caused by the singularities introduced by the derivatives of
the domain function defined in Eq. (3) [10], a continuous function is introduced to smooth the
transition between the straight and sinusoidal sections of the channel depicted in Figure 1. The
modified geometry is then given by:

y2ðxÞ ¼ y1ðxÞ ¼ 1þ a sin pðx� xsÞ½ �½Usðx, xsÞ � Usðx, x1Þ� (4)

where Us(x,x0) is a continuous approximation of the unit step function, which is given as

Usðx, x0Þ ¼ 1
1þ exp ½�bðx� x0Þ� (5)

where in Eq. (5), b is an adjustable parameter.

2.2. Streamfunction-only formulation

The streamfunction-only formulation is adopted, which results in the elimination of the pressure
field, avoiding any further treatment of this dependent variable. Furthermore, the streamfunction
formulation automatically satisfies the mass conservation law (continuity equation) and allows for
a more straightforward visualization of the recirculation zones due to its intrinsic relation with
the streamlines. Thus, the streamfunction definition is considered:

u ¼ @w
@y

; v ¼ � @w
@x

(6a,b)

To obtain the streamfunction-only formulation and to eliminate the pressure field, we take the
derivative of Eqs. (1b) and (1c) with respect to the y and x variables, respectively, the results are
subtracted and the definition of streamfunction given by Eqs. (6a) and (6b) is used in place of u
and v velocity components, respectively. Also, with this streamfunction definition, the continuity
equation given by Eq. (1a) is automatically satisfied. Therefore, the momentum and energy equa-
tions subjected to boundary conditions given by Eqs. (1e)–(1p) are rewritten as:

@w
@y

@

@x
ðr2wÞ � @w

@x
@

@y
ðr2wÞ ¼ 1

Re
r4w, (7a)

@w
@y

@T
@x

� @w
@x

@T
@y

¼ 1
RePr

@2T
@x2

þ @2T
@y2

 !
, �y1 < y < y2, x > 0 (7b)

where, r4 is the biharmonic operator.
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These equations are subjected to the boundary conditions:

x ¼ 0 :

w ¼ k1 þ
Ð y
�y1

u1ðgÞdg

@w
@x

¼ �v1ðyÞ

T ¼ 1

; x ¼ xout :

@w
@x

¼ 0

@3w
@x3

þ @3w
@x@y2

¼ 0

@T
@x

¼ 0

; y ¼ �y1 :

w ¼ k1
@w
@n

¼ 0

T ¼ 0

; y ¼ y2 :

w ¼ k2
@w
@n

¼ 0

T ¼ 0

8>>><
>>>:

8>>><
>>>:

8>>>>>>><
>>>>>>>:

8>>>>>>><
>>>>>>>:

(7c--n)

The boundary conditions given by Eqs. (7c) and (7d), (7f) and (7g), (7i) and (7j), and (7l) and
(7m) were also obtained applying the streamfunction definition given by Eqs. (6) on Eqs.
(1e)–(1p) in place of the velocity components and in the vorticity definition. Also, some appropri-
ate integrations were performed as in the case of Eqs. (7c), (7i), and (7l).

3. Solution methodology

3.1. Filter solution

An analytical filter solution is employed to remove the nonhomogeneities of the boundary condi-
tions in the transversal coordinate, y. This filtering leads to a marked improvement in the conver-
gence rate of the streamfunction field, w(x,y), by decreasing the importance of the boundary
source terms [25, 26]. The relation between the streamfunction and its filter and filtered counter-
parts is given by:

wðx, yÞ ¼ Fðx, yÞ þ /ðx, yÞ (8)

Here, F(x,y) is an adaptive filter that varies along the wavy surface length. The applied filter is
not a particular solution of the full problem, but has the same values of the original potential at
the walls of the channel [30, 37], and is given by:

Fðx, yÞ ¼ FðnÞ ¼ 3Q
4

n� n3

3

� �
þ Q

2
þ k1 (9)

where,

n ¼ y� y3ðxÞ
y0ðxÞ ; y0ðxÞ ¼ y2ðxÞ þ y1ðxÞ

2
; y3ðxÞ ¼ y2ðxÞ � y1ðxÞ

2
(10a--c)

By applying these definitions into Eqs. (7), it results:

@/
@y

@3/
@x3

þ @/
@y

@3/
@x@y2

� @/
@x

@3/
@x2@y

� @/
@x

@3/
@y3

þ @/
@y

@3F
@x3

þ @/
@y

@3F
@x@y2

� @/
@x

@3F
@x2@y

� @/
@x

@3F
@y3

þ
@F
@y

@3/
@x3

þ @F
@y

@3/
@x@y2

� @F
@x

@3/
@x2@y

� @F
@x

@3/
@y3

þ @F
@y

@3F
@x3

þ @F
@y

@3F
@x@y2

� @F
@x

@3F
@x2@y

� @F
@x

@3F
@y3

¼ 1
Re

@4/
@x4

þ 2
@4/

@x2@y2
þ @4/

@y4
þ @4F

@x4
þ 2

@4F
@x2@y2

 !

(11a)

@/
@y

@T
@x

� @/
@x

@T
@y

þ @F
@y

@T
@x

� @F
@x

@T
@y

¼ 1
RePr

@2T
@x2

þ @2T
@y2

 !
, � y1 < y < y2, x > 0 (11b)

NUMERICAL HEAT TRANSFER, PART A: APPLICATIONS 465



x ¼ 0 :

/ ¼ k1 þ
Ð y
�y1

u1ðgÞdg� F

@/
@x

¼ �v1ðyÞ � @F
@x

T ¼ 1

; x ¼ xout :

@/
@x

¼ � @F
@x

@3/
@x3

þ @3/
@x@y2

¼ � @3F
@x3

þ @3F
@x@y2

 !

@T
@x

¼ 0

8>>>>>>>><
>>>>>>>>:

8>>>>>>>><
>>>>>>>>:

(11c--h)

y ¼ �y1 :

/ ¼ 0
@/
@n

¼ 0

T ¼ 0

; y ¼ y2 :

/ ¼ 0
@/
@n

¼ 0

T ¼ 0

8>>><
>>>:

8>>><
>>>:

(11i--n)

The constants k1 and k2 represent the values of the streamfunction at the duct walls, and can
be computed applying the relationship between the streamfunction and the longitudinal velocity
at the beginning of the channel given by Eq. (7c) and evaluating it at y¼ y2, yielding:

k2 ¼ k1 þ Q (12)

The values of k1 and k2 can be specified as –1 and 1, respectively, and, to satisfy Eq. (12), it
results in Q¼ 2. It is important to note that the boundary conditions given by Eqs. (1d) and (1e)
represent a general form of the longitudinal and transversal velocity components, respectively.
However, in the present study, we adopt the special case of parallel flow with a parabolic distribu-
tion for u1(y) at the channel entry, leading to:

u1ðyÞ ¼ 3ð1� y2Þ=2; v1ðyÞ ¼ 0 (13a,b)

3.2. Integral transformation

The integral transformation of Eqs. (11), after the homogenization of the wall boundary condi-
tions, is now performed. The first step is to choose the eigenvalue problems for the streamfunc-
tion and temperature distributions.

- For the streamfunction field the following fourth order eigenvalue problem was chosen:

@4Yiðx, yÞ
@y4

¼ li
4Yiðx, yÞ, � y1 < y < y2 (14a)

Yiðx, � y1Þ ¼ 0;
@Yiðx, � y1Þ

@n
¼ 0; Yiðx, y2Þ ¼ 0;

@Yiðx, y2Þ
@n

¼ 0 (14b--e)

or in terms of the redefined transversal coordinate, n, given in Eq. (10a):

d4YiðnÞ
dn4

¼ bi
4YiðnÞ, � 1 < n < 1 (14f )

Yið�1Þ ¼ 0;
dYið�1Þ

dn
¼ 0; Yið1Þ ¼ 0;

dYið1Þ
dn

¼ 0 (14g--j)

where the relationship bi¼liy0 applies, and y0 was defined in Eq. (10b). The eigenvalue problem
in terms of the n-coordinate has the following analytical solution:
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YiðnÞ ¼
cos ðbinÞ
cos ðbiÞ

� coshðbinÞ
coshðbiÞ

, i ¼ 1, 3, 5, :::

sin ðbinÞ
sin ðbiÞ

� sinhðbinÞ
sinhðbiÞ

, i ¼ 2, 4, 6, :::

8>>><
>>>:

(14k)

The eigenvalues bi can be calculated from the following nonlinear algebraic equations:

tan ðbiÞ ¼ �tanhðbiÞ, i ¼ 1, 3, 5:::
tanhðbiÞ, i ¼ 2, 4, 6:::

�
(14l)

The eigenfunctions Yi(x,y) have the following orthogonality property:ðy2
�y1

Yiðx, yÞYjðx, yÞdy ¼
0, i 6¼ j

2y0ðxÞ ¼ Mi, i ¼ j

(
(14m)

where Mi is the normalization integral.
The eigenvalue problem given by Eqs. (14) allows for the definition of the following integral-

transform pair:

�/iðxÞ ¼
1
Mi

ðy2
�y1

Yiðx, yÞ/ðx, yÞdy, transform (15a)

/ðx, yÞ ¼
X1
i¼1

Yiðx, yÞ�/iðxÞ, inverse (15b)

- For the temperature field, the chosen eigenvalue problem is written as:

@2Ciðx, yÞ
@y2

¼ �ki
2Ciðx, yÞ, �y1 < y < y2 (16a)

Ciðx, � y1Þ ¼ 0; Ciðx, y2Þ ¼ 0 (16b,c)

In terms of the redefined independent variable, n:

d2CiðnÞ
dn2

¼ �ci
2CiðnÞ, �1 < n < 1 (16d)

Cið�1Þ ¼ 0; Cið1Þ ¼ 0 (16e,f )

The eigenfunctions, eigenvalues and the normalization integral are analytically obtained as:

CiðnÞ ¼ sin ½ciðnþ 1Þ�; ci ¼
ip
2
; ki ¼ ci

y0ðxÞ , i ¼ 1, 2, 3, ::: (16g--i)

ðy2
�y1

Ciðx, yÞCjðx, yÞdy ¼ 0, i 6¼ j
y0ðxÞ ¼ Ni, i ¼ j

�
(16j)

Therefore, the integral-transform pair for the temperature field is then defined as:

�TiðxÞ ¼ 1
Ni

ðy2
�y1

Ciðx, yÞTðx, yÞdy, transform (17a)

Tðx, yÞ ¼
X1
i¼1

Ciðx, yÞ�TiðxÞ, inverse (17b)

Finally, the problem defined by Eqs. (11) is now integral transformed. For this purpose, Eq.
(11a) is multiplied by Yi(x,y) and Eq. (11b) by Ci(x,y), respectively, and then, integrated across
the domain [–y1,y2] in the y-direction. The eigenfunctions orthogonality properties are then used
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in conjunction with the inverse formulae given by Eqs. (15b) and (17b) to furnish the following
coupled system of ordinary differential equations in the x-direction:

d4�/iðxÞ
dx4

¼ �l4i
�/i þ

Ai

Mi
þ 1
Mi

X1
j¼1

Bij
�/j þ Cij

�/
0
j þ Dij

�/
00
j þ Eij�/

000
j

n o

þ Re
Mi

X1
i¼1

X1
j¼1

Fijk�/j
�/k þ Gijk

�/j
�/
0
k þ Hijk

�/j
�/
00
k þ Iijk�/j

�/
000
k þ Jijk�/

0
j
�/k þ Kijk

�/
0
j
�/
0
k þ Lijk�/

0
j
�/
00
k

n o
(18a)

d2�TiðxÞ
dx2

¼ k2i �Ti þ 1
Ni

X1
j¼1

ðOij
�Tj þ Pij�T

0
jÞ þ

RePr
Ni

X1
j¼1

X1
k¼1

ðQijk
�T 0
j
�/k þ Rijk

�Tj
�/
0
kÞ (18b)

The boundary conditions in the x-direction are similarly integral transformed, to yield:

�/ið0Þ ¼ 0;
d�/ið0Þ
dx

¼ 0; �Tið0Þ ¼ �ai (18c--e)

d�/iðxoutÞ
dx

¼ �bi þ
X1
j¼1

�cij�/jðxoutÞ (18f )

d3�/iðxoutÞ
dx

¼ �di þ
X1
j¼1

�eij�/jðxoutÞ þ �f ij
�/
0
jðxoutÞ þ �g ij

�/
00
j ðxoutÞ

h i
(18g)

d�TiðxoutÞ
dx

¼
X1
j¼1

�hij�TjðxoutÞ (18h)

The coefficients resulting from the integral transformation process are analytically evaluated by
symbolic computation, being functions of the x-direction, and thus have to be computed along
the solution procedure of the system of ODEs. Therefore, they are defined as:

Ai ¼ �
ðy2
�y1

Yi
@4F
@x4

þ 2
@4F

@x2@y2

 !
dyþ Re

ðy2
�y1

Yi
@F
@y

@3F
@x3
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 !
dy

(19a)

Bij ¼�
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�y1
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(19b)

Cij ¼ �4
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�y1
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dy� 4
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Dij ¼ �6
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Eij ¼ �4
ðy2
�y1

Yi
@Yj

@x
dyþ Re
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�y1

YiYj
@F
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dy (19e)

Fijk ¼
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Jijk ¼ �
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Oij ¼ �
ðy2
�y1
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@x2
dy; Pij ¼ �2
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�y1
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@x
dyþ RePr
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Qijk ¼
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�y1
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@Yk

@y
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�y1
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@Cj

@y
Ykdy (19o,p)

�ai ¼ 1
y0ð0Þ
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�y1ð0Þ
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" #
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�g ij ¼ � 3
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�y1ðxoutÞ
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@x
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�hij ¼ � 1
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ðy2ðxoutÞ
�y1ðxoutÞ

Ciðxout , yÞ
@Cjðxout , yÞ

@x
dy (19x)

3.3. Relevant quantities

For the heat and fluid flow analysis, a few relevant dimensionless quantities are here calculated.
First, the shear stress at the wall surface is given by:
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sw ¼ �l
@u�

@y�
þ @v�

@x�

� �
y�¼y�2

(21)

The friction factor coefficient is defined as:

f ¼ sw
qu2av

(22)

Using Eqs. (21) and (22) together with the definition of the streamfunction given by Eqs. (6),
the product of the friction factor coefficient by the Reynolds number, fRe, can be calculated from:

f Re ¼ � @2w
@y2

� @2w
@x2

 !�����
y¼y2

(23)

or, by applying the filtering scheme given by Eq. (8) and the inverse formula defined in Eq.
(15b), it follows:

f Re ¼ � @2F
@y2

����
y¼y2

� @2F
@x2

����
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i¼1

@2Yi

@y2

����
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����
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 !
�/iðxÞ

" #
(24)

The local Nusselt number is defined by:

Nux ¼ hb
k

¼ � b
ðT�

av � T�
wÞ

@T�

@n�

����
y�¼y�2

(25)

or in terms of the dimensionless variables:

Nux ¼ 1
Tav

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@T
@x

� �2

þ @T
@y

� �2
" #�����

y¼y2

vuut (26)

The bulk temperature in dimensionless form is given as:

TavðxÞ ¼
Ð y2
�y1

uðx, yÞTðx, yÞdy
ðk2 � k1Þ (27)

4. Results

The coupled infinite system of ordinary differential equations given by Eqs. (18) is truncated to a
finite number of terms (more specifically, NV terms for the streamfunction field and NT terms
for the temperature field). This transformed ODE system is numerically solved using the
DBVPFD subroutine [40] with a relative error control of 10�4. This subroutine is suitable for
solving ODE boundary value problems with stiff characteristics. The results, unless otherwise
stated, were calculated using NV ¼ 50 and NT ¼ 100 terms to guarantee converged results for
both fields. The coefficients defined in Eqs. (19) were analytically obtained using the symbolic
manipulation software Mathematica [41]. The value Pr¼ 6.93 was adopted for the Prandtl num-
ber (typical of water) in all computations. Also, in this study we have taken xout¼20, except
where indicated. In addition, the remaining lengths are taken as xs ¼ 3 and xl ¼ 15, which com-
prises six complete sinusoidal waves in the wavy part of the channel.
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4.1. Boundary conditions verification

It is important to mention that the present analysis is not limited to handling the channel with differ-
ent truncated length xout. Still, it can deal with the situation when xout ! 1 and such integral trans-
form analysis was considered in P�erez Guerrero et al. [30], where the outflow boundary conditions
fully developed flow and temperature profiles are exactly recovered. Therefore, the outflow boundary
conditions at x ¼ xout were firstly investigated to guarantee that the results obtained considering xout
¼ 20 (or larger values), were the same as those obtained with xout ! 1. The studied case was
Re¼ 100 and a¼ 0.1, with NV ¼ 50 and NT ¼ 100.

Figures 2 represent the results considering Re¼ 100 and a¼ 0.1 for various values of xout, com-
pared to results obtained by imposing the fully developed region at xout ! 1. Figures 2(a, c, e) pro-
vide results that extend to very large lengths while Figures 2(b, d, f) show just the length of the

Figure 2. Comparison of the results for different values of xout for Re¼ 100 and a¼ 0.1: (a) and (b) centerline velocity compo-
nent; (c) and (d) fRe product; (e) and (f) local Nusselt number.
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truncated channel at xout ¼ 20. As can be observed, there is no significant difference among the
results at the same axial positions for the centerline velocity component, product of the friction factor
by the Reynolds number, and local Nusselt number for all xout conditions, which indicates the
adequacy of reducing the computational effort adopting a truncated channel with xout ¼ 20.

4.2. Convergence analysis

The convergence analysis for the streamfunction and temperature fields are illustrated by showing
the computed values at y¼ 0.5 and y¼ 1, respectively, for increasing truncation orders, while the
friction factor and the local Nusselt number convergence are demonstrated graphically.

Tables 1 and 2 illustrate the convergence behavior of the streamfunction for two cases,
Re¼ 100 and a¼ 0.3, and Re¼ 500 and a¼ 0.1, respectively. The streamfunction convergence for

Table 2. Convergence behavior of streamfunction field in different axial positions for Re¼ 500 and a¼ 0.1.

w(x, y¼ 0.5)

NV¼NT x¼ 1.5 x¼ 3.5 x¼ 5.5 x¼ 7.5 x¼ 9.5 x¼ 11.5 x¼ 13.5 x¼ 15.5 x¼ 20

10 0.6875 0.6852 0.6939 0.6974 0.6996 0.7012 0.7025 0.7036 0.6955
20 0.6875 0.6855 0.6980 0.7016 0.7039 0.7057 0.7070 0.7072 0.6969
30 0.6875 0.6855 0.6980 0.7017 0.7040 0.7058 0.7071 0.7073 0.6970
40 0.6875 0.6855 0.6980 0.7016 0.7040 0.7057 0.7071 0.7073 0.6970
50 0.6875 0.6855 0.6980 0.7016 0.7040 0.7057 0.7071 0.7073 0.6970

Table 3. Convergence behavior of temperature field in different axial positions for Re¼ 100 and a¼ 0.3.

T(x, y¼ 1)

NV NT x¼ 3.5 x¼ 5.5 x¼ 7.5 x¼ 9.5 x¼ 11.5 x¼ 13.5

30 30 0.3495 0.2354 0.2103 0.1948 0.1831 0.1739
40 40 0.3497 0.2369 0.2116 0.1959 0.1841 0.1748
50 50 0.3498 0.2368 0.2114 0.1958 0.1840 0.1748
50 60 0.3498 0.2367 0.2114 0.1958 0.1840 0.1747
50 70 0.3498 0.2368 0.2115 0.1958 0.1840 0.1748
50 80 0.3498 0.2367 0.2114 0.1958 0.1840 0.1747
50 90 0.3498 0.2367 0.2114 0.1958 0.1840 0.1747

Table 4. Convergence behavior of temperature field in different axial positions for Re¼ 500 and a¼ 0.1.

T(x, y¼ 1)

NV NT x¼ 3.5 x¼ 5.5 x¼ 7.5 x¼ 9.5 x¼ 11.5 x¼ 13.5

30 30 0.3766 0.2210 0.1985 0.1831 0.1720 0.1633
40 40 0.3783 0.2208 0.1978 0.1828 0.1717 0.1631
50 50 0.3787 0.2211 0.1980 0.1830 0.1720 0.1633
50 60 0.3784 0.2209 0.1979 0.1829 0.1719 0.1632
50 70 0.3783 0.2209 0.1979 0.1829 0.1718 0.1632
50 80 0.3783 0.2209 0.1979 0.1829 0.1719 0.1632
50 90 0.3783 0.2209 0.1979 0.1829 0.1719 0.1632

Table 1. Convergence behavior of streamfunction field in different axial positions for Re¼ 100 and a¼ 0.3.

w(x, y¼ 0.5)

NV¼NT x¼ 1.5 x¼ 3.5 x¼ 5.5 x¼ 7.5 x¼ 9.5 x¼ 11.5 x¼ 13.5 x¼ 15.5 x¼ 20

10 0.6875 0.6886 0.8008 0.8105 0.8160 0.8190 0.8208 0.8123 0.7278
20 0.6875 0.6885 0.8031 0.8123 0.8176 0.8205 0.8223 0.8138 0.7283
30 0.6875 0.6884 0.8031 0.8123 0.8176 0.8206 0.8223 0.8138 0.7283
40 0.6875 0.6884 0.8031 0.8123 0.8176 0.8206 0.8223 0.8138 0.7283
50 0.6875 0.6883 0.8031 0.8123 0.8176 0.8206 0.8223 0.8138 0.7283

472 H. K. MIYAGAWA ET AL.



both cases is very good, and the results are fully converged to the fourth significant digit (plus or
minus one in the last digit shown) within 30 to 40 terms in all longitudinal positions considered
(even with less terms in most positions).

Tables 3 and 4 illustrate the convergence behavior for the temperature field in the cases with
Re¼ 100 and a¼ 0.3, and Re¼ 500 and a¼ 0.1, respectively. From Table 3, it is possible to

Figure 3. Convergence behavior of (a) friction-factor Reynolds number product and (b) local Nusselt number along the longitu-
dinal coordinate for Re¼ 100 and a¼ 0.3.

Figure 4. Convergence behavior of (a) friction-factor Reynolds number product and (b) local Nusselt number along the longitu-
dinal coordinate for Re¼ 500 and a¼ 0.1.

Figure 5. Comparisons of the central velocity component along the channel against COMSOL results.
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Figure 6. Comparisons of the fRe product along the channel against COMSOL results.

Figure 7. Comparisons of the bulk temperature along the channel against COMSOL results.

Figure 8. Comparisons of the local Nusselt number along the channel against COMSOL results.
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observe that the temperature convergence is achieved for four significant digits along all the wavy
channel section with NV¼NT ¼ 50 (even less terms in certain positions). For Table 4, the con-
vergence was achieved for NT ¼ 70, which indicates that, as the Reynolds number is increased,
the convergence is delayed at this wavy channel region.

The convergence for the friction factor and local Nusselt number are graphically demonstrated
on Figures 3 and 4, where one may observe that to graph scale the results are fully converged for
truncation orders as low as NV¼NT ¼ 30. The results reconfirm the behavior observed in
Tables 3 and 4.

4.3. Results verification

Figures 5–8 illustrate the results verification against an independent numerical solution for the
axial velocity component at the channel centerline, bulk temperature, fRe, and local Nusselt num-
ber, respectively, along the longitudinal position. The comparisons are performed against the
results obtained through COMSOL Multiphysics [42] (nonstructured mesh with maximum elem-
ent size of 5� 10�3, boundary layer mesh with five layers, and error control of 10�4). The cases
considered are again Re¼ 100 and a¼ 0.3, and Re¼ 500 and a¼ 0.1. Figure 5 shows the axial vel-
ocity component at the channel centerline, with good agreement between the GITT and
COMSOL results. Figure 6 also demonstrates the good agreement of the fRe obtained from the
GITT and COMSOL results. Moreover, it is observed an overshoot at x¼ 3 for both methods,
which is caused by the domain transition from the regular flat section to the wavy plate at the
beginning of the channel, which behaves like a sudden expansion. As can be observed in Figure
6, the fRe product is constant at the parallel plates channel inlet and would present the same

Figure 9. Influence of the wave amplitude parameter for Re¼ 300 on the (a) centerline longitudinal velocity component, (b) fRe
product, (c) bulk temperature, and (d) local Nusselt number.
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tendency at the outlet if it was extended enough once the flow reaches the fully developed region.
It can be seen that when recirculation is present (especially for Re¼ 500), the results are charac-
terized by a sign change of the friction factor.

Figures 7 and 8 present the bulk temperature and the local Nusselt number, Nux, respectively,
along the channel length. Again, the GITT results are in good agreement with the COMSOL
computations. The same overshoot is observed at x¼ 3 due to the sudden expansion effect at the
domain abrupt transition.

4.4. Effect of the wave amplitude

The wave amplitude effect was analyzed for Re¼ 300 and a¼ 0.1, 0.2, and 0.3. Figures 9(a)–9(d)
show the amplitude parameter influence on the centerline longitudinal velocity component and
bulk temperature distributions, as well as on the fRe and local Nusselt number.

As can be observed, the increase in the wave amplitude, leads to an increase in the centerline
velocity value (Figure 9(a)) and in the fRe product (Figure 9(b)). The recirculation zones again
can be identified by the sign changes in the friction factor, at the axial positions where the
boundary layer separation and reattachment occur. In this configuration, the vortex formation is
noticeable in all the three cases, although, when a¼ 0.1, the vortex is absent from the first period
of the sinusoidal wave. The bulk temperature decreases with the increase in the wave amplitude
(Figure 9(c)), due to a more effective heat transfer with the increased recirculation and heat
exchange area, while the local Nusselt number is markedly increased from a¼ 0.1 to a¼ 0.3,
reconfirming the significant influence of the channel geometry on the heat transfer coefficient
augmentation.

Figure 10. Influence of the Reynolds number for a¼ 0.2 on the (a) centerline longitudinal velocity component, (b) fRe product,
(c) bulk temperature, and (d) local Nusselt number.

476 H. K. MIYAGAWA ET AL.



4.5. Effect of the Reynolds number

The Reynolds number effect was analyzed for a¼ 0.2 and Re ¼ 100, 300, and 500. Figures
10(a)–10(d) show the Reynolds number influence on the centerline longitudinal velocity compo-
nent, bulk temperature, skin friction factor and Reynolds number product, and local
Nusselt number.

It can be observed that the dimensionless centerline velocity values decrease from Re¼ 100 to
500 (Figure 10(a)), even though the inertial forces are increased, due to the presence of more sig-
nificant reverse flow and vortex zones. From the diminished amplitude of the longitudinal oscilla-
tions of the centerline velocity as Re increases, it can be said that the central flow is less
disturbed by the channel corrugations, as can be observed in the bulk temperature behavior as
well (Figure 10(c)). From Figures 10(b, d), it is also possible to observe that the fRe and the local
Nusselt number have maximum values at the first period of the wave, which are progressively
decreased along the channel. The minimum Nux value is reached right before the beginning of
each wave, while its maximum values occur right before the wave crests.

4.6. Streamfunction and temperature fields

Figures 11–13 present the dimensionless streamfunction and temperature fields for different val-
ues of the Reynolds number, Re¼ 100, 300, and 500, respectively, and of the wave amplitude

Figure 11. Streamfunction and temperature fields for Re¼ 100: (a) streamfunctions for a¼ 0.1; (b) temperatures for a¼ 0.1; (c)
streamfunctions for a¼ 0.2; (d) temperatures for a¼ 0.2; (e) streamfunctions for a¼ 0.3; (f) temperatures for a¼ 0.3.
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parameter (a¼ 0.1, 0.2, and 0.3). The dimensionless temperature values range from 0 to 1, with
the inlet temperature value being 1 while the value at the walls is prescribed to 0. It can be
observed the influence of the Reynolds number on the development of the velocity and tem-
perature fields. For Re¼ 100, the case with a¼ 0.1 presented no recirculation zones (Figure
11(a)) and the boundary layer is always attached to the wall, resulting in lower heat transfer
coefficients. As the wave amplitude is increased, with more pronounced recirculation zones,
the thermal presence of the wall is sensed by the flow further into the channel cross section,
as can be observed from the temperature fields in Figures 11. For Re¼ 300, with a¼ 0.1
(Figure 12(a)), the first vortex is formed already at the second wave. Again, as the wave amp-
litude is increased, the dimensionless temperature values decrease across the channel, indicat-
ing an increased heat transfer rate to the wall, more noticeably for the case a¼ 0.3. As the
Reynolds number and the wave amplitude are increased, the recirculation zone occupies most
of the wavy area, and a secondary vortex formation may even be observed for Re¼ 300 and
a¼ 0.3 (Figure 12(e)).

As the Reynolds number increases for a fixed wave amplitude, the heat transfer is increased as
demonstrated by the increased Nusselt numbers (Figures 9(d) and 10(d)), but also by the wider more
markedly thermally affected region into the channel cross section. It is also possible to observe the
same behavior when the wave amplitude is increased, for a fixed Reynolds number (Figures 11–13),
with increased heat transfer rates.

Figure 12. Streamfunction and temperature fields for Re¼ 300: (a) streamfunctions for a¼ 0.1; (b) temperatures for a¼ 0.1; (c)
streamfunctions for a¼ 0.2; (d) temperatures for a¼ 0.2; (e) streamfunctions for a¼ 0.3; (f) temperatures for a¼ 0.3.
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5. Conclusions

Heat and fluid flow in a wavy walls channel for a Newtonian fluid and incompressible laminar flow
was analyzed, mathematically modeled by the steady state two-dimensional Navier–Stokes and energy
equations and adopting the streamfunction-only formulation. The GITT hybrid numerical-analytical
approach was successfully applied to the problem solution and the eigenfunction expansions conver-
gence behavior was illustrated for the streamfunction field, skin friction coefficient, temperature field,
and local Nusselt number along the channel. The results verification was performed by comparison
against COMSOL v5.2 numerical results, with overall excellent agreement. Additional results were
also presented for relevant quantities, toward a physical understanding and quantification of the heat
transfer enhancement effect. The proposed model and the formal solution are sufficiently general to
handle different boundary and inlet conditions, asymmetric configurations, and arbitrary geometrical
forms, such as arc type or triangular wavy channels.
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