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ABSTRACT
The Generalized Integral Transform Technique (GITT) is reviewed as a
hybrid numerical–analytical approach for fluid flow problems, with or with-
out heat and mass transfer, here with emphasis on the literature related to
flow problems formulated through the full Navier–Stokes equations. A brief
overview of the integral transform methodology is first provided for a gen-
eral nonlinear convection–diffusion problem. Then, different alternatives of
eigenfunction expansion strategies are discussed in the integral transform-
ation of problems for which the fluid flow model is either based on the
primitive variables or the streamfunction-only formulations, as applied to
both steady and transient states. Representative test cases are selected to
illustrate the different eigenfunction expansion approaches, with conver-
gence being analyzed for each situation. In addition, fully converged inte-
gral transform results are critically compared to previously reported
simulations obtained from traditional purely discrete methods.
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1. Introduction

Integral transforms have been widely employed in the solution of differential equations, though
their usefulness is not limited to this purpose. It is recognized that the Leonhard Euler has in fact
introduced the concept of integral transforms in handling second-order differential equations [1],
first in 1763 for a specific differential equation, and later on in 1769 when the treatment was
more systematic and complete [1]. On the other hand, Fourier in his 1822 treatise [2] advanced
the idea of Separation of Variables, so as to handle and interpret the solutions of the newly
derived heat conduction equation, after proposing the constitutive equation known as Fourier’s
law. His work provided not only the modern mathematical theory of heat conduction but also
introduced the well-known Fourier series and Fourier transforms. However, it appears that it was
in the work of Acad. N.S. Koshlyakov [3], which the integral transform method gained a more
general formalism based on eigenfunction expansions and was first extended to handle linear par-
tial differential equations in finite media with nonhomogeneous terms, either on the main
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equation or in the boundary conditions, as described in his textbook [4]. This concept of a more
general integral transform approach based on eigenfunctions from Sturm–Liouville eigenvalue
problems was further explored by Koshlyakov and coworkers [5] and Eringen [6], among others.
In the 60s, Luikov [7], Mikhailov [8], and Ozisik [9] made some of the most fundamental contri-
butions for the full establishment of this analytical approach in the heat and mass transfer field.
The consolidation of these ideas was systematically presented in the compendium of Mikhailov
and Ozisik [10] of 1984, which organized the integral transform analysis of heat and mass diffu-
sion into seven fairly wide classes of linear problems.

The classical integral transform method, despite being applicable to various classes of linear
problems, as discussed above, finds limitations that were recognized in attempts of solving prob-
lems, still linear but with time-dependent equation or boundary conditions coefficients [11, 12],
when only approximate analytical solutions were offered for such nontransformable problems.
Following this same path, a hybrid numerical–analytical extension was proposed, first in the
realm of moving boundary problems [13], and soon after, revisiting the time-dependent coeffi-
cients formulations [14, 15]. This hybrid approach kept along the years the same name of
Generalized Integral Transform Technique (GITT), first proposed in [11], and involved the com-
plete solution of the coupled transformed problem, based on the numerical solution of a trun-
cated version of the transformed system of ordinary differential equations. In a relatively short
period of time, it was extended to different classes of problems, including nonlinear diffusion and
convection–diffusion [16]–[19] and irregular domains in parabolic and elliptic formulations
[20]–[23]. It would not take long for the GITT to be challenged by the solution of fluid flow
problems governed either by the boundary layer equations or the Navier–Stokes equations [24,
25]. Since then, the hybrid method was progressively extended and new classes of problems and
applications have been dealt with, and it has been reviewed at different stages and sour-
ces [26]–[34].

The integral transform analysis of fluid flow problems governed by the Navier–Stokes equa-
tions has required the proposition of new eigenfunction expansions, other than those normally
employed in diffusion or convection–diffusion problems, directly derived from the general
Sturm–Liouville eigenvalue problem. Along the years, in the present methodological context, the
Navier–Stokes equations have been mostly dealt with in the streamfunction-only formulation
[25,35–46], and less frequently in the primitive variables formulation [47, 48]. In two-dimensional
problems, the streamfunction formulation offers the advantages of automatically satisfying the
continuity equation and eliminating the pressure field. In addition, it has been observed through
the various applications considered, that the fourth-order biharmonic-type eigenvalue problem
which is naturally preferred for the eigenfunction expansion in this formulation, results in
improved convergence rates in comparison with the previously proposed expansions based on the
primitive variables formulation. However, the extension of this concept to three-dimensional
flows, leading to vector and scalar potentials, has been shown to be less advantageous when dealt
with by the same hybrid approach [49]. Nevertheless, the integral transform method under the
two-dimensional streamfunction formulation has been applied to various classes of problems,
including cavity and channel flows, rectangular and cylindrical geometries, regular and irregular
domains, laminar and turbulent flows, steady and transient states, natural and forced convection,
as well as on magnetohydrodynamics [25, 35–46]. The integral transformation of the streamfunc-
tion formulation is the first one to be here reviewed, for both steady and transient state situa-
tions, in light of its popularity among the contributions that employed this hybrid approach
so far.

With respect to the primitive variables formulation, which has been more extensively
employed in solving the boundary layer equations [50]–[54], it is worthwhile mentioning first the
approach based on the proposition of a Poisson equation for the pressure field [47] and, more
recently, based on the manipulation of the momentum equations to eliminate the pressure field
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[48], but without recalling the streamfunction definition, while the continuity equation is used to
determine one of the velocity vector components. This second approach is also here reviewed in
view of its straightforward extension to the three-dimensional situation.

The present review is focused on the GITT solution of fluid flow problems governed by the
Navier–Stokes equations, with or without heat or mass transfer, represented by the associated
energy or species conservation equations. This particular emphasis is here chosen in light of
recent progresses that are allowing for further generalization of this hybrid method. First, a single
domain reformulation strategy has been successfully employed in a number of problems involving
heterogeneous media and complex geometries [55]–[59], with recent extensions to the solution of
fluid flow and heat or mass transfer within channels and cavities partially filled with a saturated
porous medium [60]–[63]. Second, a novel interpretation of the eigenfunction expansion proposal
in handling the Navier–Stokes equations [60], has unified the treatment of the two- and three-
dimensional primitive variables formulations into a vector eigenfunction expansion representing
all velocity components with one set of transformed potentials and an appropriately chosen vector
eigenfunction basis. Through this new interpretation, the velocity vector field can be represented
considering the influence of an infinite number of vortices disturbing a base flow. This propos-
ition automatically recovers the streamfunction formulation as a special case for the two-dimen-
sional situation. The combination of these two novel concepts allows for a more straighforward
handling of transient flows within complex geometries, such as for instance, in analyzing flow
instabilities effects in convective heat and mass transfer problems within porous or partially por-
ous media, previously considered in different physical situations [64]–[70].

2. The generalized integral transform technique

The GITT [26]–[34], based on the classical integral transform method [10], provides a hybrid
numerical–analytical nature to the eigenfunction expansion approach, yielding error-controlled
solutions to a large number of linear and nonlinear convection–diffusion problems. The basic
steps in the GITT algorithm can be summarized as follows [71, 72]:

(a) Select an analytical filtering solution to improve convergence behavior of the eigenfunction
expansions, if required. Filtering to achieve homogeneous boundary conditions and/or
reduce the importance of equation source terms is often helpful;

(b) Choose the associated eigenvalue problem, which should desirably incorporate characteristic
linear behaviors of the original problem formulation represented by the coefficients of the
differential operators. Either diffusive or convective eigenvalue problems [73] may be
adopted. More recently, nonlinear eigenvalue problems have also been employed with
marked improvement on convergence [33, 74];

(c) Develop the integral transform pair and obtain the transform and inversion, that will define
the transformation operation and the explicit recovering of the potential;

(d) Solve the eigenvalue problem, either in analytical form and symbolic computation, or
through the GITT approach itself, transforming the chosen differential eigenvalue problem
into an algebraic one [23, 26]. A convergence acceleration strategy, based on integral balan-
ces, has been recently advanced in handling eigenvalue problems through the GITT [75];

(e) Integral transform the original PDE and obtain the transformed differential system, which
shall be an ODE system for a total transformation, when all the independent variables are
eliminated except one. It can result in an initial value problem, for a parabolic or hyper-
bolic formulation, or in a boundary value problem, for an elliptic formulation. A partial
transformation [72] may also be applied, as first proposed in [76], when two independent
variables are kept in the transformed system, yielding a partial differential trans-
formed system;

62 R. M. COTTA ET AL.



(f) Compute transformed system coefficients, which are integrals, single or multiple, involv-
ing the eigenfunctions. When analytical expressions are not obtainable through symbolic
computation [77], there is a marked advantage in promoting semi-analytical integra-
tions, when the oscillatory nature of the eigenfunctions is analytically handled, while the
nonoscillatory portion of the integrand is approximated by piecewise polyno-
mials [71,72];

(g) Solve the transformed system, either numerically or analytically, when feasible. This main
numerical task requires handling the resulting coupled ODE or PDE system for the trans-
formed potentials, which needs to be truncated to a sufficiently large order for numerical
purposes. Reliable automatic solvers are readily available for the numerical solution of stiff
ODE systems, and even for one-dimensional systems of PDEs with adaptive remeshing,
such as in the routine NDSolve of the Mathematica system [77];

(h) Recall inversion formula to analytically reconstruct the hybrid solution of the desired
potential. At this point, the inversion formula can be employed for accuracy testing, once
the intermediate tasks were error controlled, and then allowing for best selection of the
transformed system truncation orders. Error estimates are then automatically provided at
any desired position and time.

To illustrate the basic steps above, let us consider a general nonlinear convection–diffusion
problem of n coupled potentials, Tkðx; tÞ; defined in the region V with boundary surface S:

wk xð ÞLt;kTk x; tð Þ ¼ Lx;kTk x; tð Þ þ Gk x; t;Tð Þ; x 2 V; t0 < t< t1; k ¼ 1; 2; :::; n (1a)

Equation (1a) is already written in a way that all the coupling and nonlinear terms are collapsed
into the source terms, Gkðx; t;TÞ; eventually also including convective terms, while the remaining
operators retain representative information with selected linear coefficients. Therefore, the x oper-
ator, Lx;k; for this diffusion or convection–diffusion problem, may be written as follows:

Lx;k ¼ r � Kk xð ÞrTk x; tð Þ� �� dk xð ÞTk x; tð Þ (1b)

which includes the diffusion and linear dissipation terms. The t operator, Lt;k; for a parabolic for-
mulation may be given by

Lk;t � @

@t
(1c)

while for an elliptic or hyperbolic formulation is written as follows:

Lk;t � � ak tð Þ @
@t

bk tð Þ @
@t

� �
(1d)

The source term, including nonlinear convective terms, if pertinent, becomes

Gk x; t;Tð Þ ¼ �uðx; t;TÞ:rTk x; tð Þ þ gkðx; t;TÞ (1e)

with initial or boundary conditions in the t variable given, respectively, by

Tk x; t0ð Þ ¼ fk xð Þ; x 2 V; for the parabolic problem (1f)

Tk x; t0ð Þ ¼ fk xð Þ; @Tk x; tð Þ
@t

����
t¼t0

¼ hk xð Þ; x 2 V for the hyperbolic problem (1g,h)

kk;l tð Þ þ � 1ð Þlþ1ck;l tð Þ
@

@t

� �
Tk x; tð Þ ¼ fk;l xð Þ; at t ¼ tl; l ¼ 0; 1; x 2 V for the elliptic problem

(1i)
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and the boundary conditions in the remaining coordinates

ak xð Þ þ bk xð ÞKk xð Þ @

@n

� �
Tk x; tð Þ ¼ /k x; t;Tð Þ; x 2 S; t0 < t< t1 (1j)

where n denotes the outward-drawn normal to the surface S, and the potentials vector is given
by

T ¼ T1;T2; :::;Tk; :::;Tnf gT (1k)

Equations (1) do not include all of the problem formulations of interest in heat and fluid flow ana-
lysis, but are sufficiently general to illustrate the formalism in the GITT. The first step in the integral
transform solution of Eqs. (1) is then the proposition of a filtering solution, so as to reduce the import-
ance of the nonhomogeneities characterized by the equations and boundary conditions source terms,
and their influence on slowing down the eigenfunction expansions convergence rates. Therefore, in
general terms, the filter can be written as follows:

Tk x; tð Þ ¼ T�
k x; tð Þ þ Tk;F x;tð Þ (2)

where the filtering solution, Tk;Fðx; tÞ; accounts at least partially for the information within the
source terms, Gkðx; t;TÞ and /kðx; t;TÞ: Then, the resulting filtered potentials should obey the
following problem formulation:

wk xð ÞLt;kT�
k x; tð Þ ¼ Lx;kT

�
k x; tð Þ þ G�

k x; t;T�ð Þ; x 2 V; t0 < t< t1; k ¼ 1; 2; :::; n (3a)

with the filtered source term

G�
k x; t;T�ð Þ ¼ Gkðx; t;TÞ �wk xð ÞLt;kTk;F x; tð Þ þ Lx;kTk;F x; tð Þ (3b)

and filtered initial and boundary conditions as follows:

T�
k x; t0ð Þ ¼ f �k xð Þ � fk xð Þ�Tk;F x; t0ð Þ; x 2 V; for the parabolic problem (3c)

T�
k x; t0ð Þ ¼ f �k xð Þ; @T�

k x; tð Þ
@t

����
t¼t0

¼ h�k xð Þ � hk xð Þ� @Tk;F x; tð Þ
@t

����
t¼t0

; x 2 V; hyperbolic problem

(3d,e)

kk;l tð Þ þ � 1ð Þlþ1ck;l tð Þ
@

@t

� �
T�
k x; tð Þ ¼ f �k;l xð Þ � fk;l xð Þ� kk;l tð Þ þ � 1ð Þlþ1ck;l tð Þ

@

@t

� �
Tk;F x; tð Þ;

at t ¼ tl; l ¼ 0; 1; x 2 V for the elliptic problem

(3f)

and the boundary conditions in the remaining coordinates

ak xð Þ þ bk xð ÞKk xð Þ @

@n

� �
T�
k x; tð Þ ¼ /�

k x; t;T�ð Þ � /k x; t;Tð Þ� ak xð Þ þ bk xð ÞKk xð Þ @

@n

� �
Tk;F x; tð Þ;

x 2 S; t0 < t< t1
(3g)

Equations (3) were obtained from application of the linear filtering solution of Equation (2),
but other more involved filtering schemes have been proposed, including recursive filtering, local
instantaneous filtering, and implicit (or nonlinear) filters [71,72], which shall not be reviewed
here for the sake of brevity.

Following the formalism in the GITT [26–34,71], and [72], an eigenvalue problem is chosen
that provides the base for the eigenfunction expansion. Here, when Eqs. (1) were written, this
choice was already implicitly made, since characteristic linear coefficients have been identified to
describe the differential operators. Therefore, the following eigenvalue problem is considered:

r � Kk xð Þrwki xð Þð Þ þ l2kiwk xð Þ� dk xð Þ
� �

wki xð Þ ¼ 0; x 2 V (4a)
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ak xð Þ þ bk xð ÞKk xð Þ @

@n

� �
wki xð Þ ¼ 0; x 2 S (4b)

Again, more involved eigenvalue problems can be proposed in specific situations, toward
improved convergence of the eigenfunction expansions, such as in coupled problems, convective
eigenvalue problems, or even nonlinear Sturm–Liouville problems, however, these alternatives
shall not be examined in the present context. Problem (4), with the associated orthogonality
property of the eigenfuncionts, wkiðxÞ; permits the derivation of the following transform-inverse
pair:

�Tki tð Þ ¼
ð
V
wk xð Þ~wki xð ÞT�

k ðx; tÞdV; transform (5a)

T�
k x; tð Þ ¼

X1
i¼1

~wki xð Þ�Tk;iðtÞ; inverse (5b)

The symmetric kernels ~wkiðxÞ and the norms are given by:

~wki xð Þ ¼ wki xð Þffiffiffiffiffiffiffi
Nki

p ;Nki ¼
ð
v
wk xð Þw2

ki xð ÞdV (5c,d)

The integral transformation of the partial differential Equation (3a) is then performed, making
use of the operator

Ð
V
~wkiðxÞð:ÞdV; to yield the transformed system, after manipulation of the

boundary conditions, Eqs. (3g) and (4b):

Lk;t�Tki tð Þ þ l2ki�Tki tð Þ ¼ �gki t; �T
� �

; i ¼ 1; 2; :::; t0 < t< t1; k ¼ 1; 2; :::; n (6a)

where the coupling transformed source terms include the influence of the convective terms and
of the equation and boundary condition source terms as

�gki t; �T
� �

¼
ð
V

~wki xð ÞG�
kðx; t;T�ÞdV þ

ð
S
/�
k x; t;T�ð Þ

~wki xð Þ�Kk xð Þ @~wki xð Þ
@n

ak xð Þ þ bk xð Þ

" #
dS (6b)

Similarly, the initial or boundary conditions in the t variable are integral transformed with the
operator

Ð
VwkðxÞ~wkiðxÞð:ÞdV; to provide

�Tki t0ð Þ ¼ �f ki �
ð
V
wk xð Þ~wki xð Þf �k xð ÞdV; for the parabolic problem (6c)

�Tki t0ð Þ ¼ �f ki �
ð
V
wk xð Þ~wki xð Þf �k xð ÞdV;

d�Tki tð Þ
dt

����
t¼t0

¼ �hki �
ð
V
wk xð Þ~wki xð Þh�k xð ÞdV; hyperbolic problem

(6d,e)

kk;l tð Þ þ � 1ð Þlþ1ck;l tð Þ
d
dt

� �
�Tki tð Þ ¼ �f k;li �

ð
V
wk xð Þ~wki xð Þf �k;l xð ÞdV;

at t ¼ tl; l ¼ 0; 1; for the elliptic problem

(6f)

The transformed ordinary differential system, Eqs. (6), is either an initial value problem, for
parabolic or hyperbolic formulations, or a boundary value problem for the elliptic formulation,
and it is unlikely that analytical solutions can be obtained for such a general nonlinear situation.
However, reliable solvers for ODEs are readily available to provide numerical solutions with user
prescribed accuracy, such as the routine NDSolve in the Mathematica platform [77]. After
numerical integration of the ODE system along the t variable, the inverse formula, Equation (5b),
is recalled to reconstruct the filtered potentials in analytical form.
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This hybrid approach has been extensively used as a benchmarking tool, in the verification of
more general and flexible numerical codes, but also as a production tool itself, especially in highly
intensive computational jobs and/or very precision demanding applications. An open source gen-
eral-purpose symbolic-numerical code was developed, coined as UNIT code (Unified Integral
Transforms) [71, 72], and implemented in the Mathematica platform [77]. It offers all of the basic
analytical and numerical steps in the GITT implementation, allowing for a more straightforward
utilization of this methodology. The reader should refer to the recent contributions on the UNIT
code for details on the algorithm implementation, both on the total and partial transformation
schemes [71, 72].

3. Streamfunction and primitive variables formulations

The present section illustrates the application of the GITT in solving the Navier–Stokes equa-
tions, either on the streamfunction-only or in the primitive variables formulations. In the first
example, it has been chosen to illustrate the solution of the steady-state Navier–Stokes equa-
tions written in terms of the streamfunction in a cylindrical geometry, representing laminar
flow development within a concentric annular tube with rotating inner wall. The second
example deals with transient magnetohydrodynamics and natural convection in a rectangular
cavity, again in the streamfunction-only formulation, while in the third example, the classical
lid driven cavity flow problem is considered with a transient moving lid, handled directly on
the primitive variables formulation. In the sequence, Section 4 presents the recently intro-
duced concept of a vector eigenfunction expansion, which unifies the treatment of two and
three-dimensional problems in the primitive variables formulation. Finally, in Section 5, a few
results are provided to demonstrate the convergence behavior of the proposed eigenfunction
expansions in each case.

3.1. Streamfunction-only formulation

3.1.1. Steady state
This example deals with laminar flow inside an annular duct with a rotating inner wall, as illus-
trated in Figure 1 [78, 79]. A Newtonian fluid enters the duct with a uniform velocity profile u0
aligned with the axial direction. The annular duct has inner and outer radii ri and ro, respectively.
The inner cylinder rotates with an angular velocity x, whereas the outer cylinder remains at rest.
The flow is considered to be steady, laminar, incompressible, and axisymmetric, with constant
physical properties.

The flow in the annular region is represented by the continuity and the Navier–Stokes equa-
tions in the cylindrical coordinates system. The continuity equation is automatically satisfied

Figure 1. Geometry and coordinates for laminar flow within annular duct with rotating inner wall.
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when the streamfunction-only formulation is adopted, which is written in terms of the stream-
function and the tangential velocity component, in dimensionless form, as [79]

@4w
@r4

� 2
r
@3w
@r3

þ 3
r2
@2w
@r2

� 3
r3
@w
@r

þ 2
@4w

@r2@z2
� 2

r
@3w
@r@z2

þ @4w
@z4

¼ Re
2 1 � cð Þ

�
1
r
@w
@z

@3w
@r3

� 1
r
@2w
@r2

þ 1
r2
@w
@r

þ @3w
@r@z2


 �
� 1

r
@w
@r

@3w
@r2@z

� 1
r
@2w
@r@z

þ @3w
@z3


 �

� 2
r2
@w
@z

@2w
@r2

� 1
r
@w
@r

þ @2w
@z2


 �
� 2n2vh

@vh
@z

� (7a)

1
r
@

@r
r
@vh
@r


 �
� vh

r2
þ @2vh

@z2
¼ Re

2 1 � cð Þ
1
r
@w
@z

@vh
@r

þ vh
r


 �
� 1

r
@w
@r

@vh
@z

� �
(7b)

The boundary conditions are given by

w c; zð Þ ¼ C1;
@w c; zð Þ

@r
¼ 0; vh c; zð Þ ¼ 1 (7c–e)

w 1; zð Þ ¼ C2;
@w 1; zð Þ

@r
¼ 0; vh 1; zð Þ ¼ 0 (7f–h)

w r; 0ð Þ ¼ C1 � r2 � c2
� �

=2;
@2w r; 0ð Þ

@z2
¼ 0; vh r; 0ð Þ ¼ 0 (7i–k)

w r;1ð Þ ¼ w1 rð Þ; @w r;1ð Þ
@z

¼ 0; vh r;1ð Þ ¼ vh;1 rð Þ (7l–n)

where w1ðrÞ and vh;1ðrÞ are the values of the streamfunction and the tangential velocity compo-
nent in the fully developed region. Also, C1 and C2 are the values of the streamfunction at the
inner and outer cylinder walls, respectively. These quantities are defined as follows:

w1 rð Þ ¼ C2 � 2
b

r2m r2 ln r � c2 ln r
� �

� r2 � c2
� �

4
2r2m � 2þ r2 þ c2
� �� �

;C1 ¼ 0;C2 ¼ � 1� c2
� �

2

(7o–q)

vh;1 rð Þ ¼ c
1 � c2ð Þ

1
r
� r


 �
; b ¼ 1þ c2 � 2r2m; rm ¼ 1 � c2

� �
2 ln 1=cð Þ

( )1 2=

(7r–t)

The dimensionless groups employed in the above formulation are

r ¼ r�

ro
; z ¼ z�

ro
; vz ¼ v�z

uo
; vr ¼ v�r

uo
; vh ¼ v�h

xri
; p ¼ p�

qu2o
; c ¼ ri

ro
(8a–g)

Re ¼ 2 ro � rið Þu0
�

; n ¼ xri
uo

¼ 1
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta 1þ cð Þ

1 � cð Þ

s
;Ta ¼ 2 xrið Þ2 ro � rið Þ3

�2 ro þ rið Þ (8h–j)

where the main parameters in Eqs. (8) are the Reynolds number (Re), the Taylor number (Ta),
the rotation parameter (n), and the radii ratio (c). The streamfunction is related to the radial and
axial velocity components, vr and vz, as follows:

vr ¼ 1
r
@w
@z

; vz ¼ � 1
r
@w
@r

(9a,b)

In solving Eqs. (1), filtering is applied in order to improve the computational performance, by
eliminating the nonhomogeneity of the boundary conditions in the r-direction, since this is the
chosen coordinate for elimination through the integral transformation process. This filter is given
as follows:
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vh r; zð Þ ¼ vh;1 rð Þ þ v�h r; zð Þ; w r; zð Þ ¼ w1 rð Þ þ / r; zð Þ (10a,b)

Eigenfunction expansions are then proposed for the streamfunction and tangential velocity
fields, by considering a biharmonic-type problem for the streamfunction and a Sturm–Liouville
problem for the tangential velocity component, both dependent on the radial direction only.
Here, the integral transformation is promoted only in the radial direction, thus leading to a trans-
formed ODE system (boundary value problem) in the z direction. The solution of the coupled
nonlinear ordinary differential equations for the transformed potentials is obtained through the
DBVPFD subroutine of the IMSL library [80].

3.1.2. Transient state
This example considers the influence of a magnetic field in the momentum and heat transfer in
transient MHD flow in a square cavity, for conditions of moderate and high Grashof numbers
[44, 81–85], as illustrated in Figure 2. The cavity has an infinite extent along the z-axis, the lower
and upper walls are insulated, while the side walls are maintained at different and constant tem-
peratures, namely the hot (Th) and cold (Tc) walls, respectively. The flow is in transient state and
the fluid is Newtonian and electrically conductive. Moreover, the fluid properties are considered
constant throughout the range of temperatures in the specific example. The temperature differ-
ence causes the movement through the onset of the buoyancy force. This term in the momentum
equations is modeled using the Boussinesq approximation, with density variation in the body
force term only. The fluid is permeated by a constant magnetic field B0 applied in the x-direction
(from the left to the right wall), which creates a force opposing the buoyancy effect, the Lorentz
force, represented by the vector product between the electrical current density and the magnetic
field. Therefore, the equations governing the problem are the continuity, Navier–Stokes and
energy equations, as well as the electric charges conservation equation, Ohm’s Law, and
Amp�ere–Maxwell’s law in a moving medium. Adopting the streamfunction-only formulation, the
problem is written in dimensionless form as [81]:

@ r2w
� �
@t

þ @w
@y

@3w
@x3

þ @3w
@x@y2

 !
� @w

@x
@3w
@x2@y

þ @3w
@y3

 !
¼ Prr4w�PrHa2

@2w
@x2

�RaPr
@T
@x

(11a)

Figure 2. Geometry and coordinates system for natural convection in square cavity with a transversal magnetic field.
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@T
@t

þ @w
@y

@T
@x

� @w
@x

@T
@y

¼ r2T (11b)

The initial and boundary conditions, in dimensionless form, needed to complete the mathem-
atical formulation, are:

T x; y; 0ð Þ ¼ w x; y; 0ð Þ ¼ 0 for t ¼ 0 (11c,d)

w ¼ @w
@x

¼ 0; T ¼ 1 at x ¼ 0; w ¼ @w
@x

¼ T ¼ 0 at x ¼ 1 (11e–j)

w ¼ @w
@y

¼ @T
@y

¼ 0 at y ¼ 0; w ¼ @w
@y

¼ @T
@y

¼ 0 at y ¼ 1 (11k–p)

The usual definition of the streamfunction was adopted, in the form:

u� ¼ @w�

@y�
; v� ¼ � @w�

@x�
(12a,b)

together with the following dimensionless quantities:

x ¼ x�

L
; y ¼ y�

L
; w ¼ w�

aT
; t ¼ aTt�

L2
; T ¼ T� �Tc

Th � Tc
(13a–e)

where the subscript “�” identifies the dimensional variables, aT is the fluid thermal diffusivity,
and L is the length of the cavity. Also, Ha, Ra, Pr, and Gr are the Hartmann, Rayleigh, Prandtl,
and Grashof numbers, respectively, which are defined as:

Ha ¼ B0L
ffiffiffiffiffi
r
l0

r
; Ra ¼ gbT Th �Tcð ÞL3

aT�
; Pr ¼ �

aT
; Gr ¼ gbT Th �Tcð ÞL3

�2
¼ Ra

Pr
(14a–d)

where � is the kinematic viscosity, bT is the coefficient of thermal expansion, r is the electrical
conductivity and l0 is the magnetic permeability in vacuum. In this study, the effects of polariza-
tion and magnetization were neglected. The magnetic Reynolds number is considered to be very
small, as well as the effects of Joule heating and viscous dissipation. In integral transforming the
flow problem, Equation (11a), the preferred eigenvalue problem is the biharmonic equation in
both space coordinates, x and y, as analyzed in [81]. For the temperature problem, Eq. (11b), the
two-dimensional Sturm–Liouville equation with constant coefficients is adopted. Then, the trans-
formed system becomes an initial value problem (ODEs system), which has been accurately
handled by subroutine DIVPAG of the IMSL Library [80].

3.2. Primitive variables formulation

Consider the transient two-dimensional Navier–Stokes equations with constant properties for an
incompressible flow with negligible body forces, together with the corresponding continuity equa-
tion, for the classical lid-driven cavity flow problem in primitive variables formulation. The fluid,
initially at rest, has impermeability and no-slip conditions at the walls, except on the top surface
where a reference uniform time-variable velocity, f(t), is imposed [48, 86]. The primitive variables
formulation in dimensionless form in the square region 0< y< 1 and 0< x< 1, as represented in
Figure 3, is given by [48]:

@v x; y; tð Þ
@y

þ @u x; y; tð Þ
@x

¼ 0 (15a)

@u
@t

þ u
@u
@x

þ v
@u
@y

¼ � @p
@x

þ 1
Re

@2u
@x2

þ @2u
@y2

 !
(15b)
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@v
@t

þ u
@v
@x

þ v
@v
@y

¼ � @p
@y

þ 1
Re

@2v
@x2

þ @2v
@y2

 !
(15c)

with the following initial and boundary conditions:

u x; y; 0ð Þ ¼ 0; u 1; y; tð Þ ¼ 0; u 0; y; tð Þ ¼ 0; u x; 0; tð Þ ¼ 0; u x; 1; tð Þ ¼ f tð Þ (15d–h)

v x; y; 0ð Þ ¼ 0; v 1; y; tð Þ ¼ 0; v 0; y; tð Þ ¼ 0; v x; 0; tð Þ ¼ 0; v x; 1; tð Þ ¼ 0 (15i–m)

It has here been chosen to illustrate the integral transformation alternative path of handling the
primitive variables Navier–Stokes equations, as proposed in [48]. The idea is to manipulate the
momentum equations, such as in the case of the streamfunction formulation, so as to eliminate the
pressure field. Then, the continuity equation in Eq. (15a) is integral transformed and used to express
one of the transformed velocity components in terms of the other component. Thus, the first step in
the approach consists in eliminating the pressure term from the Navier–Stokes equations, which
requires that one differentiates Eq. (15b) with respect to y and Eq. (15c) with respect to x, and the
results are then subtracted, yielding:

@

@y
@u
@t

� @

@x
@v
@t


 �
þ u

@2u
@y@x

þ v
@2u
@y2

 !
� v

@2v
@y@x

þ u
@2v
@x2

 !
¼ � 1

Re
@

@x
@2v
@x2

þ @2v
@y2

 !

þ 1
Re

@

@y
@2u
@x2

þ @2u
@y2

 ! (16)

Equations (15a) and (16), together with initial and boundary conditions, Eqs. (15d–m), com-
plete the problem statement in terms of the primitive variables formulation, without the pressure
terms. Here, second-order diffusion-type eigenvalue problems have been preferred, and there is
the choice of implementing a total or partial integral transformation scheme. An application will
be reported in Section 5, for an oscillating lid velocity f ðtÞ ¼ cos ðx tÞ; with x ¼ 2p=s; where x
is the oscillating frequency and s is the time period [86].

The same procedure can be used for a three-dimensional formulation. In this situation, the
resulting system of equations is given by the continuity equation and the other two equations
generated in the manipulation of the three momentum equations to eliminate the pressure field,
yielding:

Figure 3. Schematic representation of the transient lid-driven cavity flow problem.
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@u x; y; z; tð Þ
@x

þ @v x; y; z; tð Þ
@y

þ @w x; y; z; tð Þ
@z

¼ 0 (17a)

@w x; y; z; tð Þ
@z

@v x; y; z; tð Þ
@x

� @u x; y; z; tð Þ
@y


 �
þ @w x; y; z; tð Þ

@y

@u x; y; z; tð Þ
@z

� @w x; y; z; tð Þ
@x

@v x; y; z; tð Þ
@z

þ u x; y; z; tð Þ @2u x; y; z; tð Þ
@y@x

� @2v x; y; z; tð Þ
@x2

 !
þ v x; y; z; tð Þ @2u x; y; z; tð Þ

@y2
� @2v x; y; z; tð Þ

@x@y

 !

þ w x; y; z; tð Þ @2u x; y; z; tð Þ
@y@z

� @2v x; y; z; tð Þ
@x@z

 !
¼ � @

@y

@u x; y; z; tð Þ
@t

þ @

@x

@v x; y; z; tð Þ
@t

þ 1
Re

@

@y
r2u x; y; z; tð Þ� 1

Re
@

@x
r2v x; y; z; tð Þ

(17b)

@v x; y; z; tð Þ
@y

@w x; y; z; tð Þ
@x

� @u x; y; z; tð Þ
@z


 �
þ @v x; y; z; tð Þ

@z

@u x; y; z; tð Þ
@y

� @v x; y; z; tð Þ
@x

@w x; y; z; tð Þ
@y

þ u x; y; z; tð Þ @2u x; y; z; tð Þ
@z@x

� @2w x; y; z; tð Þ
@x2


 �
þ v x; y; z; tð Þ @2u x; y; z; tð Þ

@z@y
� @2w x; y; z; tð Þ

@x@y

 !

þ w x; y; z; tð Þ @2u x; y; z; tð Þ
@z2

� @2w x; y; z; tð Þ
@x@z


 �

¼ � @

@z

@u x; y; z; tð Þ
@t

þ @

@x

@w x; y; z; tð Þ
@t

þ 1
Re

@

@z
r2u x; y; z; tð Þ� 1

Re
@

@z
r2w x; y; z; tð Þ

(17c)

4. Vector eigenfunction expansion

Next, recent advances on combining integral transforms with the single domain reformulation
strategy and a vector eigenfunction expansion [60] are briefly discussed. The example here
considered represents a parallel plate channel partially filled with a porous medium. The
model for the fluid flow inside the porous medium is the Darcy–Brinkman, while for the free
fluid, is the Navier–Stokes equations for steady state incompressible flow. With the main
advantage of accomplishing the coupling between the regions automatically and more con-
veniently for computational purposes, the single domain formulation is here employed, repre-
sented through appropriate space variable coefficients. The problem formulation then becomes
[60]:

r � u ¼ 0 (18a)

q u � rð Þu ¼ �rpþ 4
Re

r � lruð Þ� 4c
ReDa

u (18b)

where u is the dimensionless velocity vector, r is the dimensionless nabla operator, q is the
dimensionless density, p is the dimensionless pressure field, l is the dimensionless dynamic vis-
cosity, Re is the Reynolds number based on the hydraulic diameter, and Da is the Darcy number.
The dimensionless quantities are given by:

u ¼ u�

u0
; r ¼ hr�; q ¼ q�

q0
; p ¼ p�

q0u02
; l ¼ l�

l0
; Re ¼ 4q0u0h

l0
; Da ¼ j

h2
(19a–g)

where u� is the velocity vector, u0 is the uniform entry longitudinal velocity component, r� is
the nabla operator, h is half the height of the channel, q� is the density, q0 is the fluid density, p�

is the pressure field, l� is the viscosity, l0 is the fluid viscosity, and j is the permeability of the
porous medium.
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In accordance with the single domain formulation [55]–[59], the physical properties of
Equations (18) vary abruptly across the interfaces between different media. Let Vf and Vp be the
regions occupied by the fluid and porous layers, respectively. Employing the effective viscosity,
neglecting the inertial terms within the porous medium, and disregarding the dissipative term in
the fluid layer, the following definitions are adopted:

q ¼ 1; in Vf

0; in Vp
; l ¼ 1; in Vf

1=e; in Vp
; c ¼ 0; in Vf

1; in Vp
;

���
(20a–c)

where e is the porosity of the porous medium.
The Brinkman viscous correction allows for the imposition of no-slip boundary conditions at

the walls. At the entrance, a uniform velocity profile was imposed. The outlet boundary condition
is prescribed assuming that the channel is long enough for the flow to be fully developed. Hence,
a dimensionless fully developed velocity profile FðyÞ; as detailed in [60], is considered at the out-
let. The adopted single domain approach eliminates the need to explicitly specify boundary condi-
tions at the interface between the free fluid and porous layers. Thus, the boundary conditions are
given as follows:

u x; � 1ð Þ ¼ 0; u x; 1ð Þ ¼ 0 (21a,b)

u 0; yð Þ ¼ f yð Þ 0 0
� �T

; u xo; 1ð Þ ¼ F yð Þ 0 0
� �T

(21c,d)

where xo is the dimensionless channel length and f is the velocity profile at the entry of
the channel.

The first step is then the filtering of the velocity vector, in the form:

u x; yð Þ ¼ û x; yð Þ þ uf x; yð Þ; where uf ¼ F yð Þ 0 0
� �T

(22a,b)

The velocity vector field can be determined by taking into account the influence of an infinite
number of vortices disturbing a base flow. Then, this novel interpretation of the eigenfunction
expansion is introduced to represent the filtered velocity vector as [60]

û x; yð Þ ¼
X1
i¼1

r� �/i xð ÞUi yð Þ
h i

(23)

Expanding Eq. (23) in the Cartesian coordinate system, imposing that the only nonzero com-
ponent of the base vector Ui is in the z-direction, and assuming the linearity of the curl operator
holds for the infinite series involved, the following expression is achieved:

û x; yð Þ ¼ @
@y

X1
i¼1

�/i xð Þ~ui yð Þ
( )

� @
@x

X1
i¼1

�/i xð Þ~ui yð Þ
( )

0

" #T
(24)

where ~ui is taken as the z-axis component of Ui: Defining the summation within the derivatives
in Eq. (24) as the streamfunction, the correspondence between the present approach and the
streamfunction formulation is fully established. However, the interpretation without recurring to
the streamfunction definition allows for a more straightforward generalization to three-dimen-
sional problems, provided that a proper base for the expansion (Ui) is made available. In the sin-
gle domain framework, the integral transform methodology strongly benefits from the inclusion
of the abrupt variation of the physical properties that represent the media transitions. Therefore,
an extension of the classical biharmonic eigenvalue problem has been preferred in the present
situation [60]. This eigenvalue problem with space variable coefficients is itself handled by the
GITT by considering a simpler auxiliary eigenvalue problem [26].

Further extension of the physical concept of a base flow disturbed by an infinite number of
vortices is envisioned, aiming at the solution of the flow equations in its three-dimensional transi-
ent form. Thus, consider the fairly general formulation of the transient Navier–Stokes equations
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in dimensionless vector form for an incompressible flow given by:

r � u ¼ 0; x 2 V (25a)
@u
@t

þr � u� uð Þ ¼ �rpþ 1
Re

r � lruð Þ; x 2 V (25b)

where V represents the domain occupied by the fluid, u is the dimensionless velocity vector, p is
the dimensionless pressure field, Re is the Reynolds number, l is the dimensionless viscosity.

Recalling the separation of the flow field into a base flow and an infinite number of disturbing
vortices of Eq. (22a), the latter are represented in a more convenient way for solving Eq. (25a,b),
as follows:

û x; tð Þ ¼
X1
i¼1

�ui tð Þ r � ~Ui

� �
(26)

Assuming the base flow satisfies the continuity Equation (25a), the definition of Eq. (26) is
sufficient to warrant mass conservation likewise in the streamfunction-only formulation, dropping
the need to further analyze Eq. (25a).

A convenient way to assure the convergence of the eigenfunction expansion of Eq. (26) would
be to impose the orthogonality property to ðr � ~UiÞ; while including physical information into
it. A straightforward way of accomplishing these requirements is to use a vector eigenvalue prob-
lem capable of decoupling system (27a–h) when Re ! 0 (Stoke’s flow). The resulting self-adjoint
vector eigenvalue problem is given by [87]:

r�r � lr r� ~Ui

� �� �
þ g2i r�r� ~Ui

� �
¼ 0 (27)

The orthogonality property of the solution to Eq. (27) allows for the proposition of a trans-
formed velocity, in the form:

�ui tð Þ ¼
ð
V

r� ~Ui

�
� û x; tð Þdv

 
(28)

Equations (26) and (28) form a transform-inverse pair, reproducing the same formalism as in
the usual application of the GITT.

Let @Ve be the boundary of V containing the entry region, @Vw be the boundary of V contain-
ing the wall region, @Vo be the boundary of V containing the outlet region, where @V ¼
@Ve [ @Vw [ @Vo: Substituting Eq. (22a) into Eq. (25b), applying

Ð
Vðr �UiÞ � dv; using typical

boundary conditions for the entry, wall, and outlet regions, and using some vector calculus iden-
tities, the following transformed system of ordinary differential equations results:

d�ui

dt
þ gi

2

Re
�ui tð Þ þ

X1
k¼1

X1
j¼1

Bijk�uj tð Þ�uk tð Þ þ
X1
j¼1

Cij þ Dijð Þ�uj tð Þ ¼ �g 1;i þ �g 2;i (29a)

with integral coefficients given by,

Bijk ¼
ð
@Vo

r�Uj
� � � n� � r�Ukð Þ � r �Uið Þ �

ds�
ð
V

r�Uj
� �� r�Ukð Þ� �

: r r�Uið Þdv

(29b)

Cij ¼
ð
@Vo

uf � nð Þ r �Uið Þ � r �Uj
� �� �

ds�
ð
V
uf � r�Uj

� �� �
: r r�Uið Þdv (29c)

Dij ¼
ð
@Vo

r�Uj
� � � n� �

uf � r �Uið Þ� �
ds�

ð
V

r�Uj
� �� uf
� �

: r r�Uið Þdv (29d)
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�g 1;i ¼ �
ð
@Ve

p̂e r� Uið Þ � nds�
ð
@Vo

p̂o r� Uið Þ � nds (29e)

�g 2;i ¼
ð
V
r�Uið Þ � 1

Re
r � lruf
� � � r � uf � ufð Þ

� �
dv (29f)

where p̂e and p̂o are the filtered pressures at the entry and outlet regions, respectively.
The numerical solution to the transformed problem of Eqs. (29a–f), once inserted into the

inverse formula of Eq. (26), allows for recovery of the velocity vector.

5. Results and discussion

The four solution paths above discussed are now exemplified, with emphasis on the illustration of
convergence behavior of the associated eigenfunction expansions and verification with numerical
solutions available in the literature or here obtained through commercial numerical platforms.

5.1. Streamfunction-only formulation: Steady laminar flow in annular tube with rotation

Table 1 shows the convergence behavior of the axial velocity component, for the dimensionless
axial positions z¼ 0.54 and z¼ 2.7, for Re¼ 300 and c¼ 0.1, considering the case with rotation of
the inner cylinder for n¼ 1. It can be observed that all of the velocity field results are fully con-
verged to four significant digits in the range of truncation orders shown for the eigenfunction
expansion (N< 39). At the position further downstream convergence is noticeably faster than at
the position closer to the channel entrance, at position z¼ 0.54. This is due to the adopted filter-
ing solution which extracts the fully developed velocity profile for large z.

Figure 4 shows the development of the axial velocity component evaluated at different axial
positions for Re¼ 300 and c¼ 0.1 for the case with rotation of the inner cylinder, considering
n¼ 1. It can be observed that the fully converged results obtained through integral transforms

Table 1. Analysis of the convergence of the axial velocity componet, vz (r.z), for the case with rotation of the inner cylinder
(n¼ 1) for Re¼ 300 and c¼ 0.1.

N

z¼ 0.54

r¼ 0.145 r¼ 0.325 r¼ 0.550 r¼ 0.775 r¼ 0.955

7 0.9130 1.092 1.090 1.186 0.5439
11 0.6621 1.095 1.106 1.193 0.5049
15 0.6117 1.106 1.109 1.201 0.4985
19 0.6024 1.108 1.109 1.204 0.4966
23 0.5993 1.109 1.109 1.205 0.4959
27 0.5981 1.110 1.109 1.205 0.4956
31 0.5976 1.110 1.109 1.206 0.4955
35 0.5973 1.110 1.109 1.206 0.4955
39 0.5972 1.110 1.109 1.206 0.4955

z¼ 2.7

N r¼ 0.145 r¼ 0.325 r¼ 0.550 r¼ 0.775 r¼ 0.955

7 0.5126 1.285 1.382 1.120 0.2891
11 0.5041 1.095 1.106 1.193 0.2880
15 0.5025 1.276 1.390 1.119 0.2877
19 0.5021 1.275 1.390 1.120 0.2877
23 0.5020 1.275 1.390 1.120 0.2877
27 0.5020 1.275 1.390 1.120 0.2877
31 0.5020 1.275 1.390 1.120 0.2877
35 0.5019 1.275 1.390 1.120 0.2877
39 0.5019 1.275 1.390 1.120 0.2877
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(GITT) have a perfect agreement, in the graph scale, with those computed through the COMSOL
Multiphysics platform.

5.2. Streamfunction-only formulation: Transient natural convection with MHD flow

Test cases were analyzed for Grashof numbers equal to 104 and 106, Hartmann number in the
range from 0<Ha< 100, while the Prandtl number was taken equal to 0.71 in all cases. First, the
convergence behavior of the global mean Nusselt number, streamfunction modulus and the
dimensionless temperature at the points (x¼ 0.1; y¼ 0.1) and (x¼ 0.9; y¼ 0.9) of the cavity, for
t¼ 0.005 and for steady state, with Gr¼ 104 and Ha¼ 0, is shown in Table 2. The results in this
table illustrate the excellent convergence rates both at the beginning of the transient process and
at steady state. The global mean Nusselt number converges with fewer terms, while the stream-
function has a slower convergence rate. The steady-state velocity x-component at the vertical
midplane of the cavity (x ¼ 1/2), for different values of Ha from 0 to 50 and Gr ¼ 104, is shown
in Figure 5a, comparing the present results obtained by the GITT approach with those in [82]
that employed a mesh-free kernel approximation technique based on radial basis functions
(RBFs). For the lowest Hartmann number analyzed (Ha¼ 0), the behavior of the velocity field at
this plane indicates the existence of a vortex and a point of zero velocity (y¼ 1/2). For the largest
Hartmann number analyzed (Ha¼ 50), the behavior indicates that the magnetic field has an effect
of suppressing convective currents inside the cavity. Results for the temperature field obtained by
GITT are also compared with those of Colaço et al. [82] in Figure 5b, in the horizontal midplane
of the cavity (y¼ 1/2). Heat transfer by conduction clearly predominates at the largest Hartmann
number (Ha¼ 50). A marked change in temperature gradients is observed and the more signifi-
cant presence of convection is observed as Ha is decreased towards the lowest Hartmann number
(Ha¼ 0), when magnetic effects cease. Furthermore, Figure 5a,b confirms the excellent agree-
ment, to the graph scale, between the present GITT results with the numerical solution in [82].

Figure 4. Development of the axial velocity component vz(r,z) for flow in annular channel with inner wall rotation (Re¼ 300,
c¼ 0.1, and n¼ 1).
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The second Grashof number examined is much larger, Gr¼ 106, which corresponds to condi-
tions in which thermal effects are of greater magnitude, with convection evolving much more
rapidly and observing the emergence of marked movements of internal waves. Thus, the magnetic
field necessary to suppress the natural convection must be stronger than previously considered
for Gr ¼ 104. This behavior is shown in Figure 6 for the streamfunction isolines with Gr¼ 106

and Ha¼ 0 and 100 at four different times. Now, with the presence of a stronger magnetic field,
Ha¼ 100, with the advancement of the transient process, the axis of the central vortex is rotated
in the counterclockwise direction, and this effect is due to the suppression of convection by the
Lorentz force. Figure 7 shows the isotherms for the cases Gr¼ 106 and Ha¼ 0 and 100 at four
different times. Again, it is evident the formation of a distinct vertical boundary layer along the
heated wall early in the process and, in the case of Ha¼ 0, the formation of at least two vortices
at the geometric center of the cavity for the largest time, t¼ 0.93. The discharge of a jet by the
heated side wall forms an initially horizontal layer of intrusion that occurs along the upper hori-
zontal wall of the cavity, as shown in Figure 7a for t¼ 0.005. With the advancement of the transi-
ent process, the horizontal flow reaches the center of the cavity resulting in the formation of a
thermally stratified core, where the temperature increases monotonically as a function of the
coordinate y.

5.3. Primitive variables formulation: Transient lid-driven cavity flow

Figure 8a shows a comparison of the horizontal velocity component for partial and total trans-
formation for steady state (t¼ 12), at the cavity centerline (x¼ 0.5), for uniform motion of the
top lid, against results found in the literature, with overall good agreement to the graphical scale.
Classical benchmark results were here adopted, including the works of Burggraf [88] and Ghia
et al. [89], besides the error controlled GITT results in [25] and the more recent numerical simu-
lation results in [90]. Figure 8b shows a comparison of the vertical velocity component for partial
and total transformation for stationary regime (t¼ 12), at the cavity horizontal centerline
(y¼ 0.5), for uniform motion of the top lid, i.e., x ¼ 0:

Figure 9a shows a comparison of the horizontal velocity component at the centerline of the
cavity with oscillating lid velocity, at a specific instant of time for Re¼ 100 and x ¼ 2p=6; which
agrees well with the numerical solution of Mendu and Das [86]. One may also note that the

Table 2. Convergence behavior for the global mean Nusselt number, streamfunction modulus and temperature for t¼ 0.005
and in the steady state with Gr¼ 104, Pr¼ 0.71, and Ha¼ 0.

N �Nu jwð0:1; 0:1Þj Tð0:1; 0:1Þ jwð0:9; 0:9Þj Tð0:9; 0:9Þ
t¼ 0.005
40 1.000 0.198� 10�2 0.309 0.100� 10�3 0
80 1.001 0.257� 10�2 0.305 0.788� 10�4 0
120 1.001 0.267� 10�2 0.304 0.540� 10�4 0
160 1.001 0.267� 10�2 0.304 0.488� 10�4 0
200 1.001 0.264� 10�2 0.304 0.515� 10�4 0
240 1.001 0.263� 10�2 0.304 0.557� 10�4 0
260 1.001 0.261� 10�2 0.303 0.501� 10�4 0
280 1.001 0.261� 10�2 0.303 0.520� 10�4 0
300 1.001 0.261� 10�2 0.304 0.541� 10�4 0
Steady state
40 2.009 0.321� 10�2 0.698 0.321� 10�2 0.301
80 2.010 0.349� 10�2 0.696 0.349� 10�2 0.303
120 2.010 0.353� 10�2 0.695 0.353� 10�2 0.304
160 2.010 0.353� 10�2 0.695 0.353� 10�2 0.304
200 2.010 0.352� 10�2 0.695 0.352� 10�2 0.304
240 2.010 0.352� 10�2 0.695 0.352� 10�2 0.304
260 2.010 0.352� 10�2 0.695 0.352� 10�2 0.304
280 2.010 0.352� 10�2 0.695 0.352� 10�2 0.304
300 2.010 0.352� 10�2 0.695 0.352� 10�2 0.304
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magnitude and direction of the velocity undergo a number of changes from the bottom to the
top of the cavity. The centerline velocity profile in Figure 9a exhibits two local extremes due to
the oscillatory motion. These repeated changes in magnitude and direction of the velocity along
the centerline represent the presence of a number of complex vortices in the cavity. Figure 9b
shows a comparison for the vertical velocity component at the horizontal centerline profile for six

Figure 5. Comparison of the velocity x-component and temperature fields for Gr¼ 104 at steady state: (a) Velocity component u
along the vertical coordinate at the cavity plane x¼ 1/2; (b) temperature profile along the horizontal coordinate at the cavity
plane y¼ 1/2.
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specific instants of time for Re¼ 100 and x ¼ 2p=6; where again one can observe a very good
agreement with the results of Mendu and Das [86].

5.4. Vectorial eigenfunction expansion: Membraneless redox flow batteries

An application involving the mass transport of species in membraneless redox flow batteries
(MRFB) is here reviewed. Composed of two electrodes in contact with a flowing aqueous solution

Figure 6. Transient streamfunction isolines at different times with Gr¼ 106 and Ha¼ 0 and 100. (a) t¼ 0.005; (b) t¼ 0.02; (c)
t¼ 0.1; and (d) t¼ 0.93.

Figure 7. Transient temperature isolines at different times with Gr¼ 106 and Ha¼ 0 and 100. (a) t¼ 0.005; (b) t¼ 0.02; (c)
t¼ 0.1; and (d) t¼ 0.93.
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of ions of different electrochemical potentials, this device takes advantage of the laminar flow
developed in microchannels to keep the two species separated without the need of a costly and
often non-optimized ion selective membrane [91,92], but still avoiding each chemical substance
to reach an undesirable electrode on the opposite side. To ensure good performance from the
MRFB, a careful analysis of the mass transport must be carried out for both the separation of

Figure 8. (a) Horizontal and (b) vertical velocity components at the cavity centerline for Re¼ 100.
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ions from the opposite electrode and for the effective delivery of ions to the reactive sites within
the porous electrodes.

Figure 10 displays a model of the MRFB analyzed in the present work, consisting of symmet-
rically disposed porous carbon electrodes in flow-by configuration. Table 3 shows the

Figure 9. Comparison of the (a) horizontal and (b) vertical velocity components for the oscillating lid-driven flow problem with
Re¼ 100 and x ¼ 2p=6:
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convergence behavior of the eigenfunction expansion of Eq. (23) and a numerical comparison
with the results obtained with the commercial software COMSOL Multiphysics. Convergence to at
least three significant digits is observed with a maximum deviation from the finite-element results
of �0.1%. Figure 11a depicts concentration contours to a typical electrochemical species with
Schmidt number equal to 200. For Re¼ 50, full separation of the ions from the opposite electrode
is obtained, which indicates the suitability of these operational parameters for a good perform-
ance of the MRFB. Figure 11b shows the horizontal component of the velocity vector along the
vertical direction, including the transition between fluid and porous layers. Results obtained with
COMSOL Multiphysics are offered in a co-verification effort. The agreement is shown to be

Figure 10. Illustration of the MRFB (Membraneless Redox Flow Battery) analyzed. Battery in flow-by configuration with porous
carbon electrodes disposed symmetrically.

Table 3. Convergence behavior and co-verification of the GITT and COMSOL results for the horizontal velocity component at
the channel centerline in selected longitudinal positions.

Re¼ 50; Da¼ 0.002; y¼ 0

x¼ 0.1 x¼ 0.2 x¼ 0.4 x¼ 0.6 x¼ 0.8

N¼ 3 0.984 1.045 1.182 1.272 1.317
N¼ 6 1.009 1.065 1.187 1.273 1.317
N¼ 9 1.027 1.067 1.186 1.273 1.317
N¼ 12 1.018 1.066 1.186 1.273 1.317
N¼ 15 1.017 1.066 1.186 1.273 1.317
N¼ 18 1.019 1.066 1.187 1.273 1.317
COMSOL 1.019 1.067 1.187 1.274 1.319

Figure 11. Concentration contours and horizontal component of the velocity vector varying with y for Re¼ 50 and Da¼ 0.002.
(a) Concentration contours. Horizontal red lines represent the inteface between fluid and porous media; (b) Profiles of the hori-
zontal velocity profile with a vertical red line representing the interface between fluid and porous medium. COMSOL results
given as symbols and GITT results as solid lines.
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perfect to the graph scale, hence demonstrating the capability of the method described in Section
4 of dealing with flow problems in heterogeneous media. Further calculations can be performed,
aiming at determining the current density under mass-transport-limited conditions, for which the
reader is referred to [61].

6. Conclusions

The GITT is reviewed as a computational-analytical approach in the analysis of transport phe-
nomena based on formulations that involve the Navier–Stokes equations for the fluid flow model-
ing. Three alternative integral transform solution paths are revisited. Initially, the more
commonly employed streamfunction-only formulation for two-dimensional flows is illustrated,
which automatically satisfies the continuity equation and eliminates the pressure field. The first
example deals with the streamfunction formulation in steady state, when the eigenfunction expan-
sion is obtained from a one-dimensional biharmonic eigenvalue problem, while the more chal-
lenging second example handles a transient situation, when the eigenvalue problem is two-
dimensional for a total integral transformation scheme. Then, a primitive variables formulation is
considered for both two- and three-dimensional transient flows, which manipulates the momen-
tum equations also to eliminate the pressure field, but employs the integral transformed continu-
ity equation to provide one of the transformed velocity components in terms of the others.
Finally, a recently introduced vector eigenfunction expansion strategy is discussed, as applied to
both steady and transient two- or three-dimensional flows. As in the streamfunction formulation,
this approach automatically satisfies continuity and eliminates the pressure field, recovering the
streamfunction eigenfunction expansion for the two-dimensional case. This approach is also com-
bined with a single domain reformulation strategy which allows for the straightforward treatment
of heat (or mass) transfer and fluid flow in heterogeneous media. The approaches are demon-
strated through examples involving laminar flow in annular channel with inner wall rotation,
transient natural convection in magnetohydrodynamic flow, transient lid-driven cavity flow prob-
lem, and mass transfer in membraneless redox flow batteries. These approaches should now be
challenged in applications involving multiphase flow, flow instabilities, and complex fluids, to
name a few new possibilities for extension of the hybrid numerical–analytical methodology.
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