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A B S T R A C T   

A hybrid numerical-analytical methodology based on integral transforms is employed for solving transient three-di-
mensional heat conduction problems in heterogeneous media comprising arbitrarily space variable thermophysical 
properties, including configurations with multiple subdomains of different materials and geometries. The Generalized 
Integral Transform Technique (GITT) is used to solve for both the temperature distribution and the corresponding 
eigenvalue problem accounting for the spatially variable coefficients. A previously introduced single domain re-
formulation strategy is adopted when multiple subdomains are involved, so as to rewrite the heat conduction equation 
in terms of coefficients with abrupt variations in the spatial coordinates. The hybrid numerical-analytical approach is 
demonstrated for three classes of problems in which the thermophysical properties undergo significant variations 
throughout the domain, such as: (i) FGMs (Functionally Graded Materials) with three-dimensional space variable 
thermophysical properties; (ii) composite medium with inclusions of different geometries and thermophysical prop-
erties; (iii) a multi-scale/multi-material heat conduction problem in a IGBT (Insulated Gate Bipolar Transistor) module. 
In each considered application, both the temperature eigenfunction expansions and the associated eigenvalue problem 
solutions are critically analyzed in terms of convergence rates and co-verified with purely numerical solutions.   

1. Introduction 

Naturally occurring or engineered materials are in many cases not 
homogeneous and thus may present spatially non-uniform physical 
properties. Even employing cells that are formed of homogeneous ma-
terials, structured media can be assembled in ways that result in physical 
behaviors that are characteristic of the inherent heterogeneities, thus not 
amenable to homogenization-type approximations. In recent years, with 
the development of materials processing technologies, various structured 
material systems have been widely designed and manufactured for im-
proved and/or tailored functions, such as in the cases of composites in 
general [1], functionally graded materials (FGMs) [2], and metamater-
ials [3]. Due to their unique physical properties and behaviors, these 
classes of new materials have been extensively used in extreme en-
vironments and unique tasks not attainable by known natural materials, 
with various applications in aerospace, oil exploration, power genera-
tion, subsea, and transportation fields. For instance, functionally graded 
materials are a new generation of composites, with non-uniform micro- 
or nano-structures and graded macro-properties (e.g. heat conductivity, 

specific heat, and density, in heat transfer applications) varying as 
functions of the spatial coordinates. In addition, various engineering 
systems are intrinsically heterogeneous and formed of multiple compo-
nents in direct contact, which may be themselves of different materials 
and geometries, such as in integrated electronic systems [4]. 

The main difficulty in modeling heat conduction in heterogeneous 
media is that thermophysical properties vary across the domain, either 
abruptly, in the case of actual material transitions, or continuously but 
steeply, such as in functionally graded materials (FGMs). While classical 
analytical approaches fail to provide exact solutions to this class of pro-
blems in light of the arbitrarily variable equation coefficients, purely nu-
merical methods might also require very refined meshes at materials 
transitions and interfaces. Different variants of semi-analytical or im-
proved numerical methods have been proposed in the literature for tran-
sient or steady heat conduction in heterogeneous media, in different ap-
plication contexts [5–34]. A few hybrid numerical-analytical approaches 
attempt to benefit from advantages of both treatments, by carrying along 
analytical steps up to a certain point, and recurring to numerical methods 
once the analytical advancement is impeded. Here, special attention is 
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given to a fairly general integral transforms solution for heat conduction in 
heterogeneous media proposed by Naveira-Cotta et al. [12], with the 
heterogeneities being represented by arbitrarily variable space coeffi-
cients, including thermophysical properties and source terms, and applied 
to typical one-dimensional transient formulations. This analytical ap-
proach was then employed in the direct and inverse analysis of a number 
of heat conduction problems, including the previously mentioned situa-
tions of FGMs, composites with abrupt variations of thermophysical 
properties or randomly distributed two-phase dispersed systems [14–17]. 
This analytical solution requires the solution of the associated Sturm- 
Liouville problem with space variable coefficients, when an analytical 
solution is not readily available. However, through the Generalized In-
tegral Transform Technique (GITT) [35–45], a hybrid numerical-analytical 
approach can be implemented to both handle a nonlinear problem for-
mulation and transform the differential eigenvalue problem into an alge-
braic matrix eigenvalue problem. Such developments also stimulated the 
proposition of a single domain reformulation strategy, originally advanced 
in the context of conjugated heat transfer problems [46–51]. It consists of 
rewriting a multiregion problem into a single region with space variable 
thermophysical properties and source terms, and is particularly convenient 
for handling heterogeneous media problems with multiple regions and 
different materials. Also, fairly recently, a convergence acceleration 
scheme has been developed and applied to eigenvalue problems [52], 
which allows for the treatment of multiscale space variations, due to either 
abrupt variation of thermophysical properties or to multiple regions with 
markedly different geometrical sizes. 

The present work further advances the integral transforms solution of 
heat transfer in heterogeneous media by implementing a symbolic-nu-
merical computational algorithm for the analysis of transient three-di-
mensional heat conduction. The aim is to demonstrate the generality of 
this hybrid approach and the robustness and effectiveness of the asso-
ciated algorithm in handling different classes of problems in terms of 
heterogeneities, under more involved unsteady multidimensional for-
mulations and complex geometrical configurations. The Sturm-Liouville 
problem with arbitrarily space variable coefficients is solved by con-
sidering a fairly simple auxiliary eigenvalue problem with constant 
coefficients. Numerical results are here reported for three test cases. The 
first test case is associated with FGM (Functionally Graded Material) 
material which is here assumed to have its thermophysical properties 
represented by a three-dimensional spatially variable exponential func-
tional behavior. The second test case is related to a heat conduction 
problem involving abrupt variations of thermophysical properties, as an 
illustration of a composite material with a substrate and different in-
clusions with spherical and cylindrical geometries, considered as the 
dispersed phase within the matrix. The last test case involves heat con-
duction in a complex physical configuration representative of an IGBT 
(Insulated Gate Bipolar Transistor) module [13,24,25], the most used 
static switches in power electronics applications, comprising multi-scale 
and multi-material arrangements. For each test case, a thorough con-
vergence analysis is presented, so as to illustrate the integral transforms 
hybrid solution computational performance. 

2. Problem formulation and solution methodology 

The computational algorithm was built on the symbolic-numerical 
Mathematica platform [53], based on the following transient three-di-
mensional heat conduction formulation with space variable coefficients 
and linear or nonlinear source term: 

= +
< < < < < < >

w x y z T x y z t
t

k x y z T x y z t d x y z T x y z t g x y z t T
x x x y y y z z z t

( , , ) ( , , , )

. [ ( , , ) ( , , , )] ( , , ) ( , , , ) ( , , , , ),
, , , 00 1 0 1 0 1

(1.a) 

with boundary conditions. 

+

= =
< < < < >

+

=
T x y z t k x y z T x y z t

x

l
y y y z z z t

( , , , ) ( 1) ( , , ) ( , , , )

0, 0, 1,
, , 0

x l l
l

x l l
x x

,
1

,

0 1 0 1

l

(1.b,c)  

+

= =
< < < < >

+

=
T x y z t k x y z T x y z t

y

l
x x x z z z t

( , , , ) ( 1) ( , , )
( , , , )

0, 0, 1,
, , 0

y l l
l

y l l
y y

,
1

,

0 1 0 1

l

(1.d,e)  

+

= =
< < < < >

+

=
T x y z t k x y z T x y z t

z

l
x x x y y y t

( , , , ) ( 1) ( , , ) ( , , , )

0, 0, 1,
, , 0

z l l
l

z l l
z z

,
1

,

0 1 0 1

l

(1.f,g) 

and initial condition 
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The above formulation reflects that a filtering solution, either ex-
plicit or implicit, has already been applied so as to make the boundary 
conditions homogeneous in all the spatial coordinates. Also, it is suffi-
ciently general to incorporate nonlinearities in the equation source 
terms, which can be originated from the source term itself or from 
nonlinear operators [35–43]. Following the formalism in the general-
ized integral transform technique (GITT), the integral transform pair is 
proposed as: 
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where the normalized eigenfunction and the normalization integral are 
given by. 

= =
= = =

x y z
x y z

N
N w x y z x y z dxdydz( , , )

( , , )
; ( , , ) ( , , )i

i

i
i

z z

z

y y

y

x x

x

i
2

0

1

0

1

0

1

(3.a, b)  

The eigenfunctions ψi(x,y,z) and the corresponding eigenvalues μi 

can be evaluated from the following three-dimensional Sturm-Liouville 
problem: 
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The GITT can also be employed to solve the eigenvalue problem 
defined by Eqs. (4.a-g), based on a simpler auxiliary eigenvalue pro-
blem [37,40,44,45]. The simplest possible choice of auxiliary problem 
with constant coefficients has been here adopted, as will be seen in the 
examples to follow. The integral transformation of Eqs. (1.a-h) leads to 
the following transformed system: 
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where the transformed source term is given by 

=
= = =

g t T t g x y z t T x y z dxdydz( , ( )) ( , , , , ) ( , , )i j
z z

z

y y

y

x x

x

i
0

1

0

1

0

1

(5.c)  

The truncated nonlinear system (5) can be numerically solved for 
the transformed potentials employing the routine NDSolve from the 
Mathematica platform [53], with automatic control of absolute and 
relative errors, and the inverse formulae Eq. (2.b) is then recalled to 
analytically reconstruct the temperature field with respect to the space 
coordinates. For a linear source term, the temperature field can be 
obtained fully analytically by solving the decoupled system (5) and 
employing the inverse formulae Eq. (2.b), to yield: 
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An important part of the computational procedure is associated with 
the determination of the eigenvalues, μi, and corresponding three-di-
mensional eigenfunctions, ψi(x) = ψi(x,y,z), from the solution of the 
eigenvalue problem, Eqs. (4). In the proposed approach, all the in-
formation on the heterogeneity of the medium is accounted for by the 
eigenvalue problem through the space variable coefficients. One may 
briefly recall the solution procedure for eigenvalues problem through 
the GITT itself [37,40,44,45], rewriting problem (4) in the general form 
below: 
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The idea is to solve problem (7) also employing the integral trans-
form approach, but this time proposing an eigenfunction expansion for 
the unknown eigenfunctions themselves, ψi(x). Thus, a simpler auxiliary 
eigenvalue problem with known analytical solution needs to be defined, 
usually based on characteristic simplified functional forms of the space 
variable coefficients, which is given in general terms by: 
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where the coefficients, w k dx x x( ), ( ), ( ), are simpler coefficients, 
characteristic of the original ones, that allow for an analytical solution 
of the auxiliary problem, yielding the auxiliary eigenfunctions, Ωn(x), 
and corresponding eigenvalues, λn. Then, the integral transform pair for 
solving problem (7) is given as: 

= w dv Transformx x x( ) ( ) ( ) ,i n
V

i n,
(9.a)  

=
=

Inversex x( ) ( ) ,i
n

n i n
1

,
(9.b)  

The integral transformation of problem (7) is accomplished through 
the operator dvx( )(.)V n , resulting in an algebraic eigenvalue pro-
blem: 
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where δij is the Kronecker delta. 
The numerical solution of the algebraic eigenvalue problem (10) 

provides the eigenvalues and eigenvectors that permit the reconstruction 
of the original eigenfunction through the inversion formula (9.b). Again, 
symbolic computation is employed in the evaluation of the integral 
transformation coefficients in Eqs. (10.b, d) [53]. The analytical solution 
of the auxiliary eigenvalue problem, Eqs.(8), is in general achieved 
through separation of variables. The eigenfunction expansions for the 
original eigenvalue problem are then written as a reordered single 
summation comprising the contributions of the auxiliary eigenfunctions 
in each spatial direction. A reordering scheme needs to be adopted so as 
to reduce the order of the truncated algebraic system to a reasonable size, 
i.e., defining the truncated system that most closely represents the in-
finite one. The use of the squared eigenvalues criterium is the most 
frequently employed one, though other criteria can be invoked, such as 
the diagonal of the transformed coefficients matrix, according to the 
individual contribution in the final result [38–41,54]. Also, convergence 
acceleration techniques can be recalled for improved computational 
performance, whenever required [55]. It should be recalled that there are 
two convergence behaviors to be analyzed in each application, one re-
lated to the eigenvalue problem expansion, Eq. (9.b), where a truncation 
order NT will be considered, and for the temperature expansion, Eq. (6), 
for which the infinite series will be truncated at order MT in the results 
section. The analytic nature of the approach allows for the determination 
of pre-estimates of the required truncation orders for a certain desired 
accuracy level. For instance, in the case of the eigenvalue problem ex-
pansion, the diagonal form of system (10.a) can provide an approximate 
solution that serves this estimation purpose, while the linearized version 
of Eq. (5.a) leads to a convergence behavior estimate of the temperature 
expansion. In the results that follow, convergence shall be independently 
examined for the eigenvalue problem and temperature field expansions. 

3. Test cases 

3.1. Heat conduction in FGMs (functionally graded materials) 

The GITT approach is first demonstrated in the solution of transient 
three-dimensional heat conduction problems in heterogeneous media 
with continuously but markedly variable thermophysical properties, 
such as in the case of functionally graded materials (FGMs), leading to 
the solution of the corresponding three-dimensional Sturm-Liouville 
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problem with space variable coefficients. Thus, the first test case deals 
with heat conduction defined in a parallelepiped region with thermo-
physical properties steeply and simultaneously varying in all three di-
rections (x, y, and z), governed by Eqs. (1) in dimensionless form. The 
coefficients of Eqs. (1.a-h) and the boundary coefficients present in Eqs. 
(1)–(4) are given in the selected test case by: 

= = =
= =

+ + + +k x y z k e w x y z w e d x y z 0
f x y z g x y z t T 0
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where the required numerical coefficients are k0 = 1, w0 = 10, b = 1 
[12]. 

3.2. Heat conduction in a composite with spherical and cylindrical 
inclusions 

The second test case deals with heat conduction in a heterogeneous 
medium related to multiple non-contacting three-dimensional inclu-
sions within a matrix filler, where spherical and cylindrical structures 
are considered as dispersed elements of known physical properties. The 
physical model of the second test case is shown in Fig. 1. As can be 
observed, the central cylinder is rotated of 45° with respect to the 
vertical axis z. The thermophysical properties for the single domain 
formulation and the boundary coefficients are given by: 

=w x y z k x y z
w k

w k
( , , ), ( , , )

, ,
Cylinders and Spheres (dispersed phase)

, , Parallelepiped (continuum phase)

1 1

2 2

= = = = = =
= = = = = =

0, 1,
1, 0

x y z x y z

x y z x y z

,0 ,0 ,0 ,0 ,0 ,0

,1 ,1 ,1 ,1 ,1 ,1 (12.a-f)  

The dimensions of the parallelepiped (matrix phase) were chosen as: 
Lx = 0.2 m, Ly = 0.1 m and Lz = 0.05 m. Furthermore, the dimensions 
of the dispersed elements are presented in Tables 1 and 2. Table 3 
shows the thermophysical properties of the materials used in this test 
case. The parallelepiped matrix phase is composed of a copper‑alu-
minum alloy, while the cylindrical and spherical dispersed phases are of 

duralumin, which is a well-known light and strong aluminum alloy 
containing 3.5–4.5% of copper and small quantities of silicon, magne-
sium, and manganese, quite common in aircraft manufacturing. 

3.3. Heat conduction in IGBT (insulated gate bipolar transistor) module 

The third test case is related to heat transfer in a physical model of 
an IGBT (Insulated Gate Bipolar Transistor) module. The reliability of 
this semiconductor device is closely linked to the operating junction 
temperatures of the IGBT and the diode chips present in it. It can be 
noted that the IGBT module, in its actual design (Fig. 2), has a complex 
multi-scale and multi-material geometry. Fig. 2 presents an opened 
IGBT module disconnected from the plastic case to allow for the inside 
view. In the present methodological demonstration, a simpler geometry 
is considered (Fig. 3), maintaining the different materials with physical 
properties varying along the three coordinate directions, and analyzing 
the intrinsic transient behavior with the heat source in one of the layers, 
as shown in Fig. (3a–c). The properties of each material that compose 
the IGBT module simulated in the present work are shown in Table 4. 

All boundary conditions are of the third kind, thus the boundary 
condition coefficients were defined as: 

Fig. 1. Schematic representation of the composite medium for test case 2, consisting of dispersed elements formed by three spheres and four cylinders encapsulated 
by a parallelepiped matrix. 

Table 1 
Dimensions of the cylindrical inclusions.       

Cylinder Height (mm) Radius (mm) z-angle Position (x,y,z) mm  

1 30 8 45° (100,50,15) 
2 30 7 0 (85,75,25) 
3 40 10 0 (25,25,25) 
4 20 5 0 (150,25,25) 

Table 2 
Dimensions of the spherical inclusions.     

Sphere Radius (mm) Position (x,y,z) mm  

1 8 (150,75,25) 
2 8 (50,75,25) 
3 6 (110,25,25) 
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From the above coefficients, Eqs. (1) are rewritten, after application 
of a simple filter for the external ambient temperature, as: 
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3 is the source term located on the 

silicon layer, indicated by the red component 2 in Fig. 3a. 
It is worth mentioning that in cases 2 and 3 here analyzed it was 

assumed a perfect thermal contact among the subregions, although it is 

not a limitation of the approach. Any thermal interface resistance, can 
be included just by adding this information in the variable coefficients 
through a fictitious layer, as described in [49]. 

4. Results 

4.1. Heat conduction in FGM (functionally graded materials) 

This problem was solved in dimensionless form, with the dimen-
sions of the domain chosen as Lx = Ly = Lz = 1 and the values for the 
coefficients as k0 = 1, w0 = 10, b = 1. Fig. 4a,b illustrate the variation 
of these dimensionless thermophysical properties along the (x,y) do-
main for fixed z = 1. We note that a significantly large ratio of ap-
proximately 400 times is achieved between the values of the coeffi-
cients k(x,y,z) and w(x,y,z) in opposite boundaries. 

Table 5 illustrates the convergence behavior of the eigenvalues 
solved by GITT in this first test case. Each line shows a different ei-
genvalue order, while the columns refer to increasing truncation orders 
in the auxiliary eigenfunction expansions, Eq. (9.b). One can observe 
full convergence to all five significant digits shown, for truncation or-
ders of the eigenvalue problem (NT) up to 230 terms. 

As an additional illustration of the eigenvalues convergence, Fig. 5 
shows the estimated relative deviations on specific eigenvalues, with 
respect to the most precise eigenvalue evaluated, for increasing trun-
cation orders. For truncation orders (NT) less than 200 terms, the esti-
mated relative deviations on the selected eigenvalues were less than 
0.01%, indicating the excellent convergence attained in the solution of 
the eigenvalue problem with space variable coefficients. These relative 
deviations were calculated with respect to the highest truncation order 
shown in Table 5 above, NT = 230, according to: 

=
µ µ

µ
.100µ

n n

n

max

max (15) 

where μnmax
represents the eigenvalue computed with truncation order 

NT = 230, the largest truncation order here adopted, which approx-
imates the unavailable exact solution. 

Table 6 illustrates the temperature convergence analysis for dif-
ferent values of the coordinate x, and fixed values of the other in-
dependent variables, namely, y = 0.4, z = 0.4, and t = 0.2, where MT 

is the truncation order for the temperature expansion. One can observe 
that four significant digits are converged in all axial positions. Also, it 
can be verified the adherence to at least two significant digits when 
comparing the hybrid solution via GITT against the fully numerical 
solution obtained via the NDSolve routine of Mathematica 11.3 [53], in 
its default mode that considers an automatic error control of eight digits 
for the local absolute or relative errors allowed for in each step of the 
numerical solution, respectively, the AccuracyGoal and PrecisionGoal 
controllers [53]. The largest relative deviation in the evaluated tem-
perature values was 0.19%, as compared to the GITT solution with 190 
terms in the temperature expansion and 200 terms in the expansion for 
the eigenvalue problem. The comparison between the hybrid (GITT) 
and numerical (NDSolve) solutions is also shown in Fig. 6, where an 
excellent agreement is demonstrated to the graph scale, for two dif-
ferent times (t = 0.3 and t = 0.6), along the x coordinate. 

Table 3 
Thermophysical properties and initial conditions of the composite consisting of metallic dispersed elements formed by three spheres and four cylinders surrounded by 
a metal matrix.        

Component Materials Composition ( )k W
m K × ( )w 106 J

m3K
Initial Temp. (°C)  

Dispersed Duralumin 94–96% Al, 3–5% Cu trace Mg 164 2.32 50 
Matrix Copper‑aluminum alloy 95% Cu, 5% Al 83 3.55 50 

Fig. 2. Real IGBT module (Dual module Siemens BSM 50GB 120DN2), opened 
and disconnected from the plastic case [24]. 
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Fig. 3. Different views of the physical model adopted for test case 3 (dimensions in mm) [24]: (a) Cross section; (b) IGBT layers dimensions; (c) IGBT Si3N4 layer 
quotas; 

Table 4 
Properties of the various layers of the IGBT module [24].       

Component Material Density (kg/m3) Thermal conductivity (W/mK) Heat capacity (J/m3K)  

1 Silicon Nitride (Si3N4) 3250 40 710 
2 Silicon (Si) 2329 120 712 
3 Aluminum nitrate (AlN) 3259.8 170 740 
4 AlSiC9 3000 180 434    
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4.2. Heat conduction in a composite with spherical and cylindrical 
inclusions 

The physical model employed in this test case requires to evaluate 
integrations in each individual inclusion and in the overall matrix re-
gion so as to compute the required integral transformation coefficients. 
To perform an integration in a specific region, either numerical or 

analytical, the Mathematica platform performs a change of variables and 
remaps this region over a unit cube, which can be integrated with the 
method MultiDimensionalRule from the Mathematica system [53]. In 
order to use the numerical or analytical integration routines, it is then 
necessary to create a region through the command Region [53]. In this 
case, three distinct regions were created, the first one in the form of 
cylinders, the second in the form of spheres, and the third one related to 
the overall parallelepiped region. The coefficients of the algebraic 
matrix eigenvalue problem were determined by integrating analytically 
in the parallelepiped region, encompassing the spherical and cylindrical 
regions, and numerically in the spherical and cylindrical regions. After 
that, the subtraction of these results is performed, recalling the prop-
erties of each material. In this second test case, the solution obtained 
through GITT was critically compared with the purely numerical so-
lution obtained via the COMSOL Multiphysics 4.4 software [56]. In the 

Fig. 4. (a) Variation of the dimensionless thermal conductivity coefficient k 
(x,y,z) for the FGM example (test case 1) at z = 1. (b) Variation of the di-
mensionless thermal capacity coefficient w(x,y,z) for the FGM example (test 
case 1) at z = 1. 

Table 5 
Convergence analysis of the eigenvalues obtained through GITT for the FGM application (test case 1).          

μi NT = 50 NT = 80 NT = 110 NT = 140 NT = 170 NT = 200 NT = 230  

1 1.2390 1.2390 1.2389 1.2389 1.2389 1.2389 1.2389 
2 1.8810 1.8810 1.8809 1.8808 1.8808 1.8808 1.8808 
3 1.8816 1.8810 1.8809 1.8809 1.8808 1.8808 1.8808 
4 1.8816 1.8810 1.8809 1.8809 1.8808 1.8808 1.8808 
5 2.3549 2.3539 2.3539 2.3539 2.3537 2.3537 2.3537 
6 2.3549 2.3539 2.3539 2.3539 2.3537 2.3537 2.3537 
7 2.3549 2.3539 2.3539 2.3539 2.3537 2.3537 2.3537 
8 2.7378 2.7378 2.7369 2.7369 2.7369 2.7369 2.7367 
9 2.7378 2.7378 2.7369 2.7369 2.7369 2.7369 2.7369 
10 2.7378 2.7378 2.7369 2.7369 2.7369 2.7369 2.7369 
20 3.3933 3.3920 3.3913 3.3906 3.3906 3.3905 3.3905 
30 3.9601 3.9277 3.9275 3.9274 3.9265 3.9265 3.9265 
40 4.4319 4.4040 4.4025 4.4020 4.4020 4.4012 4.4011 

Fig. 5. Relative deviations of 1st, 10th, 20th, 30th, and 40th eigenvalues as-
sociated with the eigenvalue problem with space variable coefficients for the 
FGM application (test case 1) with respect to the best estimate with the largest 
truncation order, NT = 230. 

Table 6 
Temperature convergence along the dimensionless axial coordinate x, at 
y = 0.4, z = 0.4 and t = 0.2, using 200 terms in the eigenvalue problem 
expansion, for FGM application (test-case 1).       

T(x,0.4,0.4,0.2)  

MT 0.2 0.4 0.6 0.8 
10 0.8733 0.9645 1.0031 0.6456 
40 0.9899 0.9805 0.9226 0.6057 
70 0.9922 0.9916 0.9256 0.6116 
100 0.9926 0.9873 0.9246 0.6110 
130 0.9926 0.9879 0.9246 0.6111 
160 0.9925 0.9879 0.9246 0.6110 
190 0.9925 0.9879 0.9246 0.6110 
Numerical (NDSolve) [53] 0.9903 0.9856 0.9242 0.6108 
Deviation (%) 0.19 0.18 0.035 0.0084 
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COMSOL numerical simulations, the relative and absolute tolerances 
were set to the values of 10−3 and 10−4, respectively. Moreover, the 
mesh in COMSOL was built with the automatic mesh control, informing 
only the maximum element size of the generated mesh. Table 7 sum-
marizes the tested meshes maximum sizes and the number of elements 
utilized in each numerical simulation. 

Fig. 7 shows the selected testing positions within the domain re-
presented by the red line along x, at y = 75 mm, z = 25 mm, that shall 
base the comparisons that follow. Fig. 8 illustrates the graphical con-
vergence of the numerical solution [56], along the red line of Fig. 7, 
employing different values of the maximum mesh size, from 11 to 
30 mm. 

Fig. 9 illustrates the finite element mesh with a maximum element 
size of 30 mm used in the present simulations using the COMSOL 
platform [56]. 

Table 8 illustrates the convergence analysis of the eigenvalue pro-
blem solved by GITT for the composite example (test case 2). One can 

notice the convergence to four significant digits for the selected ei-
genvalues at a truncation order of at most NT = 320. Fig. 10 shows 
another illustration of the eigenvalues convergence rates in the com-
posite medium example, through the decrease on the relative deviations 
of the eigenvalues for increasing truncation orders in the auxiliary ei-
genfunction expansions. For truncation orders (NT) less than 260 terms, 
the relative deviations were already less than 0.05%, indicating the 
excellent convergence rates for the eigenvalue problem. These relative 
deviations were calculated with respect to the largest truncation order 
of the expansions, that is, for NT = 320, according to Eq. (15). Table 9 
presents the convergence of the temperature field for different values of 
x, at y = 75 mm, z = 25 mm, and t = 5 s, where MT is the truncation 
order of the temperature expansions. One can notice three fully con-
verged significant digits in all axial positions presented. The largest 
relative deviation with respect to the COMSOL simulation, in all the 
evaluated positions, was 1.44% using 260 terms in the expansion for 
the eigenvalue problem. The excellent agreement between the hybrid 
(GITT) and numerical (COMSOL) solutions can also be visualized to the 
graphical scale in Fig. 11, along the coordinate x, at y = 75 mm, 
z = 25 mm, and for times t = 5 s and t = 10 s. The GITT solution here 
employed 260 terms for the eigenvalue problem and 220 terms for the 
temperature expansion. 

4.3. Heat conduction in IGBT (insulated gate bipolar transistor) module 

Th IGBT device is basically a power semiconductor device primarily 
used as an electronic switch, which combines high current density with 
fast switching. The current flow in these devices induces fast tem-
perature increase inside the module by Joule effect and the temperature 
has to be controlled not to exceed a maximum pre-established value. 
Numerical simulation is then the engineering tool for thermal 

Fig. 6. Comparison between the GITT solution (using 200 terms in the eigen-
value problem and 70 terms in the temperature expansion) and the fully nu-
merical solution (NDSolve [53]), along the x coordinate, at y = 0.4, z = 0.4, for 
times t = 0.3 and t = 0.6, for FGM application (test-case 1). 

Table 7 
Maximum mesh element size and number of elements for composite medium 
example (test case 2) used in the numerical COMSOL solution [56].    

Maximum element size (mm) Total number of elements in the domain  

30 11,533 
20 20,584 
16 32,794 
11 51,956 

Fig. 7. Red line indicating the region of the domain along x, for y = 75 mm and 
z = 25 mm, employed in the comparisons for the composite example (test case 
2). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 8. Numerical solution [56] for different maximum mesh sizes, at the point 
y = 75 mm, z = 25 mm, and t = 5 s, for composite example (test case 2). 

Fig. 9. Final configuration of the mesh with maximum element size of 30 mm 
[56] for composite example (test case 2). 
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management design, with the maximum temperature value at the 
module being the criterium to establish the operating work range of the 
device. 

As in the previous case, four types of tetrahedral meshes were tested 
in the fully numerical solution analysis [56]. Table 10 shows the 
maximum size and number of elements in the computational domain 
for each run. 

Fig. 12 shows an example of the temperature profiles obtained 
through COMSOL [56] for the four mesh configurations shown in  
Table 10, with a source term g = 108 W/m3. Note that for maximum 
sizes of mesh elements less than 6.10 mm, the solution remains prac-
tically unchanged to the graph scale. It can be noticed that the region 
most directly affected by heat generation term requires a more refined 

Table 8 
Convergence analysis of the eigenvalues obtained through GITT for composite 
example (test case 2).        

μi NT = 80 NT = 140 NT = 200 NT = 260 NT = 320  

1 0.1784 0.1783 0.1782 0.1782 0.1782 
2 0.2083 0.2082 0.2082 0.2081 0.2081 
3 0.2595 0.2594 0.2593 0.2593 0.2593 
4 0.2824 0.2821 0.2820 0.2819 0.2819 
5 0.3013 0.3012 0.3011 0.3010 0.3010 
6 0.3218 0.3216 0.3215 0.3214 0.3214 
7 0.3379 0.3377 0.3376 0.3376 0.3375 
8 0.3875 0.3873 0.3871 0.3871 0.3870 
9 0.3905 0.3900 0.3898 0.3896 0.3896 
10 0.4198 0.4193 0.4190 0.4188 0.4187 
20 0.5194 0.5190 0.5187 0.5186 0.5185 
30 0.5874 0.5865 0.5859 0.5855 0.5853 
40 0.6425 0.6415 0.6411 0.6409 0.6407 

Fig. 10. Estimated relative deviations of the 1st, 10th, 20th, 30th, 40th and 
50th eigenvalues of the composite example (test case 2) eigenvalue problem 
with respect to the best estimate with the largest truncation order, NT = 320. 

Table 9 
Temperature convergence along the axial coordinate x, at y = 75 mm, 
z = 25 mm and t = 5 s, using 260 terms in the auxiliary eigenfunction ex-
pansion for the composite example (test case 2).         

T(x, 0.075, 0.025, 5)  

MT 0.03 0.06 0.09 0.12 0.15 0.18 
10 36.96 36.36 34.16 33.60 35.22 22.52 
40 41.15 40.32 39.83 40.79 40.05 32.60 
70 40.61 40.17 39.72 40.31 39.75 33.11 
100 40.35 39.87 39.44 39.97 39.48 32.77 
130 40.32 39.87 39.39 39.94 39.56 32.71 
160 40.28 39.83 39.38 39.92 39.54 32.65 
190 40.27 39.81 39.38 39.91 39.53 32.63 
220 40.27 39.80 39.37 39.91 39.52 32.62 
250 40.27 39.80 39.37 39.90 39.51 32.62 
Numerical [56] 40.47 39.90 38.81 39.98 38.88 32.75 
Deviation (%) 0.49 0.24 1.44 0.19 1.64 0.38 

Fig. 11. Comparison between the hybrid (GITT) and numerical (COMSOL [56]) 
solutions for composite example (test case 2), along the x coordinate, at 
y = 75 mm, z = 25 mm, and for times t = 5 s and t = 10 s. 

Table 10 
Maximum size and quantity of elements used in the numerical solution with 
COMSOL [56] for the domain of the IGBT module (test case 3).    

Maximum element size (mm) Total number of elements in the domain  

9.15 13,036 
6.10 33,159 
4.88 59,655 
3.35 90,224 

Fig. 12. Graphical convergence of the COMSOL numerical solution [56] for the 
temperature distribution along z, for the four mesh configurations in Table 10, 
with x = 16.5 mm, y = 12.5 mm and t = 5 s for the IGBT module (test case 3) 
with g = 108 W/m3. 

Fig. 13. Final arrangement of the mesh elements (maximum size of the element 
equal to 6.10 mm) for the COMSOL [56] numerical solution of the IGBT module 
(test case 3). 
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mesh for a more evident convergence to the graph scale. Fig. 13 illus-
trates the mesh elements distribution for the case when the maximum 
element size was 6.10 mm, while in this case the minimum size of the 
mesh elements was 1.1 mm. 

Table 11 illustrates the convergence behavior of the eigenvalue 
problem solved by GITT for the IGBT module (test case 3). Although 
one can notice convergence to four significant digits for most of the 
selected eigenvalues at a truncation order of at most NT = 1200, it can 
be observed that the higher order eigenvalues might require a few 
additional terms, being however fully converged to three digits within 
the present truncation orders. 

Fig. 14 shows the decrease on the relative deviations of the eigen-
values for increasing truncation orders in the auxiliary eigenfunction 
expansions. For truncation orders (NT) less than 1000 terms, the re-
lative deviations are already less than 1%. These deviations were cal-
culated with respect to the eigenvalues computed with the largest 
truncation order for the expansions, that is, for NT = 1200, according to 
Eq. (15). 

In order to report the convergence analysis of the GITT solution for 
the temperature field, three lines across the IGBT module were selected, 
as illustrated by the red lines in Fig. 15a–c, along the x and z co-
ordinates, respectively, indicating the positions where this convergence 
analysis is addressed. 

Fig. 16a, b show the temperature profiles varying along the x and z 
coordinates, respectively, for different truncation orders (MT) in the 
temperature expansion, now with a larger source term g = 109 W/m3, 
more representative of the actual application [24]. In Fig. 16a, it is 
observed a graphical convergence of the temperature solution for 
truncation orders (MT) of 400 terms or higher, while in Fig. 16b, a 
higher truncation order, close to 1000 terms, is needed to warrant 
graphic convergence in the temperature expansion. The presence of the 
source term in a small region of the domain is responsible for the slower 
convergence in comparison to the previous test cases, a typical behavior 

in eigenfunction expansions, which suggests the use of a convergence 
acceleration technique, such as a filtering scheme or an integral balance 
approach, for convergence improvement [55]. Here, it has been chosen 
not to employ any sort of convergence acceleration technique so as to 
observe the applicability of the plain and direct GITT algorithm in such 

Table 11 
Convergence analysis of the eigenvalues obtained through GITT for the IGBT module (test case 3).              

μi NT 

200 300 400 500 600 700 800 900 1000 1100 1200  

20 1.463 1.455 1.453 1.452 1.452 1.451 1.448 1.443 1.442 1.442 1.441 
40 2.034 2.008 2.002 1.999 1.998 1.998 1.995 1.994 1.989 1.989 1.988 
60 2.418 2.343 2.334 2.328 2.325 2.322 2.320 2.319 2.319 2.318 2.318 
80 2.872 2.651 2.611 2.605 2.603 2.602 2.601 2.601 2.601 2.601 2.601 
100 3.295 2.976 2.867 2.821 2.819 2.816 2.811 2.805 2.801 2.801 2.801 
120 4.150 3.364 3.139 3.096 3.079 3.074 3.066 3.065 3.065 3.063 3.063 
140 4.665 3.691 3.396 3.276 3.242 3.222 3.217 3.216 3.215 3.212 3.212 
160 5.310 4.200 3.648 3.502 3.422 3.394 3.380 3.369 3.362 3.359 3.358 
180 6.030 4.777 4.032 3.673 3.609 3.579 3.555 3.543 3.518 3.513 3.510 
200 6.866 5.409 4.429 4.005 3.793 3.713 3.686 3.681 3.669 3.667 3.663 

Fig. 14. Estimated relative deviations of the 2nd, 20th, 80th, 140th, and 200th 

eigenvalues of the IGBT module (test case 3) eigenvalue problem. 

Fig. 15. (a) Red line indicating the positions along x for y = 12.5 mm, 
z = 2 mm, where temperature distributions are analyzed for the IGBT module 
(test case 3). (b) Red line indicating the positions along x for y = 12.5 mm, 
z = 13 mm, where temperature distributions are analyzed for the IGBT module 
(test case 3). a–c. Red line indicating the positions along z for x = 16.5 mm, 
y = 12.5 mm, where temperature distributions are analyzed for the IGBT 
module (test case 3). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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complex heterogeneous configurations, even without any convergence 
enhancement measure. Nevertheless, convergence of the eigenfunction 
expansion is still warranted at this critical region for the device thermal 
design as can be noticed to the graph scale in Fig. 16b. 

Tables 12 and 13 illustrate the temperature convergence at different 
positions of the IGBT module along the x and z coordinates, respec-
tively, with source term g = 109 W/m3. It can be observed through  
Table 12 that at least three significant digits are converged at the po-
sitions evaluated along the x-coordinate, at y = 12.5 mm, z = 13 mm 
for time t = 5 s. For the positions shown in Table 13 along the z-co-
ordinate, at x = 16.5 mm, y = 12.5 mm at time t = 5 s, practically 
three significant digits are converged. Also, the relative deviations with 
respect to the fully numerical solution (maximum size of the element 

equal to 6.10 mm) was below 1.3% for Table 12 and below 1.66% for  
Table 13, confirming the excellent agreement between the numerical 
and hybrid approaches. 

Fig. 17a, b provide a comparison between the hybrid (GITT) and 
numerical (COMSOL) solutions, for temperature distributions along the 
x and z coordinates, respectively, according to the red lines in Fig. 15a, 
c. In both figures, the GITT solution was obtained with 1200 terms in 
the auxiliary eigenfunction expansion, with 500 and 1100 terms in the 
temperature expansion, respectively. The COMSOL simulation in both 
cases was obtained with a mesh element of a maximum size of 6.1 mm, 
with relative and absolute tolerances set to 10−3 and 10−4, respec-
tively. It can be seen from this comparison that the hybrid and nu-
merical solutions are quite adherent to the graph scale, confirming the 
excellent agreement between them, previously illustrated in Tables 12 
and 13. The only noticeable slight deviations between the two solutions 
are within the heat generation region, as observable from Fig. 17b. 

5. Conclusions 

Transient three-dimensional heat conduction in heterogeneous media 
was analyzed through the integral transform method (GITT), for three 
different situations characterized by both continuous but multi-scale or 
abrupt discontinuous variations of the diffusion equation space variable 
coefficients. First, the transient heat conduction problem in a FGM with 
thermophysical properties varying simultaneously in the x, y, and z di-
rections was analyzed, followed by an example dealing with a composite 
media formed by a matrix filler material and with inclusions composed 
by spheres and cylinders of different thermophysical properties. Finally, 
an application dealing with a power electronics IGBT module with in-
ternal heat generation was considered. The single domain reformulation 
strategy was employed, when required by the presence of subregions, to 
rewrite the physical properties as space variable coefficients within one 
single diffusion equation for the whole domain. In the first test case, the 
solution obtained through GITT is critically compared with the numerical 
solution obtained through the NDSolve routine of the Mathematica 
platform, which implements the Method of Lines for partial differential 
equations. The second and third test cases were solved both through 
GITT and the COMSOL Multiphysics 4.4 simulation platform, which 
adopts the finite element method. Recent updates of the symbolic com-
putation platform Mathematica have added interesting features that can 
be employed in more easily solving a wide range of convection-diffusion 
problems through hybrid numerical-analytical integral transforms. 
Among these new features, the integration over regions can be quite 
useful in dealing with heterogeneous media with different geometries of 
the sub-regions, as here demonstrated. For all test cases here im-
plemented, an excellent agreement between the hybrid and numerical 
solution methodologies was achieved. While the general theoretical 

Fig. 16. (a) Convergence analysis of the temperature profile obtained by GITT 
for y = 12.5 mm, z = 2 mm and t = 20 s for the IGBT module (test case 3), 
with g = 109 W/m3. (b) GITT graphical convergence analysis for the tem-
perature profile for x = 16.5 mm, y = 12.5 mm and t = 20 s for the IGBT 
module (test case 3), with g = 109 W/m3. 

Table 12 
Temperature convergence analysis via GITT along the x coordinate, for 
y = 12.5 mm, z = 13 mm, and t = 5 s for the IGBT module (test case 3).          

T(x,0.0125,0.013,5)  

MT 0 0.01 0.02 0.03 0.04 0.05 0.06 
100 30.77 37.03 39.80 30.24 26.83 26.05 25.56 
200 31.03 36.93 43.05 29.55 26.93 25.71 24.99 
300 30.88 35.82 43.17 30.06 27.26 26.10 25.49 
400 31.43 35.63 44.31 30.00 27.33 26.23 25.35 
500 31.46 35.30 45.40 29.63 27.63 26.00 25.48 
600 31.41 35.42 44.98 29.81 27.19 26.09 25.65 
700 31.38 35.54 45.07 29.84 27.20 26.09 25.55 
800 31.36 35.59 45.35 29.82 27.22 26.08 25.56 
900 31.42 35.60 45.61 29.83 27.04 26.31 25.58 
1000 31.33 35.48 45.78 29.84 27.09 26.32 25.60 
1100 31.31 35.49 45.80 29.79 27.10 26.32 25.59 
Numerical (COMSOL) [56] 30.91 35.72 46.18 29.89 27.27 26.24 25.71 
Deviation (%) 1.3 0.67 0.84 0.35 0.64 0.30 0.49    

Table 13 
Temperature convergence analysis via GITT along the z coordinate, for 
x = 16.5 mm, y = 12.5 mm, and t = 5 s for the IGBT module (test case 3).          

T(0.0165,0.0125,z,5)  

MT 0 0.003 0.006 0.009 0.012 0.015 0.018 
100 34.28 34.48 35.63 37.52 39.76 43.79 45.34 
200 33.56 33.82 35.69 38.93 42.80 47.60 42.11 
300 33.12 33.32 35.51 39.29 43.97 49.96 40.49 
400 33.27 33.43 35.45 39.79 45.29 50.37 41.01 
500 33.61 33.47 34.86 39.38 46.49 50.10 42.36 
600 33.38 33.56 34.54 39.18 48.42 51.73 42.73 
700 33.29 33.91 34.53 38.63 48.88 51.71 42.33 
800 33.98 34.00 34.74 38.42 49.07 51.62 42.10 
900 33.49 33.68 35.17 38.08 50.11 50.43 42.24 
1000 33.69 33.66 35.26 38.19 50.37 50.01 42.11 
1100 33.35 33.92 35.08 38.44 50.23 49.89 42.04 
Numerical (COMSOL) [56] 33.21 33.57 34.84 38.29 49.41 49.12 41.53 
Deviation (%) 0.42 1.02 0.69 0.39 1.66 1.57 1.21    
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background of the present approach has already been established in 
previous works, a systematic demonstration of its use in transient three- 
dimensional heat conduction in heterogeneous media, for three different 
classes of medium heterogeneities, deserved a more detailed presentation 
in terms of computational algorithm and convergence demonstration. 
The present hybrid numerical-analytical approach is particularly ad-
vantageous in intensive computational tasks, when numerous evalua-
tions of the original posed problem needs to be undertaken and accuracy 
is at a premium, such as in optimization, real time simulation, inverse 
problem analysis, and simulation under uncertainty. 
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