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Abstract. Multiplicative cascades have been used in turbulence to generate
fields with multifractal statistics and long-range correlations. Examples of con-
tinuous and causal stochastic processes which generate such a random field have
been carefully discussed in the literature. Here a causal lognormal stochastic
process is built to represent the dynamics of pseudo-dissipation in a Lagrangian
trajectory. It is introduced as the solution of a stochastic differential equation,
driven by a source of noise which has sudden jumps at periodic intervals, its
period being the dissipative time scale of the flow. This random field has scale
invariance for a continuum of scales, and displays discontinuous jumps in time,
with a smooth time evolution below the Kolmogorov scale. Its multifractal and
correlation properties are demonstrated numerically.
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1. Introduction

The first observations of intermittency in turbulence were reported quite a long time ago
[1] and were first addressed theoretically in the work of Kolmogorov and Obukhov [2, 3].
In these works, scale dependent observables were postulated as the relevant quantities
in the study of fluctuations in the turbulent inertial range. The theory also hypothesized
that the kinetic energy dissipation, a positive quantity, follows a lognormal probability
distribution. This observation is remarkably accurate, as reported in experiments and
numerical simulations [4, 5]. Furthermore, experimental measurements of the kinetic
energy dissipation revealed long-range power-law correlations [6, 7], another key fea-
ture of turbulent fields. Multifractal random fields have been a tool to describe and
understand turbulent fields with such statistical properties, but their derivation on a
first-principle basis is still an open problem.

The origin of the statistical distribution of the kinetic energy dissipation has been
connected to the Richardson energy cascade through several phenomenological models,
beginning with discrete cascade models [8—15]. These models describe the distribution
of energy dissipation across length scales in a turbulent field, from the large energy-
injection scale, down to the much smaller dissipation length scales. The energy transfer
process is inviscid, as proposed in the hypotheses of the Kolmogorov 1941 theory [15, 16],
and dissipation only happens at the smallest relevant scales, close to the Kolmogorov
length. At the largest scale, L, the amount of energy transferred per unit time to the
smaller scales is equal to the amount injected by the external force. This rate of energy
transference is called g;. The next smaller length scale considered is ¢; = L/, where
A > 1 is the scale ratio constant specified by each model. The energy injection rate is
broken down into a number of smaller shares at the smaller scale ¢, and this process
carries the energy dissipation cascade forward. Each share of the energy dissipation is
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often called an eddy, to highlight the geometric aspect of the energy cascade. If each
eddy is broken down into N smaller eddies, through each of the smaller eddies there is a
flow of energy of value Wyey/N. W, is a random variable, and the only requirements on
it are that it is positive and with a mean value of one. This demand on the variable W;
guarantees a statistically inviscid cascade, meaning that the total energy flux through
any length scale is always £, on average. Repeated multiple times until the energy reaches
the dissipation length, n = L/A\", this process generates an energy cascade, where n is
the total number of steps in it. Therefore, the energy dissipation rate through the scale
1 is a random variable, given by

Ep = W1W2...Wn€0. (].)

If the W, factors in this model are equally and independently distributed, the probability
distribution for the small-scale energy dissipation is well approximated by a lognormal
in the limit n — oo, as guaranteed by the central limit theorem.

This is a simple way to elicit the relevance of the lognormal distribution and its con-
nection to the energy cascade. Different discrete models rely on this basis, with varying
proposals for the way the energy is split at each step, and for the probability distribution
of the W; factors. Nevertheless, the central limit theorem does not apply in cases where
W; display large fluctuations or strong correlations. In these cases, deviations from the
lognormal distribution are significant and general concepts from large deviation theory
[17] should be applied instead of the central limit theorem, with the lognormal being
only a quadratic approximation to the general result. Exact results for correlated factors
can be found in some cases, as those indicated in reference [18]. Furthermore, lognormal
fluctuations cannot be the precisely correct distribution of the energy dissipation, as
discussed in references [15, 19], since the corresponding structure function exponents
violate Carleman’s criterion [20], a general requirement on the moments of a probability
distribution. These violations are only manifest for high order moments, though, and
the lognormal is still a valid approximation at low orders.

The cascade models described by equation (1) had the limitation of being discrete
and of possessing a special scale ratio between neighboring scales, customarily A = 2.
It was noticed early [21] that this special scale ratio should not be present, since tur-
bulent energy dissipation displays multifractal properties for any chosen scale. Instead,
a description in which arbitrary values of \ are valid and produces multifractal statis-
tics should be preferred and investigated, as pointed out by Mandelbrot in reference
[21]. Furthermore, the discrete models have been able to account for scale-locality of
the energy transfer process, but did not account for time and space correlations. In
other words, such fields had no causal structure and could not be connected to the
Navier—Stokes equations. These issues were addressed in several works [22-27] which
build sequential and multifractal stochastic processes.

This work describes a causal stochastic process driven by discrete and periodic
random jumps, which is used to model the dynamical and multifractal properties of
Lagrangian pseudo-dissipation. Discrete noise provides a model dynamics which is reg-
ular at scales below the Kolmogorov length scale, conforming to the Richardson cascade
view of turbulence. The dynamics we observe, on large scales, exhibits multifractal
statistics and long-range correlations similarly to models driven by continuous noise,
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demonstrating the possibility to apply discrete (shot) noise in effective models of tur-
bulence. Our main motivation here relies on the fact that the time evolution of local
Lagrangian observables is sensitive to the existence of spacetime localized perturbations
of the turbulent flow, such as vortex tubes. This can be particularly appreciated, for
instance, in the dynamics of spheroids in turbulent flows, which depends on small scale
properties of the velocity gradient tensor [28, 29]. Their tumbling is marked by regular
evolution disrupted by intense jumps, indicating that a modeling based in terms of shot
noise sources might explain their behavior. The main characteristics of a turbulent flow
which lead to the preferential alignment of these spheroids is still a problem under wide
investigation, with possible applications in industrial and natural flows.

It is compelling to note that the analytical advantages of the lognormal formulation
make it suitable for applications in several other fields where intermittent fluctuations
play a role, besides turbulence, such as in financial economics [30-32], cosmology [33] and
condensed matter systems [34, 35]. Furthermore, the construction of a causal equation
for a multifractal field driven by shot noise is far from trivial, requiring the use of a
general version of It6’s lemma, including the contributions from discontinuities [36, 37].
This lemma and its application to the random field in case are discussed in detail in the
following discussions.

Focusing on turbulence, it turns out, from experimental evidence [4, 5], that several
positive-definite observables like the kinetic energy dissipation, kinetic energy pseudo-
dissipation, enstrophy, and the absolute value of acceleration can be reasonably well
described by lognormal distributions, with a particularly good accuracy being achieved
for pseudo-dissipation. In the mentioned work, it is also remarked that the statistical
moments of dissipation and enstrophy seem to approach those of the lognormal distri-
butions as the Reynolds number increases. Yet, since the lognormal can only be a good
approximation, but not a complete solution, further are required to settle this issue.

This paper is organized as follows: in section 2, we discuss previous theoretical models
and results about the general statistics of positive-definite scalar quantities of interest
in turbulence. Next, in section 3, we address stochastic models applied to the evolu-
tion and statistics of Lagrangian pseudo-dissipation, including the statistical properties
known from the previous section, and a description of the non-Markovian shot noise
process which is the main object of this work. Then, in section 4, the numerical proce-
dure to obtain an ensemble of solutions of the proposed stochastic process is described,
followed by the results obtained from the simulations, presented in section 5. Concluding
remarks are detailed in section 6, along with possible extensions, further questions and
applications.

2. Statistics of turbulent energy dissipation and pseudo-dissipation

The first theoretical results in the statistical theory of turbulence [15, 16], established
the picture of the turbulent cascade on a mathematical ground. This early description
of Kolmogorov regards the mean behavior of the inertial range statistics of turbulent
velocity fields, but not its fluctuations. Later studies of turbulent fluctuations, leading
to the multifractal picture, revealed that the K41 velocity field is an exactly self-similar
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field of Hurst exponent 1/3, that is, a monofractal. This field is homogeneous in space,
in contrast to the complex and concentrated structures which form in isotropic flows,
revealed by direct numerical simulations and experiments [5, 38, 39].

Multifractal fields have been proposed as general models to the turbulent velocity
field in the inertial range, although it remains an open problem to fully characterize this
multifractal field and its statistical properties. For the purpose of modeling a positive-
definite scalar field, consider a generic d-dimensional multifractal random field €,, which
may depend on the spatial variable & and on time ¢, and with a dissipative length scale
7. The basic statistical properties of this random field are compatible with the features of
the discrete cascade models and with experimental and numerical realizations of several
observables in turbulence. The statistical moments ((g,)?) of this field can be calculated
as an ensemble average or as a self-average over a single time series, assuming ergodicity,
which has been numerically verified in turbulent fields [40, 41]. These moments satisfy
the relation

{(e)?) = Alg)n"" (2)

in the limit of n — 0 (equivalent to Re — 00). In this equation, A(q) is a ¢-dependent
constant and K(gq) is a characteristic function of the multifractal field, connected to how
structures at different scales spread across space. In particular, a lognormal distribution
for €, corresponds to K(q) = pg(q— 1)/2, where p is called the intermittency parameter,
which measures the intensity of the fluctuations of this field. In the case of Eulerian
three-dimensional turbulence, p = 0.2 [42—-44]. A monofractal field, in its turn, would
have K(q) = uq.

The variable €, is a bare field, since it is defined at the dissipative scale. The multi-
fractal hypothesis makes predictions for the behavior of coarse grainings of ¢, as well,
which are defined as local averages of the original field at the scale ' > n:

1
Va(n')

cy(@t) = / e e (3)

n

where B, (x) is a d-dimensional ball of radius 1’ and center z, with its d-dimensional
volume indicated by Vy(n'). In particular, the statistical moments of a coarse-grained
multifractal field obey the same statistical behavior as the bare field,

((e)?) = A'(q)™", (4)

at scales larger than the bare scale 7 and up to some critical moment ¢, beyond
which this scaling becomes linear [45, 46]. It is vital to know these properties for coarse-
grained fields for two main reasons. First, a coarse-grained field is all experimentalists
have access to. And second, the features of coarse-grained fields are a fundamental
ingredient in Kolmogorov’s refined similarity hypothesis, according to which the inertial
range statistical properties at scale ¢ depend only on /¢ itself and on the kinetic energy
dissipation coarse-grained at this scale, gy. Thus, the verification that a given set of data
does display multifractal statistics compels to the study of its coarse-grained properties.
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For the general field ¢,, given that v, =In ¢,, its autocorrelation function decays
logarithmically with the distance between the points,

2

In A

(1 (0)yy(7)) = C - I [, (5)
This property can be easily verified for the the discrete cascade models [47-49], in which
case 0> = Var[In W] and C = (InW)?n? 4+ o%n, where n is the depth of the cascade and
A the scale ratio of the model. The Fourier transform of this expression corresponds to
the ubiquitous 1/f power spectrum,

E, (k) ~ k™. (6)

This is a common feature of intermittent fields in general [50-52] and is also valid
for coarse-grained fields. The properties just presented, (2), (4), and (5) are the main
characteristics of a multifractal field.

The need for random fields with such properties has been a development of the work
of Kolmogorov and Obukhov [2]. To take fluctuations into account, it was postulated in
this work that the kinetic energy dissipation field follows a lognormal distribution with

Var[ln &) = —p In(¢/L) 4+ C, (7)

where L is the integral length scale, ¢ is the observation scale in the inertial range,
n < ¢ < L, and C is an arbitrary constant. The intermittency parameter u, the same as
in the expression for K{(¢), was historically introduced in this expression. Mandelbrot [21]
noticed that a random field built as the exponential of a Gaussian field, €, oc exp{,/uX},
would satisfy these properties. His construction was mathematically formalized in [53,
54], and the modern understanding of such random fields has led to explicit frameworks
in the Eulerian [55] and Lagrangian context [27], which approximate the known statistics
of turbulent fields. It was later realized [9] that the intermittency parameter is also
responsible for the power-law correlations of the kinetic energy dissipation, in the form

(en(r)ey(r + o)) o< (L/0)", (8)

where ¢ = |d7| and the parameter u is apparent as well. The cascade models were built
to explain these statistical features.

The specific random fields considered in this work, as well as [27, 49, 56] are one-
dimensional and depend only on time, since they correspond to some positive-definite
observable following a Lagrangian trajectory of the flow. The Lagrangian view is con-
nected to the space—time structure of the energy dissipation cascade, since eddies are
carried by the flow, their statistical distribution is somehow influenced by the transport
properties of the turbulent velocity field, consequently leading to the cascade process.
And Lagrangian observables such as velocity differences and velocity gradients have
been argued to display scaling and intermittent behavior, following a Lagrangian refined
similarity hypothesis, in an equivalent manner to the Eulerian framework. Lagrangian
velocity difference structure functions, for instance, are believed to scale as

((ui(7))") o< ((er)7)" (9)
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in the Lagrangian inertial range, 7, < 7 < T, between the dissipative time scale 7, and
the integral time scale 7. The coarse-grained Lagrangian kinetic energy dissipation, ¢;,
is defined in terms of its bare counterpart, ¢ , in analogy with equation (3):

1 t+7
e (t) = / dt'e,, (1'). (10)
TJt

Its average value (e;) is constant due to the stationarity of the turbulent flow. The
dissipative time scale is determined from dimensional analysis as the Lagrangian ana-
logue of the dissipative length scale, and is defined as 7, = n*e, 3 and the Lagrangian
integral time is defined in terms of the velocity two-point autocorrelation pp(7), as
T= [;" pr(7)dr. In the K41 framework, the scaling exponents of velocity difference
structure functions grow linearly, and the equivalent relation in the Lagrangian view
is that &, = n/2. This can be understood with the work of Borgas [57], which con-
nects Lagrangian and Eulerian self-similarity. equation (9) has been numerically verified
in [58-60], and it is notable that finite Reynolds effects are more pronounced in the
Lagrangian frame, making measurements even more difficult [61].

The discrete cascades display the same statistical properties as the small scale mul-
tifractal field proposed by Mandelbrot [21], yet for a special scale ratio. This was one of
the main critiques of Mandelbrot. Continuous multiplicative cascades have been investi-
gated since then, with the objective of building models with continuous scale invariance,
which the discrete models explicitly broke. The continuous model of Mandelbrot is a
direct extension of the discrete models, in which the energy dissipation at each scale is
a continuous product of random factors, with energy dissipation being only statistically
conserved along the cascade. That is a straightforward, albeit nonrigorous, translation
of equation (1) to the continuum. In the discrete case, the central limit theorem ensures
that the energy dissipation follows an essentially lognormal probability distribution, if
there are enough steps in the discrete cascade and its factors are independent. In the
continuous case this conclusion holds as well, this result was conjectured in [21] and
proven in [53], a work which gave solid mathematical foundations to the continuous cas-
cade approach and elicited its statistical properties. Since [53], this continuous stochastic
process with multifractal statistics is called Gaussian multiplicative chaos, in connec-
tion with the standard additive chaos (more commonly called the Wiener process) [62,
63]. Continuous cascade models have inspired a huge body of work to this day, both
in turbulence and in other areas of research such as quantitative finance [64], quantum
gravity in two dimensions [65] and random matrix theory [66].

Another critique of Mandelbrot on the discrete cascades was the absence of a
space—time causal structure. The only causal connection in these models is between
length scales, a relation which cannot be easily translated to a space—time distribu-
tion of turbulent structures or of energy dissipation. The pursuit of effective stochastic
models in turbulence dates back to references [67, 68], with models for the velocity and
velocity gradient, respectively. Sequential stochastic models for multifractal fields were
then proposed in [22, 23, 49].

In reference [49], analytical expressions for the statistical moments and two-point
correlation functions of a multifractal stochastic process are proved, in agreement with
the multifractal hypothesis and providing a continuous-in-scale extension of the discrete
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cascade models. This stochastic process, though, does not generate a stationary state
solution, an issue which was resolved in [27]. The stochastic process of reference [49] for
the evolution of the field egq is

des(t) = v/Fies(t) (\}

Bs(t) = 1/t | (t+1,— w) 32AW (u).

t+7, =T

AW (6) + 51~ Bu(o)a).
(1)

In this equation, T is the integral time scale, 7, the Kolmogorov dissipative time scale,
w the intermittency parameter (as defined by Kolmogorov, equation (7)) and W(¢) is
a standard Wiener process. The f4(¢) term illustrates the important role that non-
Markovian correlations perform in a multifractal time series and was introduced as an
analogue in time of the cascade happening in scale space, as described in reference
[49]. This contribution, driven by the same random noise W(t) as the main equation, is
responsible for the long-range correlation of eg(?).

Furthermore, equation (11) can be viewed as the exponential of a Gaussian process,
in the way first proposed by Mandelbrot for multifractal fields. With Ito’s lemma, the
underlying process is found to be

dXs(t) = \/fdvv(t) — As(bat (12)

where eg(t) = exp Xs(t). This perspective is a handy connection with the product of
random factors of equation (1), where the discrete product has been replaced by a
continuous sum over Gaussian random variables.

Nevertheless, equation (11) cannot be used to accurately describe turbulent fields
for it does not generate a stationary state. This point was addressed in reference
[27], in which the causal framework which evolves to multifractal stationary states
was introduced. It is applied to the description of the Lagrangian pseudo-dissipation,
©= Zi_jzl_’m(&uj)z, and Lagrangian velocity-gradients, and is explicitly given by the
following stochastic differential equation:

AXp(t) = {—%Xp(t) + gp(t)] dt + 1T A (b),
t ' (13)
Br(t) = —;/_ (t—s—lwf/gdw(s)’

where the pseudo-dissipation ¢p(t) is given by an exponential of the underlying Xp(t)
process, explicitly:

on(t) = % exp { viiXe(t) - BB [x3]} (14)

In this work, the statistical moments and autocorrelation of Xp(t) and yp(t) were shown
to follow multifractal laws, in the limit of 7, = 0 (corresponding to infinite Reynolds
number).

https://doi.org/10.1088/1742-5468 /ab9e65 8


https://doi.org/10.1088/1742-5468/ab9e65

Shot noise multifractal model for turbulent pseudo-dissipation

An extension of equations (11) and (13) and a connection to fractional Brown-
ian motion was made in [69], where it is shown that the non-Markovian contribution
(B) pertains to a family of noisy integrators indexed by the Hurst exponent H € [0, 1].
The exponent 3/2 corresponds to H = 0, the roughest instance, while positive H repre-
sents more regular stochastic fields, with an exponent 3/2 — H in the 8 term. The term
between parentheses in the equation for eg (equation (12)) can be viewed as generating
a fractional Brownian motion of Hurst exponent H = 0, as explained in reference [69].
The addition of linear damping in equation (13) is responsible for the change from a
fractional Brownian motion to a fractional Ornstein—Uhlenbeck process, producing a
stationary process for the pseudo-dissipation.

The model of equation (13) also leads to a successful stochastic velocity gradient
model [27] which extends the recent fluid deformation model [70] to high Reynolds
numbers. It provides a reasonable reproduction of the orientation statistics of rod-like
spheroid tracers in turbulent flows, but not disc-like objects, both described by Jeffery’s
equation [28, 71].

It is noted that this formulation based on the exponential of a Gaussian process is
essentially multifractal and focuses on lognormal statistics. The extension of X from
a normal to a stable distribution, which would bridge a connection with more general
stochastic models, was addressed in the discrete model of reference [56]. Some discrete
cascades generate simple fractals (monofractals) in the FEulerian context, such as the
random-f model [12], while in the formalism of equations (11) and (13), only the trivial
limit x4 — 0 would generate a static dissipation/pseudo-dissipation, which corresponds
to the eddy-filling interpretation of the K41 framework.

3. Stochastic models of Lagrangian pseudo-dissipation

An alternative formulation of multiplicative chaos was done in reference [56], where a
time-discretized causal multifractal process was introduced. In this work it was proven
that a process which is discrete in time may have a continuous scale ratio, along with the
statistical features of multifractality, in the limit of large integral time (corresponding
to infinite Reynolds number).

The stochastic process of [56], with a dissipative timescale 7, and a large timescale
T = Nr,, is described by

1 N-1

Xp(t) = — k+1)""a,, 15
(t) \/T_nl;( +1) (15)

where oy, are independent and identically distributed Gaussian random variables of zero
mean and standard deviation ,/7;. The time, unlike in the previous examples, is only
defined for integer t. This process also possesses long-term memory over the integral
time scale, in connection with the 8 term in equations (11) and (13). The multifractal
process corresponding to equation (15) is likewise given by its exponential,

¢o(t) = @y exp (viXp(t) — HE[X]]/2), (16)
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which has lognormal and long-range correlated statistics. Equation (15) reaches a
stationary state with the following multifractal properties:

(a) Its moments satisfy
. 7.\ —K(9)
Elpp] = q(%) : (17)

with K(q) = pg(qg—1)/2, conforming to the lognormal statistics, and C, is a factor
which can be exactly calculated.

(b) The coarse-grained moments of ¢, satisfy a similar relation with the same

exponents:
7\ —K(9)

E[(¢p)?] =~ cq<f> : (18)
where the coarse-grained field is defined as a moving average with a window of
T = mT,:

1t+m71

(¢p)-(t) = — > wn(k). (19)

k=t

Relation (18) is asymptotic, and is valid in the limit of T going to infinity, with
the ratio 7/T kept fixed. Furthermore, ¢ must be such that K(¢) < ¢— 1. The
existence of upper and lower bounds on ¢, was demonstrated in [56], while precise
values would have to be inspected numerically.

(c¢) The autocovariance of this process, in the same limit of 7" — oo, converges to
Covlgn(t), ep(t + 7)) = —p In(7/T). (20)

Having equations (17)—(20) in mind, we are going to construct a stochastic differ-
ential equation for a multifractal process which inherits features from the continuous
and discrete instances just described. This stochastic field takes into account the small
scales in a dynamic manner, such that it follows a smooth time evolution on scales below
the Kolmogorov time, but still shows roughness and multifractal behavior on timescales
much larger than that. This picture is inspired by the Kolmogorov phenomenology, in
which dissipation can be neglected in the inertial range, while it acts in smoothing out
the velocity field in the dissipative scale.

Furthermore, the refined similarity hypothesis of Kolmogorov [2, 15] states that,
in the limit of infinite Reynolds numbers, all the statistical properties at scale ¢ are
uniquely and universally determined by the scale itself and the mean energy dissipation
rate coarse-grained at this scale, £,. By this hypothesis, it is expected that a variety of
noise sources generate similar behavior, due to an independence of the inertial range
properties on the details of the dissipative dynamics. For this reason, several large scale
observables of the random field stirred by discrete noise should converge to the same
quantities as fields driven by Wiener noise.

The stochastic process we describe in this work is a model for Lagrangian pseudo-
dissipation forced by a discrete noise source with a long time memory. This stochastic

https://doi.org/10.1088/1742-5468 /ab9e65 10


https://doi.org/10.1088/1742-5468/ab9e65

Shot noise multifractal model for turbulent pseudo-dissipation

process evolves in continuous time, while being driven by a random force which is peri-
odic in time and only acts in discrete instants. A stationary state arises as solution of
this process and its statistical properties are investigated, in comparison with the prop-
erties of the multifractal random fields already described in the literature. Shot noise is
used with the aim of modeling quiescent regions of Lagrangian fields: it is observed that
correlated events of intense fluctuations are interspersed by regions of damped statistical
fluctuations. These intervals of rest can be clearly observed in time series of tumbling
spheroids following Lagrangian trajectories [28]. Studies of discrete noise (often called
shot noise) or a mixture of discrete and continuous noise (or jump-diffusion) have been
pursued in others areas of knowledge as well, such as financial economics [72-76], neu-
ronal systems [77-79], atomic physics [80-83], biomedicine [84] and image recognition
[85].

The presence of non-Markovian noise in equations (11), (13) and (15), is connected
to the observed long-range correlations of the pseudo-dissipation field. It is remarked
in reference [69] the importance that correlations between the external noise W(t) and
the drift contribution (¢) have in generating multifractal fields. Non-Markovian noise
is also a consequence of the effective nature of one-dimensional Lagrangian models:
the spatial degrees of freedom of Eulerian models are integrated out, and as a result
complex long-range memory effects arise in Lagrangian models. This is in consonance
with renormalization group studies of effective stochastic models: stochastic equations
defined at a microscopic length scale and driven by white noise, when coarse-grained,
display non-trivial memory effects in their new external noise term [86, 87].

Explicitly, we consider the stochastic process given by the stationary solution of the
following differential equation:

dX(t) = (—;X(t) + 5@)) dt + izaﬂs(t — 70)dt. (21)

M e<t

The first term on the RHS corresponds to a drift in a usual Langevin equation, and has
the same form as the drift term in equation (13). The first contribution in this term
is responsible for correlations of the X(¢) random field of characteristic time T, while
the second is in charge of the multifractal correlations in the solution, with a similar
role to the long-memory term present in equations (13) and (15). The second term in
equation (21) accounts for the discrete random jump contributions. These jumps occur
at periodic intervals of length 7, and have an intensity «;, which is a Gaussian random
variable of zero mean and standard deviation of ,/7,. Each value of ¢ corresponds to a
jump instant ¢7,, hence the sum is carried for all jump times prior to the observation
time t.

It is also important to observe the presence of the ¢~ in the first term which repre-
sents an instant infinitesimally preceding the current observation instant. In a stochastic
process with jumps, this kind of care is needed, because the current state of the system
(at t) depends on the continuous evolution up to time ¢~ and on the value of a jump
which may have happened exactly at the instant ¢, and therefore does not affect the
previous state of the system, only its future evolution. For this reason, the state X(¢~)
and a jump o, happening exactly at {7, = t are completely independent events. In the
traditional notation of point processes [36, 37|, continuous random fields are taken to
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be cadlag, a French acronym for continuous on the right and limit on the left. This
denomination means that jumps occur exactly at the instant t,, while the left-limit at
t,, is not at all influenced by the jump term. Then, for a discontinuous random field
f(t) with a random jump happening at t;, being cadlag is equivalent to

Um f(t) # f(t) and lmf(t) = f(t). (22)

The drift term in equation (21) contains a random contribution, 5(t), in correspon-
dence with the long-term memory random contributions in [27, 49, 69], thus characteriz-
ing this model as a version of the fractional Ornstein—Uhlenbeck process. The expression
for this term is

Blt) = 5> o (23)

o2 t=mt )2

where the o, are exactly the same as those already sampled randomly for equation (21).
The sum is also carried out over all jump times up to the time t.

The solution to this equation can be written explicitly in terms of a particular
realization of the random jumps:

t als—1)/T 1 6o
X(t)= . ﬁ;a@(s —1,0)ds +\/ﬁ[_o els—t)/T %:O@(S(S—TUE + T)ds,
(24)
where, after integrating over the delta functions, we obtain
elnt 0 (ryl—t—T)/T
(§ aé—T/T,,' (25)

- Y
t=T<r <t t—ml+m T+ [y

From this solution, several analytical properties of the stationary stochastic field can be
calculated and compared to the results of numerical simulations and to the results of
the continuous random field of [27].

Still, the solution in equation (25) has only Gaussian fluctuations. In analogy to what
is done in the discrete [56] and continuous settings [27, 49], the field with multifractal
correlations is, in fact,

p(t) = po exp{y/pX(t) — pE[X(t7)?]/2}, (26)

where the mean value of this process is defined as ¢y = 1/72 7./, following the phenomenol-
ogy of Kolmogorov [68]. The variance of the X(t) process, E[X?(¢)], can be calculated
from the analytical solution, equation (25):

E[XQ(t)] Z e2(m=t)/T . 7, Y
— T’] ner
t—T<m, (<t ¢t - 7},@ +7 T+ T 0< T, (<t
(7'7,/ t)/T—1

(27)

2
VT+T’7t Tz<:é<tv 7'7,@—{—7'7,
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thus it can be seen simply as a function of time.

Equation (26) also explains the choice of periodic discrete noise with period 7,
instead of the common choice of Poisson noise with an equal characteristic time, which
is often what is referred to as shot noise [88]. The variable z = exp \/uX, where X is a
sum of N Gaussian random variables, follows a lognormal probability distribution. In
the case of Poisson noise, the amplitudes of the jumps would be given by the normal
distribution as well, but the number of jumps would be random, with a mean N, and z
would not follow a lognormal distribution exactly. In the limit of N — oo, though, both
distributions coincide, by the central limit theorem.

Furthermore, it is a consequence of multifractal theory that fluctuations of the dissi-
pative scale exist, reaching below the Kolmogorov scale [19, 89-92], whereas the smallest
time scale in equation (21) is fixed at the Kolmogorov time, 7,. This model with discrete
jumps is effective at scales larger than the Kolmogorov one, but the smooth motion at
sub-Kolmogorov scales is still an interesting feature connected to the role of viscosity in
smoothing out fluctuations.

We performed, for the process described by the pair of equations (21) and (26),
numerical simulations to verify its statistical properties. The details of the numerical
procedure are described in the next section. We also remark that an equation for the
evolution of ¢(t) directly can be written with the use of Itd’s lemma for semimartingale
processes. This change of variables is useful to draw connections between the model
for the pseudo-dissipation and other possible observables, such as the velocity or the
velocity gradient. The details of this procedure in the context of a stochastic equation
with discontinuous jumps are described in appendix A.

4. Numerical procedure

Numerical solutions of the stochastic process described by equation (21) were calculated
to verify the claims of its multifractal properties. The results are compared to the
analytical and numerical results obtained in previous works, particularly [49, 56, 69].

The time evolution of equation (21) can be split in a deterministic contribution
from the drift term, (—X/7T+ /), and a jump term, proportional to a random jump
intensity ay. There are sophisticated algorithms to obtain the solutions of general jump-
diffusion equations, such as those illustrated in [93, 94], which provide a framework to
deal with complex time-dependence in the drift or diffusion coefficients, cases where the
solution cannot be obtained with a straightforward stochastic Euler algorithm. Instead,
the diffusion term in equation (21) does not display any time-dependence, and the ()
term has a long-range memory, requiring a simpler algorithm in its implementation.
With these considerations in mind, we have applied the Euler algorithm described in
93] for the simulation of the stochastic jump process of equation (21).

The jumping times are known in advance, since they are periodic, and given sim-
ply by (0,7,,27,,...). For each interval between two jumps, ((¢ —1)7,,¢7,), the drift
term is simulated with an Euler algorithm, which is used to calculate X (¢,). Then,
the jump term is given by a random sampling and used to determine X(#). To setup
the initial condition for the simulation, jump intensities a, are arbitrarily defined for
a few complete integral times in the interval [—T,0]. The random jump intensities in
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this past interval are sampled exactly like the intensities in the core of the simulation,
as Gaussian random variables of mean zero and standard deviation ,/7,. The choice
of X(0) =0 is made as well. Equation (23) depends on the whole time evolution of
the system, hence a truncation in the past evolution is required. A complete integral
time has been chosen since it provides accurate results in comparison with the theo-
retical means and standard deviations, as is detailed in the next section. Afterward,
we let the process evolve and reach a stationary state. The time necessary to reach
a statistically stationary state in every simulation run is optimized by this choice of
initial conditions, and is found to be less than two integral times for all simulations
performed.

The above algorithm is used to build a sample path for the stochastic process in
equation (21). We have run this procedure for sample paths of 30 integral times in total,
and 300 sample paths were drawn for each value of 7,. Thus, an ensemble containing
9 x 10° integral times is built for each 7,, providing the significant statistics used to
verify the multifractal properties of the stationary random field.

We used as parameters In(7,/ T) ranging from —1.0 to —6.0. The more negative values
correspond to more intermittency and higher Reynolds number. The time step for the
simulation was chosen to be 2 x 1077, and the Lagrangian intermittency parameter
used is p = 0.3, which was measured in Lagrangian trajectories from direct numerical
simulations in [95].

Once the X(¢) process is calculated with this algorithm, the pseudo-dissipation ()
is obtained as its exponential, from equation (26). It was verified that the mean and
standard deviation of X(#) follow the analytical results (equation (27)) within error
bars. This is particularly important for the evaluation of ¢, which depends on the
time periodic function E[X?(t)]. It is simpler and more precise to apply the analytical
expression for this function (equation (27)) than to store the previous integral times
and compute standard deviations on the fly. For our results, the first five integral times
were discarded, even though the observed times to reach a stationary state were always
smaller than this. These results are reported in the next section.

5. Numerical results

A sample trajectory of the shot noise multifractal process governed by equations (21)
and (26) is depicted in figure 1, along with its mean behavior. Trajectories for this
example were generated for In 7,/ T = —5.60, which corresponds to one of the highest
Reynolds numbers achieved in these simulations. For higher Reynolds numbers, even
larger ensembles would be needed to display the same agreement between the empir-
ical ensemble averages and theoretical predictions. This ensemble size is sufficient for
other statistical measures, though, such as probability distributions and correlations
functions, because averages taken over ensembles and time translated samples can be
performed.

In figure 2, the same detailed range as the one of the inset of figure 1 is shown,
which now contains the corresponding sample path of the X(¢) process, along with the
empirical ensemble and theoretical means. The individual jumps are noticeable: they are
equally likely to be positive or negative, and their intensity does not vary as vigorously
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Figure 1. An illustration of the shot noise stochastic process for the energy pseudo-
dissipation, ¢(t) (equation (A.9)), with multifractal properties. A sample path is
drawn (blue), from an ensemble of 300 paths, and shows strong and non-Gaussian
fluctuations, characterized by localized large positive bursts. The ensemble mean
(yellow) and the theoretical mean (black, dashed) are shown as well, and it can be
seen that the numerical results accurately reproduce the correct average. Another
noticeable feature in the ensemble trajectory is how fast the numerical solution
reaches the stationary state, starting from the initial condition ¢(0) =1 /Tg In
this picture, In (7,,/T) = —5.60. The inset shows a small stretch of the full time
evolution, expanded to show details of the stochastic process at small time scales,
where individual jumps can be seen. The inhomogeneity of the fluctuations can also
be noticed in this smaller excerpt.

as for the o(t) variable. The yellow curve is the ensemble average, and it is very close
to the theoretical value for the mean of X(t). The global character of this stochastic
process is not shown, but it resembles a standard Gaussian process, since the small time
scale and the periodicity of the jumps cannot be resolved if the observation window is
closer to the integral scale, T.

In the same figure, in the inset, the asymptotic behavior of the variance of X(t) is
shown. For the continuous field in [27], it was demonstrated that

]E[(XP)Z] ~ In (T) (28)

7—1]—>0 TT]

The equivalent relation for X(?) is verified in figure 2. A linear fit is depicted together
with the analytical curve, and the linear coefficient obtained is 0.993. It has also been
observed that this coefficient grows closer to 1.0, the expected value for the continuous
process, as the range of the fit is extended to more negative values of In (7,,/T). This is
an important property in the numerical verification that the shot noise driven process
indeed displays multifractal statistics.

If we consider an instant ¢ and all other instants which differ by a multiple of 7, from ¢,
these points follow the discrete process described in [56] for different initial conditions,
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Figure 2. The interval depicted and the data of this figure are the same as those
of the inset in figure 1. The time evolution of the stochastic Gaussian process X(t)
(equation (21)) is shown. The individual jumps can be seen at periodic intervals of
7y, and the fluctuations are much more regular, since X is a Gaussian process. The
colors represent the same data as in the previous figure (with In (7,/7T) = —5.60):
the same sample trajectory in blue, the ensemble average in yellow and the theoret-
ical mean in black, dashed. Again, the ensemble average is consistently close to the
theoretical value. In the inset, the variance of the process X(t) is shown, with its
dependence in In (7,/T). The variance is calculated analytically with equation (27)
and a clear asymptotic linear behavior is observed as 7, — 0. This linear behavior
is a necessary condition for the ¢(¢) field to display multifractal behavior. The gray
dashed line in the inset is a linear fit in the asymptotic region to verify the linear
scaling relation.

and its multifractal properties can be demonstrated analytically. In particular, it is
obtained that

B! (t)]i~ereny = 06 exp {E[X* (1)K (q)}, (29)

in which the subscript {t ~ ¢+ ¢, } for the expectation value means that, in addition to
the ensemble average, an average over all equivalent instants (separated by a multiple
of the dissipative scale 7,) is taken as well. From this relation, taking into account
equation (28), which has been verified numerically in figure 2, we obtain the multifractal
dependence of the statistical moments:

. ol T —K(q)
Ele" (D] sy = BOG(Z) (30)

where B(t) is a function of period 7,. Nevertheless, the inset of figure 2 displays the
time average E[X?2(t)], defined by

1

EX20)] = - / TELX(1) dr, (31)

Ty
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Figure 3. Comparison between low-order one-point statistical properties of the
numerical solutions of equation (21) and their exact values. It is a consistency
check on the results of the numerical calculations. The ensemble mean (a) and
the variance (b) are shown. Both the mean and the variance were calculated at
instants immediately before and after the jumps, and these instants are represented
respectively by 7,” and 7,7. Also, to make visualization more clear and the data easier
to distinguish, all of the data points are given in units of the respective theoretical
values after the jumps. Yellow symbols correspond to the numerical results, plotted
with error bars in both cases, and blue corresponds to theoretical results. The
values of In 7,/ T'range from —1.0 to —6.0 and display all of the numerical solutions
obtained.

reason for which there is no time dependence. Thus, the inset attests for the multifrac-
tal scaling of ¢, with expectation values taken over the ensemble and time translated
samples:

El¢’] = ¢4 (%) e (32)

Figure 3 is a consistency test of the numerical solution of equation (21), compared
with respective analytical results for the mean and variance of ¢(t) immediately before
and after the jumps. In this figure, the ensemble is larger than in the previous two figures:
all independent trajectories were considered, as well as all jumps in a single trajectory.
In this fashion, all points immediately before (after) a jump are equivalent in order to
calculate the mean and variance of ¢(t) before (after) jumps, in the same manner as
was explained in equation (29). The points in yellow correspond to numerical averages
while those in blue correspond to theoretical values, and it can be seen that, with
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Figure 4. Statistical moments of the ¢(t) stochastic process, where averages are
done over the ensemble and time translated samples. The numerical results cor-
respond to the blue points, which align into a different curve for each value of
In 7,/ T, these curves are indicated in blue, calculated with a quadratic fit. Notice
that all of the blue points include error bars. The values of In 7,/T in this figure
are (—3.0,—3.8,—4.6, —5.6), with darker colors corresponding to more negative val-
ues (higher Reynolds number). In orange, theoretical curves corresponding to each
of these values are displayed. These theoretical curves are quadratic, and follow
the blue points and the blue curves closely for most of the calculated moments.
These curves only deviate from each other for higher moments or higher Reynolds
numbers, both regions where a significantly higher statistical ensemble would be
needed.

little exceptions, the theoretical values are within the error bars of the corresponding
numerical data points. Those exceptions are expected to be corrected with a larger
statistical ensemble. The values of E[X (¢)] and E[X?(¢)] vary with time in a periodic
manner, and for this reason two special points in time were chosen for the analytical
tests: the ones before and after the jump instants.

The statistical moments E[¢?(t)] calculated from the ensemble and time translated
samples, are shown in figure 4 for several values of ¢ and of In 7, /7. This plot verifies
relation (32), in which all time dependence has been integrated. The numerical results,
in blue points, fall in different quadratic curves according to their value of In 7,/ 7, in
agreement with

Ele"(1)] = ¢§ exp {EXC@IK(0) } (33)
with E[X2(t)] calculated from equations (27) and (31). This value is used to trace
the orange theoretical curves in figure 4. The data points are well approximated by
parabolic fits (blue curves) which show reasonable agreement with the theoretical
expectations. Some deviation between the points and the curves are only noticeable
for higher Reynolds numbers (more negative values of In 7,/T), represented by the
darker curves, and for the higher moments. The blue curves in this figure were obtained
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Figure 5. Normalized PDFs of Ingp are shown for the following values of
In 7,/T:(-6.0,-5.0,—4.2,—-3.6, 2.8, —2.0), where darker colors correspond to
more negative values (higher Reynolds number). The curves fall accurately on the
continuous curves, which were obtained with a fit through a quadratic curve. This
means that the probability distribution of pseudo-dissipation is lognormal for all val-
ues of 7,,. All PDF's have been scaled to a standard Gaussian distribution (mean zero
and unit variance), and they have been arbitrarily displaced upwards to simplify
visualization. All points were obtained from the ensemble of numerical solutions of
equation (21), and averages over the ensembles and time translated samples have
been done.

with a fit over a quadratic function Kj(¢) = aq(¢— 1), and the agreement with the
points and the theoretical curves is remarkable, especially for low order moments.
This result is another evidence for the lognormal behavior of the jump stochastic
process.

Another form of visualizing the lognormal statistical distribution of the pseudo-
dissipation ¢ can be directly implemented from its probability distribution function.
They can be seen in figure 5 for several values of In 7,/ T. The blue points correspond
to numerically obtained PDFs, from the ensemble of numerical solutions, and the colors
follow the same convention as in the other figures, with darker colors representing more
negative values of In 7, / T. The mean and variance of the pseudo-dissipation have already
been verified against their analytical results in figure 3, hence only normalized PDF's
(zero mean and unit variance) are shown in figure 5. In this way, a direct comparison
between the PDFs and an exact lognormal distribution can be done. The continuous
curves are fits through quadratic functions, revealing that all of the curves fall closely
on the expected normal distribution.

Besides their lognormal behavior, another of the most relevant features of the dis-
sipation and pseudo-dissipation statistics is their long-range correlations, which the
multifractal hypothesis is able to reproduce [13, 96, 97]. The autocovariance of
the pseudo-dissipation field, Cov[lng(t),lngp(t+ 7)] has been calculated to verify the

https://doi.org/10.1088/1742-5468 /ab9e65 19


https://doi.org/10.1088/1742-5468/ab9e65

Shot noise multifractal model for turbulent pseudo-dissipation

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Cov[In @(t), In @(t + T)]

0.0

Figure 6. Numerical results for the autocovariance function of the pseudo-
dissipation. 7 is the separation between the points in this function. Colors range
from yellow to purple, increasing in this order from less to more negative values
of In 7,/ T, thus the upper curves, showing a wider scaling region, are those with
highest Reynolds numbers. The dashed line is the asymptotic relation for autoco-
variance in the continuous limit, where this function scales linearly with In 7/ 7. It
can be seen that as the Reynolds number grows, the region where a scaling can be
seen grows, each curve becomes more closely linear, closer to the theoretical result
for the continuous limit.

existence of long-range correlations. The autocovariance is calculated as
CovlX, Y] = E[(X — (X))(Y = (V))], (34)

and the respective numerical results can be observed in figure 6. In this figure, 7 is the
separation between two data points, where the range of interest lies in 7 > 7,. It can
be seen that correlations grow for more negative values of In 7, /7T, and as they grow,
a larger scaling region can be seen for intermediate values of In 7/T. This region is
analogous to the inertial range in three-dimensional Navier—Stokes turbulence. In the
scaling region, the autocovariance displays a dependence with In 7/ T which is very close
to linear, a relation which had been observed in reference [27]. This linear dependence
can be understood by rewriting the autocovariance of In ¢(t) as

Cov[ln ¢(t),In o(t+ 7)] = pE[X (1) X (t + 7)], (35)

where a linear dependence in p is observed. The second term, the autocorrelation of
X, is an extension of equation (28), and in the limit 7, — 0, it also displays a linear
dependence in In 7/ T, which leads to

Covlln p(t),In ot +7)]7 o~ In (%) (36)

The scaling region is a measure of the inertial range and is seen to grow with higher
Reynolds. Also, in the gray dashed line, the exact asymptotic relation for the continuous
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Figure 7. A sample trajectory of the fine-grained pseudo-dissipation field (in yel-
low) and its coarse-grained version, given by equation (37) with 7 = 7, (in blue).
In this figure, In 7,/ T'= —5.60. In (a), the entire time evolution can be seen, while
(b) focuses on an interval around the largest fluctuation. To reliably capture high
order moments, large ensembles are needed, since many intense fluctuations of the
order of the one shown in this figure are needed. It is clearly observed that the
coarse graining has a role in smoothing out intense fluctuations.

multifractal field, equation (36), is shown, and it can be observed that the stochastic
process with discrete jumps approaches the continuous limit as the intervals between
jumps become smaller.

These statistical properties were also investigated for time averaged fields, denoted
by ¢(t) and calculated as

1 t+7
o) =1 [ ey, 37)
T Jt

where 7 is the averaging scale under consideration. This observable, illustrated by a
sample trajectory in figure 7 with 7 = 7,, is inspired by the hypothesis of refined sim-
ilarity in the Lagrangian context as discussed in section 2. Figures are shown for the
statistical moments and autocovariance of the coarse grained data, while the PDF's
show no appreciable difference from their fine grained versions. In figure 8, the expo-
nents of the statistical moments of the coarse-grained pseudo-dissipation fields can be
seen to exhibit the same quadratic behavior as the fine-grained moments. The devi-
ations seen at higher order moments may be due to the linearization effect discussed
in [98, 99], and an investigation with larger ensembles is required to understand these
differences.

For the autocovariance, which is a two point statistical observable, the behavior
of the coarse-grained field is quite different from its fine-grained counterpart, yet still
compatible with the asymptotic description of the continuous field. In figure 9, the
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Figure 8. Statistical moments of the coarse-grained pseudo-dissipation field are
shown for different Reynolds numbers (In 7,/T = —6.0 being the highest). Each
color represents a different coarse-graining scale, from 7= 7, (lightest blue) to
T = b7, (darkest blue). At lower orders, the moments at all coarse-graining scales
collapse on the same quadratic curve, shown in black dashed curves, which cor-
respond to the fine-grained moments of figure 4. At higher order, the moments
deviate from the parabolic black curve, as expected for statistical moments of the
coarse-grained pseudo-dissipation fields.

autocovariance of the coarse-grained fields is seen, and the linear behavior observed in
figure 6 for the fine-grained covariance is revealed to be even more pronounced: the
inertial range is more clearly visible, and grows as In 7,/ T — —oo, and its slope closely
approaches the theoretical value in the continuous limit.

In order to investigate the convergence to the continuous limit, we have performed
a fit of the autocovariance in the inertial range to the asymptotic functional form, that
is, linear in In 7/ T, with a free parameter:

Cov[ln ¢(t),In @¢(t+7)] = —bu In 7/T. (38)
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Figure 9. Autocovariance of the coarse-grained field ¢(t), in this figure the local
averaging is done over a scale 7,/2. A clear scaling range, which is much more
linear, can be seen in all of the curves, becoming more pronounced as the Reynolds
number grows. Also, the slope of these linear curves is much closer to the theoretical
value for the continuous limit, which is shown exactly the same as in the previous
figure.
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Figure 10. Each point has been obtained from a numerical fit of the inertial range
of the autocovariance, according to equation (38). In this range, the asymptotic
scaling equation (38) is valid. Each color corresponds to a different coarse-graining
scale, where the values shown are 7 = (7,/3,7,/2, 7,), higher values are represented
in darker colors. An exponential fit, with equation (39), through these numerical
values was done to demonstrate the tendency of the data to approach the value
b = 1. This exponential fit is shown in the continuous curves. The gray dashed line
on the top corresponds to b = 1, indicating the high Reynolds number limit.
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The constant b is a measure of the rate of convergence to the asymptotic continu-
ous behavior, where b = 1. The evolution of this parameter as the dissipative scale 7,
changes can be seen in figure 10, where the points correspond to numerical fits over
the respective inertial ranges. Each color represents a different coarse-graining scale
T in equation (37), and as this scale grows, convergence to the continuous becomes
faster. This property was observed in the autocovariance, in figure 9, and is verified in
figure 10.

Further evidence of the accelerated convergence produced by coarse-graining was
obtained with a numerical fit of the curves in figure 10. These points slowly approach
the asymptotic continuous value, b = 1, and an exponential fit can make this argument
quantitative. The function

X(m) =1+a exp(f In 7,/T) (39)

approaches 1 as 7, — 0, and is represented in the figure in continuous curves. The
curves serve as a guide to the eye on the evolution of the slope b as the Reynolds
number grows, and furthermore show that for the higher values of 7, this convergence
is hastened. The exponential shape is only a plausible approximation to a curve which
asymptotically approaches a value, hence fluctuations around this curve can be seen in
the data. Furthermore, the inertial range is narrow for values of In 7,/ T closer to zero,
which make the fit more delicate in this region. It can also be observed from figure 10
that an increase of a few percent in the value of b (equation (38)) would require the
smallest 7, to be one or two orders of magnitude lower, corresponding to a significant
increase in computational effort.

6. Conclusion

The effort to add a causal structure to the random cascade models dates back to the
critiques of [21] to the discrete cascades. Several approaches have built causal stochastic
processes with multifractal statistics and long-range correlations in one dimension [22,
23, 27, 49, 56]. Such random fields cannot represent Eulerian observables due to their
reduced dimensionality, but they can be used to investigate the statistics of turbulence
on one-dimensional Lagrangian trajectories [27].

Positive-definite quantities such as dissipation, pseudo-dissipation and enstrophy
have been observed to display nearly lognormal probability distributions and long-range
correlations [4, 5], and such statistical properties can be understood under the multifrac-
tal formulation of turbulent flows, leading to a connection between the statistics and the
geometrical properties of the energy cascade. In this work, we have built a stationary
stochastic process for the pseudo-dissipation in Lagrangian trajectories, which is causal
and continuous in scale ratio, and built of discrete random jumps at regular intervals.

The pseudo-dissipation random field was verified to display multifractal properties,
which had already been verified for random fields driven by Wiener noise [27, 49],
and for random fields defined in discrete time [56]. The shot noise model for pseudo-
dissipation embodies lognormal fluctuations, seen in figure 4 and long-range correlations,
characterized by an asymptotic logarithmic decay of its autocovariance, figure 6. Despite
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the similarities, the present model displays regular and smooth behavior below the
Kolmogorov scale, unlike the models driven by continuous noise.

We observe that, while the jumps in this model are instantaneous and discontinuous
(as seen in figures 1 and 2), jumps are not supposed to happen so fast in a realistic
model of Lagrangian trajectories. As an effective model, the instantaneous jumps intend
to capture the intermittent behavior of the pseudo-dissipation at scales larger than 7,
and its regular behavior at smaller scales. Coarse-graining of the discontinuous pseudo-
dissipation field might be a meaningful procedure to generate more natural fields. Even
then, the procedure described here offers a skeleton to a more detailed approach to
intermittent fluctuations.

Distinguishing between alternative multifractal models for the pseudo-dissipation,
such as the one in this work and the continuous process in [27] would require detailed
measurements of high-order structure functions and of the covariance. Since the iner-
tial range statistics of turbulence is independent on the smallest dissipative scales, it
is natural to assume that large scale quantities get decoupled from small scale fluctu-
ations. Nonetheless, the coarse-grained autocovariance in figure 9 exhibits considerable
changes with respect to its fine-grained version. The investigation of this property in
other continuous stochastic fields and in numerical data from turbulent DNS and precise
experiments would produce relevant knowledge on the structure of the energy cascade
and its connection to the statistical properties of Lagrangian turbulence.

The understanding of Lagrangian fluctuations is key to the effective modeling of
transport properties, either of particles or fields, and to the understanding of the motion
of extended structures in turbulence, such as filaments, rods and surfaces. These dynam-
ics are heavily influenced by the localized intense bursts of energy dissipation, but still
poorly understood theoretically.

These localized events, in their turn, would certainly be affected by fluctuations of
the dissipative scale [19, 89-92], which is considered fixed at 7, in this model. More
accurate multifractal stochastic models would have to address the connection between
sub-Kolmogorov statistics in Lagrangian trajectories and the energy cascade, a connec-
tion which is fundamental for the correct statistics of coarse-grained observables, as
noticed in reference [92]. While being an essentially open modeling problem, an alter-
native and hopefully more realistic model could, in principle, be devised in terms of
smoother noise jumps where its bandwidth is correlated with fluctuations of the pseudo-
dissipation field, in order to account for the fluctuations of the dissipative scale and
corrections to the lognormal statistics as well.

Another extension of this approach is the understanding of the full spatio-temporal
structure of fluctuations in Eulerian turbulence in terms of a causal stochastic process.
This would provide a way to establish a connection between the Navier—Stokes equations
and the stochastic models for the energy cascade, a huge step in the understanding of
the Richardson cascade and the geometrical properties of turbulence, and on the origin
of its multifractal statistical features [100-103].

https://doi.org/10.1088/1742-5468 /ab9e65 25


https://doi.org/10.1088/1742-5468/ab9e65

Shot noise multifractal model for turbulent pseudo-dissipation

Acknowledgments

GBA thanks CNPq for financial support. LM thanks CNPq and Petrobras (COPPETEC
20459) for partial support. The authors thank R M Pereira, L Chevillard, F Ramos and
D Rodrigues for helpful discussions, and NIDF (Ntcleo Interdisciplinar de Dinamica de
Fluidos) for the use of its facilities and computational resources.

Appendix A. 1td’s lemma for pure jump processes

As was done in references [27, 49], a dynamical equation for the pseudo-dissipation
itself can be obtained from the dynamical equation for X(t), equation (21), and the
relation between the X and ¢ variables, equation (26). Consider for a moment the
general stochastic differential equation

AX(t) = F(t, X(t))dt+ > G(t, X(t))d(t — te)aydt, (A.1)

0<t <t

where F' and G are arbitrary functions of ¢ and X(t), respectively called the drift and
jump terms. This equation does not have any continuous noise term (proportional to
a Wiener measure d W(t)), because the stochastic differential equation proposed in this
work does not possess the Wiener term either. In addition, an appropriate set of initial
conditions for X(t) is provided. The new variable, Y, is obtained from the original
variable through an arbitrary continuous function f, as

Y(t) = f(t, X(¢)). (A.2)

A stochastic differential equation for Y{(¢) is obtained with Itd’s lemma for semimartin-
gales, which is the appropriate expression for a change of variables in a stochastic process,
equivalent to the chain rule in standard calculus [36, 37]. Semimartingales are general-
izations of local martingales: while the latter are represented by continuous stochastic
processes, such as the standard Brownian motion, the former may display discontinuous
jumps, which are central to the current discussion. The solution X(#) of equation (A.1)
is thus a semimartingale.
In its semimartingale formulation, It0’s lemma is expressed as

Y(t)=Y(0)+ /Ot Of(s7,X(s7))/0sds

[ £ XX+ [ 7 X DA X
£ 0 (Flee X (00) — £lt7, X (7)) = F (X)X (1) = X (57)).

0<ty<t
(A.3)

The integration interval, from 0 to ¢, includes several jump instants, denoted by %
with an integer index ¢ differentiating each jump. Because of the discontinuities, it is
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important to prescribe that the X(¢) process is cadlag, which means that terms of the
form X(s7) should be calculated as the limit

X(s7) = limX(t). (A4)
t—s—
If sis a jump instant, this limit does not include the contribution from the discontinuous
jump, which is only accounted for in X(s). Whereas if s is not a jump instant, X(s) and
f(s, X(s)) are continuous at this point. The first four terms in the RHS of equation (A.3)
are exactly equal to those in It6’s lemma for continuous processes, with the only differ-
ence that the discontinuous jumps require a distinction between left and right limits. As
in the traditional 1t6’s lemma, the derivatives f'(¢, X(¢)) and f”(t, X(t)) are taken with
respect to X(?).
The continuous quadratic variation [ X, X]°(t) of the Wiener process is simply ¢, con-
cluding the identification with the lemma for local martingales. In general, the quadratic
variation is defined by

. 2

[X’ X]t - gg(l)k:l (th - th,1> ’ (A'5)
where time has been partitioned into n intervals of size dt, = t, — t;,_; and 4t is
the maximum size among these partitions [36, 37]. The continuous quadratic vari-
ation is the continuous part of equation (A.5). If the stochastic force is purely
jump-discontinuous, as is the case in equation (21), its continuous quadratic vari-
ation is zero. Also, using equation (A.l), we notice that the discontinuity X (¢;) —
X(t,) which appears in equation (A.3) is equal to G(t,,X(t,))coy. Thus, replacing
equation (A.l) in equation (A.3), one of the terms in f'(s, X(s))dX(s) is canceled
by f'(t;, X(t,))(X(t)) — X(t,)). With this, we obtain [té’s lemma for pure jump
PrOCesSes:

Y=o+ | ‘;—f(s—)dﬁ/o FX(s)F(s™, X(s7))ds

+ Z (f (e, X (t0)) — f(t7, X(t7))) - (A.6)

¢
In differential notation, this is equivalent to
dY (t) = of/otdt + f/(X (7)) F(t—, X (¢t7))dt
+ > (flte X (1) = f(t, X (1)) 6(t — t) dt. (A.7)
¢

At first glance, this definition may look circular, because the variable Y and the
variable X appear simultaneously. In fact, only the initial condition for X(¢) is needed,
which is easily converted to an initial condition for Y(¢). All other appearances of X(t)

in equation (A.7) are causal, referring to values of Y(t) already calculated, thus X(t) =
fH(t, Y(t). The term f(t,, X(%)), when # is a jump instant, needs the value of X at
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the current instant, which is simply the left-limit at ¢, with the random contribution
added:

X(te) = X(t,)+G(t,, X(t,))a. (A.8)

Thus, equation (A.7) is an entirely self-consistent way to determine the time evolution
of the random field Y{t).

In the specific model considered in this work, X(#) is a stochastic process with
Gaussian fluctuations and its exponential is the variable of interest, with lognormal fluc-
tuations and long-range correlations. Through It6’s lemma (equation (A.6)), we obtain
a stochastic differential equation for the pseudo-dissipation field, ¢(t) = f(X(t)), defined
in equation (26).

The equation we obtain through this procedure for the pseudo-dissipation field is

ptt) = () (= 2] = LB+ vas - 5O 2 ) ar

+ ) (flelm) = fo(my7))) 6t — 7yt) dt. (A.9)

For this process to be completely well defined, we only need an initial condition for the
field ¢ (or equivalently for X). Since this stochastic process has a long-term memory,
it is necessary to provide X(s) for s € |—T, 0], corresponding to the past time-evolution
of X. After a few integral times, the influence of the initial condition vanishes, and the
process reaches a stationary state.
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