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Abstract
In this work, it is proposed the direct and inverse analyses of the forced convection of an incompressible gas flow within 
rectangular channels in the range of the slip flow regime by taking into account the wall conjugation and the axial conduc-
tion effects. The Generalized Integral Transform Technique (GITT) combined with the single-domain reformulation strategy 
is employed in the direct problem solution of the three-dimensional steady forced convection formulation. A non-classical 
eigenvalue problem that automatically accounts for the longitudinal diffusion operator is here proposed. The Bayesian 
framework implemented with the maximum a posteriori objective function is used in the formulation of the inverse problem, 
whose main objective is to estimate the temperature jump coefficient, the velocity slip coefficient, and the Biot number, using 
only external temperature measurements, as obtained, for instance, with an infrared measurement system. A comprehensive 
numerical investigation of possible experimental setups is performed in order to verify the influence of the Biot number, 
wall thickness, and Knudsen number on the precision of the unknown parameters estimation.

Keywords  Conjugated problem · Slip flow · Temperature jump · Generalized Integral Transform Technique · Single-
domain formulation · Internal convection · Bayesian inference

List of symbols
Bi	� Biot number
CIi	� Relative measure of the confidence interval of 

the estimated value P̂i

Dh	� Hydraulic diameter
he	� Convective heat transfer coefficient
�	� Jacobian matrix

J 	� Scaled sensitivity coefficients
k	� Thermal conductivity
K	� Dimensionless thermal conductivity
Kn	� Knudsen number
Lx	� Distance from the channel centerline to the 

external face of the channel wall (x direction)
Ly	� Distance from the channel centerline to the 

external face of the channel wall (y direction)
M	� Truncation order of the eigenfunction expan-

sion (eigenvalue problem solution)
N	� Truncation order of the temperature eigenfunc-

tion expansion
n	� Norm of the eigenfunction �(X, Y)

Np	� Dimension of the vector �
Nd	� Dimension of the vector �
�	� Outward-drawn normal vector
�	� Vector of parameters
�exact	� Vector with the exact values of the sought 

parameters
Pe	� Péclet number
Pr	� Prandtl number
Re	� Reynolds number
S	� Objective function
T	� Temperature
T∞	� Ambient temperature
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u	� Fully developed flow velocity
U	� Dimensionless flow velocity
�	� Covariance matrix of the prior information
�	� Covariance matrix of the experimental errors
y	� Transversal coordinate
X, Y	� Dimensionless transversal coordinates
�	� Vector of temperature measurements
z	� Longitudinal coordinate
Z	� Dimensionless longitudinal coordinate
Zf 	� Dimensionless channel length

Greek symbols
�f 	� Thermal diffusivity of the fluid
�m	� Tangential momentum accommodation 

coefficient
�t	� Thermal accommodation coefficient
�	� General temperature jump coefficient in the 3D 

formulation
�t	� Wall temperature jump coefficient
�v	� Wall velocity slip coefficient
�fic	� Dimensionless thickness of the fictitious layer
�	� Specific heat ratio
�	� Molecular mean free path
Ω	� Auxiliary eigenfunctions
�	� Eigenvalue corresponding to the eigenfunction 

Ω

�	� Temperature eigenfunctions
�	� Eigenvalue corresponding to the eigenfunction 

�

�	� Mean vector of the prior density
�	� Probability density function
�e	� Standard deviation of the experimental errors
�Pi

	� Standard deviation of the estimated parameter 
Pi

�	� Dimensionless temperature
�	� Kinematic viscosity

Subscripts and superscripts
ac	� Quantity corresponding to the axial conduction 

term
av	� Average
f	� Fluid flow region
fic	� Quantity corresponding to the fictitious layer
in	� Quantity corresponding to the entrance of the 

channel
int	� Interface position
i, j, m, n	� Indices
s	� Solid region (channel walls)
w	� Quantity corresponding to the external face of 

the channel wall
X	� Quantity corresponding to the X direction
Y	� Quantity corresponding to the Y direction
∗	� Domain including the fictitious layer
̂	� Estimated value

+	� Upper bound of the confidence interval
−	� Lower bound of the confidence interval

1  Introduction

Over the last few decades, a huge effort has been devoted 
toward miniaturization of thermomechanical equipment, 
aiming at devices with improved thermal efficiency and 
overall performance [1]. A number of published contribu-
tions addressing the formulation and solution of heat and 
fluid flow problems at the microscale were directed to the 
understanding of discrepancies observed between microscale 
experimental results and macroscale correlations and simu-
lations [2]. These discrepancies are mainly due to scaling 
effects, such as entrance effects, conjugated heat transfer, 
viscous heating, electric double-layer (EDL) effects, tem-
perature-dependent properties, surface roughness, rarefac-
tion, and compressibility effects. These phenomena, often 
negligible in macroscale problems, may have a significant 
influence and have to be accounted for when dealing with 
heat and fluid flow in microsystems [3].

Among different model modifications proposed to 
describe more adequately the fluid flow and heat transfer 
in microchannels, the consideration of slip flow in opposi-
tion to the classical no-slip condition has been the subject 
of numerous investigations [4] and has been handled both 
analytically and numerically in previous works for different 
microchannel geometries, such as circular microtubes [5–10] 
and rectangular and parallel plate microchannels [11–17]. 
Also of major relevance in improving theoretical predictions 
of heat transfer in microsystems is the consideration of con-
jugated conduction–convection heat transfer to accurately 
describe the thermal effects of the solid substrate that com-
prises the microsystem walls, as can be seen in [14, 18–20].

Recently, Knupp et al. [14] proposed a single-domain 
formulation strategy in combination with the Generalized 
Integral Transform Technique (GITT). This methodol-
ogy allows for heterogeneous multi-region problems to 
be written as single-domain formulations by making use 
of spatially variable coefficients with abrupt transitions 
occurring at the interfaces and was successfully employed 
in the solution of different conjugated heat transfer prob-
lems [21–25]. This strategy was then improved in order to 
deal with conjugated conduction–convection heat transfer 
for incompressible laminar gas flow in microchannels, 
within the range of validity of the slip flow regime, in 
which velocity slip and temperature jump at the wall play 
a major role in heat transfer. As the single-domain for-
mulation satisfies the temperature continuity at the inter-
faces, the authors proposed the introduction of a fictitious 
layer between the fluid region and the channel wall, in 
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order to impose the desired thermal resistance between 
the fluid and the wall, modeling the temperature jump at 
the solid–fluid interface [26].

The accurate simulation of such problems is, however, 
dependent on an accurate determination of the momen-
tum and thermal accommodation coefficients, required 
by the slip and temperature jump boundary conditions 
provided by the slip flow model that accounts for non-
continuum effects at the fluid–surface interactions [4]. 
Some experimental works are available in the literature 
regarding measurements of the tangential momentum 
accommodation coefficient [27], showing its dependency 
on the surface cleanliness and roughness, but few results 
are available regarding the measurement of the thermal 
accommodation coefficient [28]. Sharipov [29] presents 
a critical review of theoretical and experimental data on 
the momentum and thermal accommodation coefficients 
within the open literature, and the author emphasizes that 
apparently no experimental data on the thermal accommo-
dation coefficient in actual heat and fluid flow conditions 
pertinent to microsystems applications are available. Some 
theoretical results for the estimation of the thermal accom-
modation coefficient are available [30–32], but specific 
aspects commonly present in microflows are generally 
neglected, such as the wall conjugation effects and/or the 
presence of axial conduction due to low Péclet numbers.

This work is aimed at performing an inverse analysis 
of forced convection in rectangular microchannels with 
slip flow via integral transforms and Bayesian inference, 
extending the study performed in Refs. [31, 32] in order 
to take into account important microscale effects, such 
as wall conjugation and axial conduction. The GITT is 
employed in combination with the single-domain refor-
mulation to offer a hybrid numerical–analytical solution 
to the three-dimensional steady forced convection formu-
lation. A non-classical eigenvalue problem is proposed 
that directly incorporates the effect of the longitudinal 
heat diffusion term. A Bayesian framework is adopted 
for the inverse problem formulation and solution, here 
implemented with the minimization of the maximum 
a posteriori (MAP) objective function, in order to take 
advantage of prior information generally available for the 
tangential momentum accommodation coefficient and the 
external wall Biot number. The limiting situation of a rec-
tangular channel with high aspect ratio is then considered 
for numerical computations, so as to reduce the number 
of parameters in the inverse problem analysis. A critical 
analysis on possible experimental setups is performed in 
order to identify a favorable scenario for the estimation 
of the thermal accommodation coefficient, employing 
only external temperature measurements along the chan-
nel walls.

2 � Direct problem formulation and solution 
methodology

Consider steady-state incompressible gas flow in a rectangular 
channel, undergoing internal forced convective heat transfer. 
The external faces of the channel walls exchange heat with 
the surrounding environment at a different temperature from 
the inlet gas temperature. The channel walls are considered 
to participate in the heat transfer process through axial and 
transversal heat conduction. The dimensionless formulation 
of this problem, considering the first-order slip flow modeling 
[33], can be written as follows, for the fluid region: 

with the following boundary conditions:

and the following interface conditions, considering tempera-
ture jump:

The heat conduction problem at the channel walls is given 
by: 

with boundary and interface conditions

(1a)

Uf (X, Y)
��f (X, Y , Z)

�Z

=

(
Dh

Lx

)2 �2�f

�X2

+

(
Dh

Ly

)2 �2�f

�Y2
+

1

Pe2

�2�f

�Z2
,

in − Xint ≤ X ≤ Xint,−Yint ≤ Y ≤ Yint, 0 ≤ Z ≤ Zf

(1b)�f (X, Y , 0) = 1,
��f

�Z

|||||Z=Zf
= 0

(1c)
Dh

Lx
�tKn

��f

��
+ �f (X, Y , Z) = �s(X, Y , Z),

for X = −Xint, and X = Xint

(1d)
Dh

Ly
�tKn

��f

��
+ �f (X, Y , Z) = �s(X, Y , Z),

for Y = −Yint, and Y = Yint

(2a)
(
Dh

Lx

)2
�2�s

�X2
+

(
Dh

Ly

)2
�2�s

�Y2
+

1

Pe2

�2�s

�Z2
= 0

(2b)�s(X, Y , 0) = 1,
��s

�Z

||||Z=Zf
= 0

(2c)Ks

��s

�Y
=

��f

�Y
, at Y = −Yint and Y = Yint
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 where the following dimensionless groups were employed: 

(2d)Ks

��s

�X
=

��f

�X
, at X = −Xint and X = Xint

(2e)
��s

��
+ BiX�s(X, Y , Z) = 0, for X = −1 and X = 1

(2f)
��s

��
+ BiY�s(X, Y , Z) = 0, for Y = −1, and Y = 1

(3a)Z =
z∕Dh

RePr
=

z

DhPe
;

(3b)Y =
y

Ly
;

(3c)X =
x

Lx
;

(3d)U =
u

uav
;

(3e)� =
T − T∞

Tin − T∞
;

(3f)BiX =
heLx

ks

(3g)BiY =
heLy

ks
;

(3h)Re =
uavDh

�f
;

(3i)Pr =
�f

�f
;

(3j)Pe = RePr =
uavDh

�f
;

(3k)Kn =
�

Dh

;

(3l)K =
k

kf

In the solution methodology with the single-domain for-
mulation, this conjugated problem is formulated as a single-
region model, accounting for the heat transfer phenomena 
simultaneously at both the fluid flow and the channel solid 
walls. This is achieved by making use of coefficients repre-
sented as space variable functions where abrupt transitions 
occur at the fluid–solid wall interfaces. In such approach, the 
temperature and heat flux continuity across the interfaces are 
automatically satisfied. In order to extend this methodology to 
tackle conjugated heat transfer problems within the slip flow 
regime, Knupp et al. [26] proposed the introduction of a thin 
fictitious layer of thickness �fic , which is inserted between the 
fluid region and the channel wall, in order to model the temper-
ature jump at the surface. The representation of the augmented 
domain with the fictitious layer at the interface is depicted 
in Fig. 1. The single-domain formulation for the temperature 
distribution within the augmented domain, �∗(X, Y , Z) , can 
be written as: 

with the following boundary conditions at the longitudinal 
direction:

(4a)

U(X, Y)
��∗

�Z
=

�

�Y

(
K(X, Y)

��∗

�Y

)

+
�

�X

(
K(X, Y)

��∗

�X

)
+

Kac(Y)

Pe
2

�2�∗

�Z2
,

in − 1 − �fic ≤ Y ≤ 1 + �fic, − 1 − �fic ≤ X ≤ 1 + �fic,

0 ≤ Z ≤ Zf

(4b)�∗(X, Y , 0) = 1,
��∗

�Z

||||Z=Zf
= 0

Fig. 1   Schematic representation of the augmented domain with ficti-
tious layer
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and the following boundary conditions at the external lateral 
surfaces:

where

 If the flow is considered fully developed, which is quite 
feasible due to the typical low Reynolds numbers in micro-
scale applications, the velocity field Uf (X, Y) can be read-
ily calculated in terms of the slip velocity coefficient and 
the Knudsen number [11]. The thermal conductivity of the 
fictitious layer, Kfic , is responsible for imposing the desired 
thermal resistance across the fictitious layer, hence mod-
eling the desired temperature jump. It should be noticed that 
the fictitious layer is modeled in order to impose a thermal 
resistance in the transversal direction only, simulating the 
temperature jump, with no effects on the longitudinal direc-
tion. Hence, it is considered that the heat conduction in this 
region occurs through the transversal direction only, and 
hence Kac =0 within the fictitious layer. This formulation can 
be solved via separation of variables, yielding the following 
eigenfunction expansion for the temperature field:

where the eigenfunctions and eigenvalues, given by �i(X, Y) 
and �i , respectively, come from a non-classical eigenvalue 
problem which incorporates the axial conduction term: 

with boundary conditions

(4c)

��∗

��
+ BiX�

∗(X, Y , Z) = 0, for X = −1 − �fic and X = 1 + �fic

(4d)

��∗

��
+ BiY�

∗(X, Y , Z) = 0, for Y = −1 − �fic and Y = 1 + �fic

(4e)U(X, Y) =

{
Uf (X, Y), in fluid region

0, in solid region

(4f)K(X, Y) =

⎧
⎪⎨⎪⎩

1, in fluid region

Kfic, in fictitious layer

Ks, in solid region

(4g)Kac(X, Y) =

⎧
⎪⎨⎪⎩

1, in fluid region

0, in fictitious layer

Ks, in solid region

(5)�∗(X, Y , Z) =

N∑
i=1

Cie
−�2

i
Z�i(X, Y)

(6a)

∇ ⋅

(
K(X, Y)∇�i(X, Y)

)
+ [Kac(X, Y)�

4
i
+ U(X, Y)�2

i
]�i(X, Y) = 0,

in − 1 − �fic ≤ Y ≤ 1 + �fic, − 1 − �fic ≤ X ≤ 1 + �fic

This non-classical eigenvalue problem does not allow 
for an explicit analytic solution, but the generalized integral 
transform technique can be used in order to provide a hybrid 
numerical–analytical solution constructed upon a simpler aux-
iliary eigenvalue problem, with explicit analytical solution. We 
first consider the proposition of the following integral trans-
form pair: 

 where the eigenfunctions Ωn(X, Y) and the corresponding 
eigenvalues �n come from a simpler auxiliary eigenvalue 
problem. In this work, we have chosen the simplest possible 
auxiliary problem, given by: 

Then, Eq. (6a) is operated on with ∫
V
Ωn(X, Y)(⋅)dV  , to 

yield the following algebraic system in a matrix form: 

where the elements of the corresponding coefficient matrices 
are given by

(6b)

��i

��
+ BiX�i(X, Y) = 0, for X = −1 − �fic, and X = 1 + �fic

(6c)

��i

��
+ BiY�i(X, Y) = 0, for Y = −1 − �fic and Y = 1 + �fic

(7a)transform: 𝜓̄i,n = ∫V

U(X, Y)Ωn(X, Y)𝜓i(X, Y)dV

(7b)inverse: 𝜓i(X, Y) =

∞∑
n=1

Ωn(X, Y)𝜓̄i,n

(8a)

∇2Ωn(X, Y) + �2
n
Ωn(X, Y) = 0,

in − 1 − �fic ≤ Y ≤ 1 + �fic, − 1 − �fic ≤ X ≤ 1 + �fic

(8b)

�Ωn

��
+ BiXΩn(X, Y) = 0, for X = −1 − �fic, and X = 1 + �fic

(8c)

�Ωn

��
+ BiYΩn(X, Y) = 0, for Y = −1 − �fic and Y = 1 + �fic

(9a)(� + �){𝜓̄} = (𝜂4� + 𝜂2�){𝜓̄}

(9b)amn = ∫V

Ωm(X, Y)∇ ⋅

(
K(X, Y)∇Ωn(X, Y)

)
dV

(9c)cmn = �2
n
�mn

(9d)emn = ∫V

Kac(X, Y)Ωm(X, Y)Ωn(X, Y)dV
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 where �mn is the Kronecker delta.
Thus, the original eigenvalue problem given by Eq. (6a) 

has been reduced to the nonlinear algebraic eigenvalue 
problem given by Eq. (9a). In order to solve this equation, 
the following transformation is proposed [34]: 

where the coefficient matrices are constructed as

The problem defined by Eq. (10a) is readily solvable with 
the Mathematica software system [35] and comes from the 
following decomposition of Eq. (9a):

with:

Therefore, the sought eigenvectors {𝜓̄} correspond 
to the calculated eigenvectors {�2} and their associated 
eigenvalues �2 provide the values for the sought eigenval-
ues �2 . Then, Eq. (7b) is invoked to construct the desired 
eigenfunctions �i(X, Y).

In order to determine the coefficients Ci , i = 1,… ,M 
in the truncated expansion in Eq. (5), we must make use 
of the entrance condition and the eigenfunctions orthogo-
nality property, which can be obtained by manipulating 
Eq.  (6a) and making use of the corresponding bound-
ary conditions combined with Green’s second identity, 
yielding: 

where �ij is the Kronecker delta.

(9e)bmn = ∫V

U(X, Y)Ωm(X, Y)Ωn(X, Y)dV

(10a)�2�{�} = �{�}

(10b)� =

[
[0] [E]

[E] [B]

]
,

(10c)� =

[
[E] [0]

[0] [F]

]
,

(10d)� = � + �

(10e)�2�{�2} = �{�1}

(10f)�2�{�1} + �2�{�2} = �{�2}

(10g){�} =

(
{�1}

{�2}

)

(11a)∫V

[U(X, Y) + (�2
i
+ �2

j
)Kac(X, Y)]�j�idV = ni�ij

(11b)ni = ∫V

[U(X, Y) + 2�2
i
Kac(X, Y)]�

2
i
dV

Now, we make use of the entrance condition ( Z = 0 ) 
expressed in terms of the solution given by the expansion in 
Eq. (5) truncated with N terms, as follows:

Operating on Eq.  (4b) with ∫
V
[U(X, Y) + �2

j
Kac(X, Y)]

�j(.)dV  , one obtains

Then, adding the term 
∑N

i=1
Ci ∫V �2i Kac(X, Y)�i�jdY  at 

both sides of Eq. (13) and making use of the orthogonality 
property given by Eq. (11a), the following system can be 
written in terms of the unknowns Ci , i = 1,… ,N:

The system defined in Eq.  (14) can be symbolically 
solved with the function Solve in the Mathematica platform 
[35], yielding the analytical expressions for Ci , i = 1,… ,N . 
Once this solution is made available, the expansion given 
by Eq. (5) can be readily evaluated, yielding the solution 
for �∗ at any position (X, Y, Z). Once the solution for the 
augmented domain is available, �∗(X, Y , Z) , the solution for 
the original domain, �(X, Y , Z) , can be readily obtained by 
simply suppressing the fictitious layer.

3 � Inverse problem formulation and solution 
methodology

In the Bayesian framework, the inverse problem is formu-
lated as a problem of statistical inference and is based on 
the following principles [36, 37]: (1) The parameters in the 
model are modeled as random variables; (2) the random-
ness describes our degree of information; (3) the degree of 
information is coded in probability distributions; and (4) 
the solution of the inverse problem is the posterior prob-
ability distribution. Thus, in the Bayesian approach all pos-
sible information is incorporated in the model in order to 
reduce the amount of uncertainty present in the problem to 
be solved.

The inverse analysis tackled in this work consists of 
determining some parameters appearing in the model, here 

(12)�∗(X, Y , 0) =

N∑
i=1

Ci�i(X, Y)

(13)

∫V

[U(X, Y) + �2
j
Kac(X, Y)]�j�

∗(X, Y , 0)dV

=

N∑
i=1

Ci ∫V

[U(X, Y) + �2
j
Kac(X, Y)]�i�jdV , j = 1, 2,… ,N

(14)

Cjnj − ∫V

[U(X, Y) + �2
j
Kac(X, Y)]�j�

∗(X, Y , 0)dV

−

N∑
i=1

Ci ∫V

�2
i
Kac(X, Y)�i�jdV = 0, j = 1, 2,… ,N



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2020) 42:263	

1 3

Page 7 of 16  263

denoted by the vector � , employing a set of temperature 
measurements � . Consider that some prior information 
about the parameters can possibly be available. The Bayes’ 
theorem for inverse problems can be expressed as [36, 37]:

where �(�|�) is the posterior probability density, �(�) is the 
prior information on the unknowns, modeled as a probability 
distribution, �(�|�) is the likelihood function, and �(�) is 
the marginal density, which plays the role of a normalizing 
constant.

Note that the statistical inverse method produces a dis-
tribution which may be explored in different ways, using 
different methods. In this work, we use the maximum a 
posteriori (MAP) estimator in order to produce single-
point estimates for the parameters [37]. Consider that the 
prior information on the parameters can be modeled as a 
normal distribution. Thus, �(�) can be expressed by

where Np is the number of parameters, � and � are, respec-
tively, the covariance matrix and the mean for � , as modeled 
from the prior information. Furthermore, assuming that the 
experimental errors are additive, with zero mean, and fol-
lowing a normal distribution, the likelihood function can be 
expressed as:

where Nd is the total number of experimental data available, 
� is the covariance matrix of the experimental errors, and 
�(�) is the vector of calculated temperatures at the same 
positions where the measured temperatures ê(� ) are avail-
able. Substituting Eqs. (16) and (17) into Eq. (15) and taking 
the logarithm yields:

where

is the maximum a posteriori (MAP) objective function. The 
minimization of S(�) yields the estimates � which maximize 
the posterior distribution �(�|�) . In this work, the MAP 
objective function is minimized with the iterative procedure 
of the Gauss–Newton method [38, 39]

(15)�(�|�) = �(�)�(�|�)
�(�)

(16)�(�) = (2�)−Np∕2|�|1∕2 exp
[
−
1

2
(� − �)T�−1(� − �)

]

(17)
�(�|�) = (2�)−Nd∕2|�|−1∕2

exp
{
−
1

2
[� − �(�)]T�−1[� − �(�)]

}

(18)
ln[�(�|�)] ∝ −

1

2

[
(Np + Nd) ln(2�) + ln |�| + ln |�| + S(�)

]

(19)
S(�) = [� − �(�)]T�−1[� − �(�)] + [� − �]T�−1[� − �]

The elements of the Jacobian matrix � are given by

For normally distributed measurement errors with zero 
mean and constant variance, the standard deviation of the 
estimated parameters corresponding to the maximum a 
posteriori objective function can be approximated from the 
expression [39]

Assuming a normal distribution for measurement errors and 
95% confidence, the bounds for the estimated quantities P̂i 
are determined as: 

The sensitivity analysis plays a major role in several 
aspects related to the formulation and solution of inverse 
problems [38]. The elements of the sensitivity matrix � , 
defined in Eq. (21), are called the sensitivity coefficients. 
In order to obtain good estimates, within reasonable confi-
dence bounds, it is required that the sensitivity coefficients 
be high and, when two or more unknowns are estimated 
simultaneously, their sensitivity coefficients must be linearly 
independent. Otherwise, |�T�| ≈ 0 and the problem is ill-
conditioned. In this work, for the sensitivity analysis, the 
scaled sensitivity coefficients are used:

4 � Results and discussion

The limiting situation of a rectangular channel with high 
aspect ratio is considered for numerical computations, in 
which Lx >> Ly and, thus, the transversal direction X is 
neglected, so as to reduce the number of parameters in the 
analysis. It is considered that the external face of the chan-
nel wall exchanges heat with the surrounding environment, 
at T∞ , different from the inlet gas temperature ( Tin ), with a 
heat transfer coefficient he . The channel wall is considered 
to participate in the heat transfer process through axial and 
transversal heat conduction. The fluid enters the channel 
with a fully developed velocity profile, uf (y) , and with an 

(20)
�
n+1 = �

n + [�T�−1
� + �

−1]−1[�T�−1(� − �(�n)) + �
−1(� − �

n)]

(21)Jij =
��i(�)

�Pj

, i = 1, 2,… ,Nd, j = 1, 2,… ,Np

(22)�Pi
=

√
[(�T�−1� + �−1)−1]i,i, i = 1, 2,… ,Np

(23a)P̂−
i
= P̂i − 1, 96𝜎Pi

,

(23b)P̂+
i
= P̂i + 1, 96𝜎Pi

, i = 1, 2,… ,Np

(24)Jij = PjJij, i = 1, 2,… ,Nd, j = 1, 2,… ,Np
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inlet temperature, Tin . The single-domain representation of 
this problem is depicted in Fig. 2.

The thickness and thermal conductivity of the fictitious 
layer, �fic and Kfic , respectively, are chosen so as to impose 
the desired thermal resistance to model the temperature 
jump. So, for this case, we must have:

The heat flux across the fictitious layer can be written as:

Substituting Eq. (26) into Eq. (25) readily yields:

Hence, the fictitious layer introduced can be set with arbi-
trary values for the dimensionless thickness and thermal 
conductivity in such a way that the ratio given by Eq. (27) is 
satisfied for the given values of Kn and �t.

The wall temperature jump coefficient is given by [31]:

where �t is the thermal accommodation coefficient and 
� = cp∕cv is the specific heat ratio.

The dimensionless velocity profile for the high aspect 
ratio channel can be written as [13]:

(25)�∗(Yint + �fic, Z) − �∗(Yint, Z) = 2Kn�t
��∗

�Y

||||Y=Yint

(26)−Kfic

��∗

�Y

||||Y=Yint
=

�∗(Yint, Z) − �∗(Yint + �fic, Z)

�fic∕Kfic

(27)
�fic

Kfic

= 2Kn�t

(28)�t =
(2 − �t)

�t

2�

(� + 1)

1

Pr

where

is the wall velocity slip coefficient and �m is the tangential 
momentum accommodation coefficient.

The inverse analysis tackled in this work consists of deter-
mining the values of the following parameters: wall tem-
perature jump coefficient, �t , wall velocity slip coefficient, 
�v , and Biot number, Bi , in different possible experimental 
setups.

The numerical results here presented consider the dimen-
sionless thermal conductivity calculated as motivated by an 
application with a microchannel made of PMMA (polym-
ethyl methacrylate), with ks = 0.2 W/mK, with air as the 
working fluid, kf = 0.0271 W/mK, so that Ks = ks∕kf = 7.38 . 
The following typical values were adopted for the governing 
parameters [31]: �t = 2 , �v = 1.5 , Kn = 0.0025 , 0.0095, and 
0.025, and Bi = 1 , 5, and 10. As the thickness of the ficti-
tious layer it was adopted �fic = 0.05 , and Kfic was calculated 
accordingly so as to satisfy Eq.  (27) for the desired values 
of �t and Kn. In all simulations, it was considered Pe = 1 , 
as low Péclet numbers are the most commonly encountered 
cases in microscale applications.

Initially, a convergence analysis of the solution is pre-
sented for different truncation orders (N) in the eigenfunc-
tion expansion of the calculated temperatures, Eq.  (5), 

(29)Uf (Y) =
6Kn�v + 3(1 − Y2)∕2

1 + 6Kn�v

(30)�v =
2 − �m

�m

Fig. 2   Schematic representation 
of the original domain (left) and 
the augmented domain (right)

Table 1   Convergence behavior 
of the calculated temperatures 
for different truncation orders 
in the eigenfunction expansion 
(N), with M = 200 terms, 
Kn = 0.025 , and Yint = 1 (no 
conjugation effects)

N Bi = 1 Bi = 5 Bi = 10

�(0, 0.05) �(0.25, 0.75) �(0, 0.05) �(0.25, 0.75) �(0, 0.05) �(0.25, 0.75)

5 0.98099 0.62665 0.98034 0.53069 0.98201 0.50925
10 0.97950 0.62768 0.97278 0.53172 0.97103 0.51028
15 0.97988 0.62774 0.97393 0.53178 0.97268 0.51034
20 0.97984 0.62775 0.97373 0.53179 0.97238 0.51035
25 0.97986 0.62775 0.97379 0.53180 0.97247 0.51036
30 0.97986 0.62775 0.97378 0.53180 0.97245 0.51036
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while keeping fixed the truncation order (M) employed in 
the solution of the non-classical eigenvalue problem with 
spatially varying coefficients, Eq. (7b). Tables 1 and 2 pre-
sent the convergence behavior of the calculated temperatures 
for the case with no conjugation effects ( Yint = 1 ) and for 
the conjugated heat transfer problem case (with Yint = 0.5 ), 
respectively, at two selected positions, for different Biot and 
Knudsen numbers, with N ranging from N = 5 to N = 30 , 
and M = 200 terms in the eigenvalue problem solution. 
These results show a consistent convergence of at least four 
significant digits for N ≤ 25 . With only N = 10 terms, the 
results are already essentially converged to the third sig-
nificant digit. It is also worth noting that the convergence 
behavior regarding the conjugated problem is as good as the 
case with no conjugation effects.

The convergence analysis of the solution is also presented 
for different truncation orders (M) regarding the eigenfunc-
tion expansions employed in solution of the non-classical 

eigenvalue problem, Eq. (7b), while keeping fixed the trun-
cation order employed in the calculated temperatures, with 
N = 30 terms, which is enough to achieve convergence of 
the fourth significant digit, as demonstrated in Tables 1 and 
2. First, Table 3 shows the calculated temperatures for the 
case with no conjugation effects ( Yint = 1 ) in two different 
transversal positions: Y = 0 (channel center) and Y = 0.5 , 
and two different positions over the channel length: Z = 0.05 
and Z = 1.50 , for truncation orders ranging from M = 50 to 
M = 200 . The results presented are converged with three to 
four significant digits for M ≤ 200 . A more cumbersome 
case is investigated in Tables  4 and 5, as the conjugated heat 
transfer problem case is presented (with Yint = 0.5 ) for differ-
ent Knudsen numbers. Table  4 illustrates the convergence 
of the calculated temperatures at the fluid region, whereas 
Table  5 illustrates the convergence of the calculated tem-
peratures at the wall region. As the abrupt transitions in the 
spatially varying coefficients that represent the two different 

Table 2   Convergence behavior 
of the calculated temperatures 
for different truncation 
orders in the eigenfunction 
expansion (N), with M = 200 
terms, Bi = 10 , and Yint = 0.5 
(conjugated problem)

N Kn = 0.0025 Kn = 0.0095 Kn = 0.025

�(0, 0.05) �(0.25, 0.75) �(0, 0.05) �(0.25, 0.75) �(0, 0.05) �(0.25, 0.75)

5 0.98280 0.51052 0.98669 0.52001 0.99317 0.54050
10 0.97312 0.51050 0.97380 0.51997 0.97514 0.54042
15 0.97383 0.51049 0.97443 0.51997 0.97542 0.54042
20 0.97354 0.51049 0.97410 0.51997 0.97531 0.54042
25 0.97358 0.51049 0.97412 0.51997 0.97531 0.54042
30 0.97356 0.51049 0.97411 0.51997 0.97531 0.54042

Table 3   Convergence behavior 
of the calculated temperatures 
for different truncation orders 
of the non-classical eigenvalue 
problem solution (M), with 
N = 30 terms, Kn = 0.025 , 
and Yint = 1.0 (no conjugation 
effects)

M Bi = 1 Bi = 5 Bi = 10

�(0, 0.05) �(0.5, 1.50) �(0, 0.05) �(0.5, 1.50) �(0, 0.05) �(0.5, 1.50)

50 0.97985 0.31701 0.97374 0.20362 0.97240 0.18215
75 0.97984 0.31720 0.97370 0.20399 0.97235 0.18258
100 0.97986 0.31722 0.97378 0.20402 0.97245 0.18261
125 0.97986 0.31729 0.97376 0.20416 0.97242 0.18277
150 0.97986 0.31730 0.97379 0.20419 0.97245 0.18279
175 0.97986 0.31732 0.97377 0.20423 0.97243 0.18285
200 0.97986 0.31734 0.97374 0.20427 0.97245 0.18289

Table 4   Convergence behavior 
of the calculated temperatures 
at the fluid region for different 
truncation orders of the non-
classical eigenvalue problem 
solution (M), with N = 30 
terms, Bi = 10 , and Yint = 0.5 
(conjugated problem)

M Kn = 0.0025 Kn = 0.0095 Kn = 0.025

�(0, 0.05) �(0.5, 1.50) �(0, 0.05) �(0.5, 1.50) �(0, 0.05) �(0.5, 1.50)

50 0.97163 0.14195 0.97227 0.14908 0.97334 0.16475
75 0.97337 0.14846 0.97394 0.15576 0.97504 0.17227
100 0.97299 0.15206 0.97358 0.15951 0.97474 0.17686
125 0.97348 0.15434 0.97408 0.16184 0.97527 0.17956
150 0.97338 0.15592 0.97394 0.16348 0.97513 0.18140
175 0.97362 0.15707 0.97100 0.16231 0.97537 0.18280
200 0.97356 0.15793 0.97100 0.16231 0.97531 0.18380
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domains (fluid stream and channel wall) are considered in 
the eigenvalue problem, this case presents slightly slower 
convergence rates if compared to the case with no conjuga-
tion effects. Here, a convergence of two to three significant 
digits is observed. It should be highlighted that these results 
can be considered sufficiently accurate for the simulations 
and inverse analyses, once the maximum associated errors 
(in the order of 0.1% ) are much smaller than the expected 
measurement errors.

Before addressing the estimation of the unknown param-
eters, a sensitivity analysis is shown, in order to give some 
insights regarding the influence of such parameters in the 
inverse problem solution. Based on possible experimental 
setups, three different wall Biot numbers are considered, 
Bi = 1 , 5, and 10, for the problem with no conjugation 
effects, i.e., Yint = 1.0 , considering Kn = 0.025 . Figure 3a–c 
depicts the scaled sensitivity coefficients with respect to the 
parameters �t , �v , and Bi, respectively. It should be noticed 
that increasing the Biot number increases the sensitivity 
for �t , but decreases the sensitivity for �v and Bi. Besides, 
it should be observed that the sensitivity coefficients with 
respect to �t and Bi are linearly dependent, as already 
observed in [31]. Nevertheless, prior information can actu-
ally be obtained for Bi, for example from empirical cor-
relations for external convection, and also for �v , by utiliz-
ing pressure and mass flow rate measurements for an initial 
estimate of the slip coefficient. In this context, higher values 
of the Biot number can possibly benefit this inverse problem 
solution regarding the estimation of �t if good prior informa-
tion for �v and Bi is available, despite an overall reduction in 
|�T�| , which was pointed out in [31].

Another possibility brought by the model proposed in 
this work, which takes into account the wall conjugation 
effects, is the evaluation of different experimental setups 
based on the thickness of the channel wall. Figure 4a–c 
depicts the scaled sensitivity coefficients with respect to the 
parameters �t , �v , and Bi, respectively, for three different 
wall thickness values, Yint = 1.0 (no conjugation), Yint = 0.5 , 
and Yint = 0.25 , considering Bi = 10 and Kn = 0.025 . Once 
again, it can be noticed that the sensitivity with respect to �t 
and Bi presents opposite behaviors: Increasing the channel 

thickness increases the sensitivity to Bi, but decreases the 
sensitivity to �t.

As Knudsen numbers in the range 10−3 < Kn < 10−1 are 
often found in microsystems [33], an evaluation of different 
experimental setups based on the Knudsen number is also 
performed. Figure 5a–c depicts the scaled sensitivity coef-
ficients with respect to the parameters �t , �v , and Bi, respec-
tively, for three different Knudsen numbers, Kn = 0.0025 , 
Kn = 0.0095 , and Kn = 0.025 , for the conjugated heat con-
duction problem in which Yint = 0.5 , considering Bi = 10 . It 
can be noticed that increasing the Knudsen number increases 
the sensitivity to �t , the main parameter to be estimated in 
the inverse problem. It is important to highlight that although 
the sensitivity to Bi is relatively high, it is little affected by 
the Knudsen number.

For the numerical examples regarding the inverse prob-
lem solution, to be presented next, only external wall tem-
perature measurements are considered in this work, which 
could be obtained with an infrared measurements system, for 
example [40]. The experimental data � have been simulated 
by calculating the temperature distribution with the model 
proposed, after which random noise from a normal distribu-
tion has been added:

where ri are random numbers drawn from a normal distribu-
tion with zero mean and unitary standard deviation. A total 
of 200 uniformly distributed points along the channel length 
from Z = 0 to Z = Zf = 2 were considered. In order to alle-
viate the effects of the inverse crime [36], the experimental 
data have been simulated employing a solution with trunca-
tion orders N = 30 and M = 200 , while the direct problem 
solution within the inverse problem procedure was handled 
with N = 10 and M = 50 terms.

Once the sensitivity coefficients regarding the Biot num-
ber (Bi) and the wall temperature jump coefficient ( �t ) are 
linearly correlated, and prior information is available for Bi, 
some numerical test cases are proposed next, in order to 
evaluate the effects of these possible experimental setups 
on the estimated parameters. Table 6 presents the estimates 

(31)Yi = �i(�exact) + �eri, i = 1, 2,… ,Nd

Table 5   Convergence behavior 
of the calculated temperatures 
at the wall region for different 
truncation orders of the non-
classical eigenvalue problem 
solution (M), with N = 30 
terms, Bi = 10 , and Yint = 0.5 
(conjugated problem)

M Kn = 0.0025 Kn = 0.0095 Kn = 0.025

�(0.5, 0.05) �(1, 1.50) �(0.5, 0.05) �(1, 1.50) �(0.5, 0.05) �(1, 1.50)

50 0.94841 0.08847 0.95031 0.08841 0.95314 0.08816
75 0.94850 0.09599 0.95041 0.09587 0.95418 0.09559
100 0.94940 0.10012 0.95167 0.10002 0.95553 0.09974
125 0.94958 0.10278 0.95160 0.10267 0.95558 0.10237
150 0.94983 0.10461 0.95211 0.10450 0.95620 0.10421
175 0.94999 0.10600 0.95211 0.10585 0.95609 0.10554
200 0.94993 0.10699 0.95230 0.10687 0.95649 0.10657
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obtained for the case with no conjugation effects ( Yint = 1.0 ) 
for different wall Biot numbers, Bi = 1, 5, and 10. In these 
cases, �e = 0.0025 was considered in Eq. (31) to model the 
experimental errors. Prior information for �v and Bi can 
be obtained, for instance by utilizing pressure and mass 
flow rate measurements to approximate the slip coefficient 
and by employing classical correlations for estimating the 
external heat transfer coefficient, respectively. Then, the a 
priori information for �v and Bi was modeled as independ-
ent Gaussian distributions with means at the exact values 
and standard deviations of 10% and 12.5% of their means, 
respectively. For �t , it was initially considered a much less 
informative prior, also modeled as a Gaussian distribution 
with 1.5 mean (it should be recalled that the exact value is 

2.0, supposedly unknown) with standard deviation of 67% of 
the mean. In order to allow for a direct comparison between 
different cases, it is also presented in the tables a relative 
measure of the confidence intervals range, given by:

where P̂+
i
 is the upper limit of the estimated confidence inter-

val regarding the parameter estimate P̂i , P̂−
i
 is the lower limit, 

and Pi,exact is the exact parameter value.
In Table 6, it can be observed, as already previewed in the 

sensitivity analysis, that the estimation of Bi is indeed much 
more precise for Bi = 1 than for Bi = 10, but, on the other 

(32)CIi =
P̂+
i
− P̂−

i

Pi,exact

, i = 1, 2,… ,Np

(a) βt (b) βv

(c) Bi

Fig. 3   Scaled sensitivity coefficients for different wall Biot numbers: Bi = 10 , Bi = 5 , and Bi = 1 , considering Yint = 1.0 and Kn = 0.025
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hand, the estimation of �t becomes significantly affected for 
decreasing Biot numbers.

In this context, a better estimation can still be tried 
by varying the channel wall thickness, recalling that for 
increasing wall thickness the sensitivity to Bi increases. 
Table 7 presents these results, demonstrating that when the 
wall thickness is increased a much better estimation can 
in fact be obtained for Bi. Regarding the parameter �t , it 
is observed that for Yint = 0.5 a more precise estimation is 
obtained in comparison with the case with no conjugation 
effects (probably as influence of the increase in quality of 
the estimated Biot number), whereas for Yint = 0.25 a worse 
result is obtained. (In this case, the precision of the estimated 
Biot number does not increase anymore, and the estimation 

precision of �t is still worse, as demonstrated in the sen-
sitivity analysis.) These results suggest that there possibly 
exists an optimum channel wall thickness that maximizes 
the precision in the estimation of the temperature jump coef-
ficient, �t.

Another possibility to obtain a better estimation for the 
parameter �t can still be tried by varying the Knudsen num-
ber. In Table 8, it can be observed, as anticipated in the 
sensitivity analysis, that the estimation of �t is more precise 
for higher values of the Knudsen number, whereas the esti-
mation of Bi is not significantly affected by variations of Kn.

Finally, in order to evaluate the consistency of the results 
obtained with respect to the experimental errors and the influ-
ence of the prior information given to the parameter �t , a final 

(a) βt (b) βv

(c) Bi

Fig. 4   Scaled sensitivity coefficients for different wall thicknesses: Yint = 1.0 , Yint = 0.5 , and Yint = 0.25 , considering Bi = 10 and Kn = 0.025
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test is considered, in which �e = 0.005 (twice the previous 
noise level), and no prior information is considered available 
for �t . These results are presented in Table 9, demonstrating 
that, in fact, no prior information is needed for �t . The esti-
mated confidence intervals are obviously wider than those pre-
sented in Table 6a as a result of higher experimental errors, but 
reasonable confidence intervals are still obtained.

5 � Concluding remarks

The inverse analysis of forced internal convection with 
slip flow inside rectangular channels is investigated in 
this work, taking into account axial conduction and wall 

conjugation effects. For the direct problem solution, the 
generalized integral transform technique, combined with 
a single-domain formulation strategy, was employed. 
The inverse problem was formulated within the Bayes-
ian framework in order to estimate the temperature jump 
coefficient, employing prior information for the veloc-
ity slip coefficient and wall Biot numbers and using only 
external temperature measurements along the channel 
wall. The results here reported investigated different pos-
sible experimental setups, suggesting that higher wall Biot 
numbers and higher Knudsen numbers (within the range 
of the slip flow regime) are favorable to the estimation 
of the temperature jump coefficient, as well as indicat-
ing the possible existence of an optimum channel wall 

(a) βt (b) βv

(c) Bi

Fig. 5   Scaled sensitivity coefficients for different Knudsen numbers: Kn = 0.0025 , Kn = 0.0095 , and Kn = 0.025 , considering Bi = 10 and 
Yint = 0.5
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thickness that maximizes the precision in the estimation 
of this parameter.

Since the applications dealing with microsystems in gas 
flows involve very low Reynolds numbers, as discussed 
more closely in [14], the entry lengths for hydrodynamic 
development (roughly Lh = 0.05ReDh ) are in general very 
small, of the order of a fraction of the channel hydraulic 
diameter, also very small due to the microchannel cross sec-
tion dimensions. These lengths are in general negligible in 
comparison with the overall length of the microsystem [14], 
which justifies the adoption of the hydrodynamically devel-
oped flow assumption. Nevertheless, if required in a specific 
application, the present approach could be readily extended 
to the simultaneously developing flow situation, as previ-
ously employed in no-slip flow conditions [41]. Also, one 
may seek the extension of the present methodology to handle 
longitudinally variable heat transfer coefficients, such as in 
external forced convection along the channel wall or natural 
convection along vertical or inclined plates. References  [40, 
42, 43] illustrate the successful application of the GITT and 
MCMC combination in dealing with the direct and inverse 
analyses for conduction problems and convective boundary 
conditions with space variable heat transfer coefficients. 
Although this would certainly be an interesting extension 
to the present problem, the central focus in this contribution 
was the estimation of the slip flow and temperature jump 
parameters, and how the wall conjugation and axial diffusion 
effects would affect the reliability of these computations. As 
microsystems are usually of the order of a few centimeters at 
most, a marked spatial variation of the external heat transfer 
coefficient is not expected that could impact the estimation 
accuracy or add difficulties to the incorporation of such an 
effect. Nevertheless, in the methodology proposed for the 
estimation problem, we consider that prior information is 
available for the Biot number. In the numerical results pre-
sented, we considered just average Biot numbers that clearly 
allow to inspect the influence of the external convection 
coefficient magnitude on the quality of the estimates.
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Table 6   Estimates obtained for the case with no conjugation effects 
and �e = 0.0025 for different possible experimental setups

Parameter Prior Estimate Exact 95% conf. int. CIi

(a) Bi = 10

 �t N(1.5, 1) 1.92 2.00 [1.39, 2.45] 53%
 �v N(1.5, 0.15) 1.50 1.50 [1.28, 1.73] 30%
 Bi N(10, 1.25) 9.59 10.00 [7.30, 11.8] 45%

(b) Bi = 5

 �t N(1.5, 1) 1.97 2.00 [1.21, 2.73] 76%
 �v N(1.5, 0.15) 1.53 1.50 [1.27, 1.78] 34%
 Bi N(10, 1.25) 4.98 5.00 [4.13, 5.83] 34%

(c) Bi = 1

 �t N(1.5, 1) 1.54 2.00 [0.46, 2.63] 108%
 �v N(1.5, 0.15) 1.52 1.50 [1.25, 1.79] 36%
 Bi N(10, 1.25) 0.98 1.00 [0.94, 1.03] 9%

Table 7   Estimates obtained for the conjugated problem with Bi = 10 
and �e = 0.0025 for different possible experimental setups

Parameter Prior Estimate Exact 95% conf. int. CIi

(a) Yint = 0.5

 �t N(1.5, 1) 2.02 2.00 [1.75, 2.29] 27%
 �v N(1.5, 0.15) 1.50 1.50 [1.21, 1.79] 39%
 Bi N(10, 1.25) 10.0 10.00 [9.98, 10.02] 0.4%

(b) Yint = 0.25

�t N(1.5, 1) 2.22 2.00 [1.20, 3.23] 101%
�v N(1.5, 0.15) 1.50 1.50 [1.21, 1.80] 39%
Bi N(10, 1.25) 9.99 10.00 [9.97, 10.01] 0.4%

Table 8   Estimates obtained for the conjugated problem with Bi = 10 
and �e = 0.0025 for different possible experimental setups, consider-
ing Yint = 0.5

Parameter Prior Estimate Exact 95% conf. int. CIi

(a) Kn = 0.0025

 �t N(1.5, 1) 1.89 2.00 [0.05, 3.74] 185%
 �v N(1.5, 0.15) 1.50 1.50 [1.21, 1.79] 39%
 Bi N(10, 1.25) 10.01 10.00 [9.99, 10.03] 0.4%

(b) Kn = 0.0095

 �t N(1.5, 1) 1.97 2.00 [0.92, 3.01] 105%
 �v N(1.5, 0.15) 1.50 1.50 [1.21, 1.79] 39%
 Bi N(10, 1.25) 10.01 10.00 [9.99, 10.03] 0.5%

(c) Kn = 0.025

 �t N(1.5, 1) 1.99 2.00 [1.72, 2.26] 27%
 �v N(1.5, 0.15) 1.50 1.50 [1.21, 1.80] 39%
 Bi N(10, 1.25) 9.98 10.00 [9.96, 10.01] 0.5%

Table 9   Estimates obtained for the conjugated problem with Bi = 10 , 
Kn = 0.025 , Yint = 0.5 , and �e = 0.005

Parameter Prior Estimate Exact 95% conf. int. CIi

�t None 1.93 2.00 [1.39, 2.48] 54%
�v N(1.5, 0.15) 1.50 1.50 [1.21, 1.80] 39%
Bi N(10, 1.25) 9.99 10.00 [9.96, 10.04] 0.8%
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