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Vortex gas modeling of turbulent circulation statistics
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Statistical properties of circulation encode relevant information about the multiscale structure of turbulent cas-
cades. Recent massive computational efforts have posed challenging theoretical issues, such as the dependence
of circulation moments upon Reynolds numbers and length scales, and the specific shape of the heavy-tailed
circulation probability distribution functions. We address these focal points in an investigation of circulation
statistics for planar cuts of three-dimensional flows. The model introduced here borrows ideas from the structural
approach to turbulence, whereby turbulent flows are depicted as dilute vortex gases, combined with the standard
Obukhov-Kolmogorov phenomenological framework of small-scale intermittency. We are able to reproduce, in
this way, key statistical features of circulation, in close agreement with empirical observations compiled from

direct numerical simulations.
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I. INTRODUCTION

Drawing analogies with the Wilson loop strategy to tackle
the quark confinement problem [1,2], Migdal introduced,
some 25 years ago, alternative circulation functional methods
to the context of fully developed turbulence [3]. The subject
of turbulent circulation has now been vigorously revived both
on the theoretical and the numerical fronts. Interesting ideas
have reached firmer ground, as the area law for the probability
distribution function of circulation [4—6], whereas unexpected
phenomena have been additionally discovered, as the bifractal
scaling behavior of circulation moments [5].

In this work, focused on the problem of isotropic and
homogeneous turbulence, we define the circulation variable
simply as

Tk E/ d’r o(r), (L.1)

D

where D is a circular domain of radius R which lies in a plane
y and o(r) is the component of the vorticity field which is
normal to y (an arbitrary orientation is chosen). Our aim is
to explore the sensitivity of (1.1) to the presence of vortex
tubes—so clearly identified in turbulent flows since the early
1990s [7-9]—as a natural modeling perspective to account for
relevant empirical findings.

Kolmogorov’s phenomenological description of turbulence
(K41) [10] suggests that if R is far from the energy injection
and the Kolmogorov dissipative scales, L and ng, respec-
tively, the only other relevant physical parameter related to
the statistical behavior of velocity fluctuations at scale R is
the energy dissipation rate per unit mass, €. We define, as
usual, ng = (v3/€)!/4, where v is the kinematic viscosity of
the fluid. Straightforward dimensional analysis leads, then, to
circulation moments

Numerical simulations show that (1.2) is a reasonable approx-
imation for low order moments, but it noticeably fails for
p > 4, as expected from the existence of intermittent velocity
fluctuations [5]. Our discussion of this issue brings together
phenomenological views of turbulence that have so far been
developed as two almost disconnected approaches in the liter-
ature: from one side, turbulence is viewed as a multiplicative
cascade process across length scales; from another side, as
the flow regime produced by a vorticity field dominantly
organized in the form of vortex tubes [11]. It turns out, as
we will see, that the integration of these two complementary
pictures of turbulence is particularly important for a deeper
understanding of circulation statistics.

This Rapid Communication is organized as follows. In Sec.
II, we introduce, resorting on phenomenological inputs and
heuristic arguments, a statistical model for the fluctuations of
the circulation variable taken on planar contours. In Sec. III,
we explore the proposed model to evaluate circulation mo-
ments, its inertial range scaling exponents, and to derive an an-
alytical expression for the circulation probability distribution
functions (cPDFs). We also perform supporting comparisons
with numerical results. In Sec. IV, finally, we summarize our
findings and point out directions of further research.

II. MODEL DEFINITIONS

Having in mind a reinterpretation of the scaling law
(1.2) within the structural context, where it is assumed that
most of the turbulent kinetic energy is generated by vortex
tubes [8], consider the second-order moment of I'g, (I‘,%) =
[pd*r [ d*r' (w(r)o(r')). Taking this expression into ac-
count and noticing that the K41 prediction for order p = 2
can be reshuffled as

(TR) ~ ePPRP1. (1.2)
2
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one may suggest that circulation is effectively produced by
(i) a number N o (R/ng)?* of planar vortices which have (ii)
rms vorticities of the order of /€ /v, (iii) core sizes of linear
dimensions of the order of ng, and (iv) carry elementary
circulations which are correlated at separation distance r as
~1/r*3, for r > n.

The deconstruction of (2.1) into the above points (i)—(iv)
provides the main phenomenological motivation for setting
up a two-dimensional vortex model of circulation fluctuations
which could comprise, after refinements, anomalous scal-
ing exponents. There are, however, important conceptual and
technical issues that have to be dealt with, in order to proceed
with this structural line of reasoning, which we discuss in the
following sections.

A. Two-dimensionally projected vorticity field

A clear issue is the apparent dichotomy between the ac-
knowledged existence of three-dimensional vortex tubes and
the introduction of planar vortices in the modeling definitions.
A possible solution to this problem is to take the positions of
the effective planar vortices as the intersections of vortex tubes
with the plane y that contains the circular domain D. Now,
figuring out the large ensemble of three-dimensional flow
configurations conditioned by a fixed spatial distribution of
N intersecting vortex tubes in y at positions (ry, ra, ..., Iy),
it is clear that the vorticity vector at position r in y can be
represented as the conditioned random field

() = w(r|r;,ry, ..., ry), 2.2)
which is negligible if probed far enough from the planar
vortex spots, that is, at positions r such that |r — r;| > ng
for i=1,2,...,N. The physical picture addressed here is
illustrated in Fig. 1.

FIG. 1. Two thin vortex tubes with opposite orientations cross
a plane and are associated, in this particular example, to a planar
vortex-antivortex pair (red and blue spots, respectively) where vor-
ticity is concentrated. In more general terms, for any given fixed
configuration of planar vortices defined by means of a similar con-
struction, there is a large statistical ensemble of three-dimensional
vortex tubes that produce a (conditioned) random vorticity field on
the plane.

B. Cascaded vorticity intensities

Relying upon the fact that @(r) is the superposition of
the vorticity fields produced by a random system of three-
dimensional vortex tubes, it is tempting to evoke the central
limit theorem in some of its functional generalizations [12],
to take w(r) as a Gaussian random field. This is actually a
meaningful hint, but some care is necessary on this point, and
here comes a second modeling difficulty: We have to include
intermittent fluctuations of the energy dissipation rate in our
arguments. In the Obukhov-Kolmogorov phenomenology of
intermittency (OK62) [13,14] and its subsequent develop-
ments [11,15], local dissipation is described, to very good
approximation, as a lognormal, long-ranged correlated field.
Considering the modeling points (ii), (iii), and (iv), introduced
above, we collect all the pieces of information brought to the
discussion so far, to write

N
o(r) oc Yy gy(r — rE(r)D(r,).

i=1

(2.3)

Here g, (r) = exp[—r?/(2n*)] introduces Gaussian envelopes
for the planar vortices of typical width n which, in consonance
with [16], are taken proportional to ng, i.e., n = ang with
a being a positive modeling parameter. The field &(r) is a
scalar Gaussian random field with vanishing mean and cor-
relator (@(r)a(r')) ~ 1/|r —r'|*3 for |r —r'| > ng, while
E(r) = &y+/€(r)/€o, where & is an additional positive param-
eter and €(r), to be modeled within the OK62 framework, is
the energy dissipation rate at position r, which has mean value
€9 = (e(r)). We call attention, in connection with Eq. (2.3),
to the general fact that the statistical dependence of velocity
gradients with the square root of the dissipation field is the
usual way to extend the OK62 description of intermittency to
the dissipative scale region [17-19]. We take &(r) and &(r)
to be dimensionless quantities. Without loss of generality, the
variance of @(r) is prescribed to unity.

C. Homogeneous vortex distributions

The positions and the number N of vortices in (2.3) are of
course random quantities that depend on the shape and the size
of the planar domain crossed by the vortex tubes. A natural
modeling choice, as a first approximation, and inspired from
visualizations of vortex tube structures [7-9], is to conjecture
that vortices are randomly distributed over y with a Poisso-
nian surface density whose mean we denote as & = (o (r)).
We do not claim that sub- or super-Poissonian density fluc-
tuations, due to short-distance volume exclusion effects [20]
or energy-reducing vortex-antivortex pairings [21], respec-
tively, should be completely neglected. Instead, we assume
that non-Poissonian density fluctuations are likely to have a
subdominant role in the spatial organization of vortices.

Introducing a prefactor with dimensions of vorticity, we
rewrite (2.3) in the more analytically convenient continuous
version,

o(r) = \/%/ dzr’gn(r — 1)@ o (). 2.4)
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Equation (2.3) can be in fact derived from (2.4) by taking

o)=Y &r—r). (2.5)
To clarify the choice of the vorticity prefactor in (2.4), just
note that (w(r)?) = (@(r)?)/3 = €y/(3v) due to isotropy [22].

Since direct numerical simulations indicate that the volume
occupied by vortex tubes is a very small fraction of the total
fluid volume [8], we may employ a dilute vortex gas approx-
imation to represent density fluctuations as o (r) = & + ¢(r),
with (¢(r)) = 0 and, up to fourth order,

(p(r1)o(r2)) =512, (2.6)

(p(r1)o(r2)e(r3)) = 5812813, 2.7

(d(r1)p(r2)e(r3)p(ry))
= 5812813814 + G2(812834 + 813824 + 814823), (2.8)

where we have used the notation §;; = 8%(r; — r;) [23].

A smooth cutoff-regularized expression for the Gaussian
random field @(r) proves to be of great analytical help in the
evaluation of vorticity correlation functions. We just mean that
@(r) is given as

2/3
~ _ e 2 ~1/3 . Nk
a)(l’)——/d k¢ (k)k exp(ik-r—k—),
[2T (%) ( 2 )
(2.9)

where ¥ (k) is a complex Gaussian random field of zero mean
and correlator (V¥ (kv (ky)) = 82(k; — k).

D. Effective coarse-graining modeling

The formulation addressed by Eq. (2.4) becomes in fact
cumbersome if one is interested to compute moments of order
p > 2 for the circulation variable. The reason is that £(r) is
not a Gaussian random field. A pragmatic phenomenological
solution to this problem comes from an alternative way of
performing the circulation integral. Considering, initially, that
R > ng, we obtain, from Eqgs. (1.1) and (2.4), the asymptotic
approximation

Ik =27rn2\/?—0 / d’r £(r)a(r)o (r).
3v D

Since £(r) is a positive-definite quantity, it is not difficult to
show that there is necessarily a point ry € D such that

Iy = zﬂnz\/?@(l‘o)d(l‘o) / Pre(r).
% D

Owing, now, to the fact that £(r) is long-range correlated and
that the probability measures for the @(r) and o (r) fields are
translation invariant, we expect r( to be a random variable uni-
formly distributed over the domain D, if flow configurations
are conditioned to fixed Z = fD d*r&(r). Therefore, Ty, as
defined in (2.11), is the same as its average over fluctuations
of ry at fixed Z, so that Eq. (2.11) can be effectively replaced

by
T = 279 /5_?)5’* / d2r &(r)o (r),
D

(2.10)

@2.11)

2.12)

where

L _ 5o [ pp €D
b= Ddré(r)—nszDdr 2 e

In other words, in order to compute statistical properties of
[g, for R > ng, we just need to deal with the much simpler
random vorticity field

wg(r) = 27TU2\/3GE~’§R67)(1‘)0 (r).
v

Incidentally, and fortunately, the very same expression as the
above one is supposed to hold for the small-scale region R <
Nk, since the dissipation field is not expected to exhibit fast
spatial variations within dissipative length scales.

The spatially averaged field & has here a statistical role
similar to the one of the coarse-grained three-dimensional
dissipation field introduced in the OK62 phenomenology
[13,14]. Recalling, in this connection, the statistically self-
similar nature of multiplicative chaos processes [24], which
model intermittent fluctuations of energy dissipation, we put
forward that

(2.14)

&r = &oexp(—Xg)

holds for the present two-dimensional context, where X is a
Gaussian random variable with both mean and variance given

by

X 3““ 1n|: R)\. ( Nk )2/3i|

T VISR k)

where R; is the Taylor-Reynolds number, u = 0.17 £ 0.01
is the intermittency exponent [25], and b > 0 is a model-
ing parameter. The specific R-dependent expression between
parentheses in (2.16) is proposed as an interpolation that
works correctly for the R/ng <« 1 and R/ng > 1 asymptotic
cases. Note that (2.15) and (2.16) lead to (&5) ~ (ez) ~ R™*
for R > ng, as expected.

We are now ready to explore the model predictions given
by Egs. (1.1), (2.6)—(2.9), and (2.14)—(2.16), where the under-
lying £(r), @(r), and o (r) fields are assumed to be statistically
independent from each other, on the basis of phenomenolog-
ical expectations and theoretical constraints. Vortices are, to
good approximation, advected by the turbulent velocity field,
as prescribed by Kelvin’s circulation theorem. Therefore, they
are likely to be mixed in a chaotic way that renders their
random spatial distribution, associated to o (r), to be indepen-
dent (again, as a first approximation) from the circulations
they carry. While the putative chaotic dynamics of vortex
tubes still deserves deeper understanding, chaotic mixing is
a well-established fact for two-dimensional point vortex sys-
tems [26]. In addition, the statistical independence of & (r) and
@(r) in the definition of the vorticity field (2.4) is postulated
mainly as a way to cope with two apparently contradictory
statements: the fact, already discussed, that vorticity corre-
lation functions in the plane y should be factorized as a
Gaussian stochastic process and the fact that the dissipation
field, which is tied to the intensity of the circulation carried by
vortex structures is non-Gaussian, usually modeled in terms of
Gaussian multiplicative chaos [15].

(2.15)

(2.16)
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III. STATISTICAL MOMENTS AND PROBABILITY
DISTRIBUTION FUNCTIONS

Defining R = R/, the first interesting quantities to com-
pute are the circulation variance and kurtosis in the asymptotic
limit R < 1. It turns out that up to lowest order in R depen-
dence,

3.1

ra) 3 1 (R 3“/21 @ -
(F,%)z_E&ﬂﬁz(«/l—S) <_@ ) G2

Recalling that for R < 1 one has (I'3) >~ (o) (7R?*)? =
€o(mTR*)?/(3v), we find, from (3.1),

1

omn?’

& = 3.3)
Also, from the data of the numerical simulations reported in
[5] we obtain that limg_,o(I'§)/(T'2)* = C4R*, where Cy =~
1.16 and a4 =~ 0.41. This implies, using (3.2), that

231 1 peum-a
2. Cy 153m/4 72 '

Since 3u/2 — oy = —0.14 < 0, the above result tells us that
the dilute vortex gas approximation improves the higher is
the Reynolds number. For R; = 240, for instance, we already
have 675? = 0.39, meaning that the mean intervortex dis-
tance in this case can be estimated as 1/4/5 ~ 2.8n and that
vortex structures, which have core radius of the order of n, are
in fact satisfactorily resolved.

Moving, now, to the opposite asymptotic region R > 1,
we get, keeping all the subdominant terms, the circulation
kurtosis

G 3.4

(M) _ el SR
02~ (g2 T, BRe
where the exactly computed coefficients A,’s and B,,’s are
Ay =381 4+ 6¢*8°G, A, = 12¢8°E,
A3 = 12¢°8°F, A4 =38%n°,

As = 6¢83TE,  Ag = 328*E2, (3.6)
By =ém, B,=c8E,
with
c=1/[2xT(4/3)],  8=éng,
E = 4752T(5/6)['(2/3)/[T(4/3)I'(7/3)],
F=033x@2n)’, G=2"*z'Tr2/3). 3.7

It is worth emphasizing that b is the only free modeling
parameter in Eq. (3.5). General moments of circulation can
be computed for R > 1, as well. At leading order, we find
(T'R) ~ R*/3(ERy ~ R*», where

40

Apy=— — — —2).
p 3 SP(P )

The model predictions based on Egs. (3.2), (3.5), and (3.8)
lead to very suggestive comparisons to numerical results,
as shown in Fig. 2. Equation (3.8) implies that dA,/dp =

(3.8)
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FIG. 2. Numerical kurtoses of circulation for R, = 240 (o), 650
(O), and 1300 (A) from [5]. Solid lines represent the asymptotic
expansion, Egs. (3.2), witha = 3.3, and (3.5), with b = 2.0, that hold
at dissipative (R < ng) and larger inertial range scales (R > ng),
respectively. The dashed line indicates, for reference, the kurtosis
of a Gaussian distribution. The inset compares the numerical scal-
ing exponents A, of circulation moments of order p evaluated at
R, = 1300 [5] (open circles) with the predicted values computed
from Eq. (3.8) (solid line). The straight dotted line gives the K41
scaling, A, = 4p/3.

4/3 + /4 =1.376 £0.002 at p = 0. This result is in strik-
ing agreement with the value 1.367 4+ 0.009 obtained from
accurate numerical simulations [5].

The present approach, furthermore, allows us to derive
closed analytical expressions for the cPDFs, pg(I"), for R >
1. Using (1.1) and (2.14), and representing, for convenience,
the circulation in units of 2 n%/€y/(3V), the associated char-
acteristic function is written as the triple expectation value

Z(¢) = ({{exp [it TR @.60.0)
o0 1
= /0 défR(E)<eXp[—§§2§29]>, (3.9)

where fr(£) is the lognormal probability distribution function
for the random variable &g, defined from (2.15) and (2.16),
and

Q= / d’r / d’r' (a(r)a(r))o (r)o (r'). (3.10)
D D

A straightforward evaluation shows that the variance of Q

becomes very small compared to Q? in the region R > 1.

Therefore, averaging over the o (r) fields is effectively equiv-

alent to replacing Q by its mean value Q oc R®3 in (3.9).

Performing the Fourier transform of (3.9), we get

1 > 1 I?
dé— -—=), @11
’_271'&_2/0 SéfR(é)eXp< 2529> G.1D)

which is remarkably analogous to the Castaing et al. modeling
form of velocity increment PDFs [28-30], with £ taking the
place of the energy dissipation rate €. Additional analysis

shows that for 1 €« R « Ri/ 2, the cPDF just obtained can

be recast as a function of Fexp()_(R)/«/5 ~ T'/R" around

pr(I') =
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FIG. 3. Comparisons between standardized numerical cPDFs
(vertically displaced to ease visualization) for R/nx = 16, 32, 64,
128, and 256 (from the top to the bottom) obtained at Re; = 418
from the Johns Hopkins University turbulence database [27], and the
ones evaluated from the theoretical result (solid black lines) given by
Eq. (3.11). The cPDF tails are in general slightly underestimated due
to finite-size ensemble effects, with more pronounced drops taking
place at larger circulation contours.

its central core, where h = 4/3 + /4 = 1.376, in agreement
with the observations of Ref. [5]. Numerical cPDFs computed
from the Johns Hopkins University turbulence data base [27]
are closely reproduced by Eq. (3.11), as indicated in Fig. 3.

IV. CONCLUSIONS

To summarize, we have been able to address several im-
portant statistical features of turbulent circulation, relying
on the fusion of structural concepts—the picture of a turbu-
lent flow as a system of sparse vortex tubes—with the long

known OK62 phenomenological approach to intermittency.
The vortex gas modeling introduced here throws light on
the dependence of the circulation kurtosis with the Reynolds
number and probing scale, the scaling exponents of the circu-
lation moments, the detailed shape of cPDFs, and their related
collapsing exponent 7 >~ 1.4.

A few comments on the domain of validity of the results
reported in Fig. 2 are in order. As was shown in Ref. [5],
the scaling exponents of circulation moments are best fitted
by a linear function of the moment order p for p > 6. In
contrast, our modeling relies heavily on the structure of OK62
phenomenology, where intermittency scaling exponents are
necessarily quadratic functions of the moment orders.

The linearization of scaling exponents at high moment or-
ders is not a particular feature of circulation statistics, but it is
also observed in the evaluation of velocity structure functions.
It is known, for the latter, that the concavity problems [11]
associated to OK62 phenomenology can be fixed within the
multifractal formalism, assuming that the multifractal set of
field singularities degenerates into a monofractal set charac-
terized by a minimum Holder exponent [31,32]. We remark
that an analogous discussion could be applied, in principle, to
model the scaling properties of circulation moments.

Further progress is likely to be more conveniently ap-
proached by Monte Carlo simulations of the fields @&(r), &£(r),
and o(r), under a variety of model definitions. A problem
of fundamental interest, of course, is how to extend (2.4) or
(2.14) to the case of nonplanar loops, taking into account
possible connections of circulation statistics with minimal
surface theory [6,33]. The formulation of a bridge between the
languages of vortex gas modeling and multifractality is also
an exciting problem, which surely deserves close attention in
future investigations.
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