
Density of *n*-Heptane + *n*-Dodecane and Carbon Dioxide +*n*-Heptane + *n*-Dodecane Mixtures up to 70 MPa from (293.15 to 363.15) K

David C. Santos, Isague S. Goncalves, Ana Mehl, Paulo Couto, and Márcio L. L. Paredes*

isopleths: CO_2 (0.4904) + *n*-heptane (0.2548) + *n*-dodecane (0.2548), and CO₂ (0.7425) + n-heptane (0.1288) + n-dodecane (0.1288). The obtained experimental data were correlated by a polynomial model and by a Tait-based equation. Density values for pure *n*-heptane and *n*-dodecane were found to be in agreement

with literature data within approximately 0.3%. The isothermal compressibility and thermal expansion values of these mixtures were obtained by differentiation from the models as a function of pressure and temperature. Analysis of these properties pointed out that the polynomial model provided more accurate results related to derived properties. The excess volume of the mixtures was also determined. In general, they are negative, but they become positive for binary mixtures in the heptane-rich region as well as at higher pressures for ternary mixtures.

1. INTRODUCTION

The reduction in oil production from conventional sources has driven the global interest in the use of enhanced oil recovery methods (EOR). This fact led the oil and gas industry to explore formations characterized by more extreme production conditions than in conventional reservoirs. Carbon dioxide (CO₂) miscible flooding is among the most effective nonthermal EOR methods. In this method, CO₂ is injected through injection wells into the reservoir under high pressure causing a significant reduction in oil viscosity and swelling the oil.^{1,2} Both oil swelling and viscosity reduction improve crude oil mobility, providing opportunities to recover oils that would not be produced. In this context, density measurements are important to characterize the thermodynamic volumetric properties and develop accurate equations of state for reservoir fluid description.

Due to the compositional complexity of crude oil, alkane mixtures under high pressure and high temperature (HPHT) were typically used as alternatives of crude oil to address the thermodynamic properties of crude oil. However, the amount of density data available in the literature covering the temperature and pressure conditions typically found in offshore reservoirs is still limited. For instance, a literature survey of studies of liquid densities for n-alkane binary mixtures reveals that only Dzida and Cempa³ evaluated the *n*-heptane + *n*-dodecane system at HPHT. Their study reported the density of this mixture at temperatures from (293 to 318) K and pressure up to 100 MPa. Furthermore, the availability of density data for ternary or multicomponent mixtures comprising alkanes with dissolved CO₂ is even more restrictive.

To understand the volumetric behavior of CO₂-rich fluids in oil reservoirs, both academia and industry have been using binary CO₂ + hydrocarbon mixtures as a model system. For instance, Fenghour et al.⁴ measured the density of the CO₂ + *n*-heptane system from (405 to 469) K, for pressures between 0.7 and 24 MPa at the following carbon dioxide mole fractions: 0.2918, 0.3888, and 0.4270. Medina-Bermúdez et al.⁸ extended this dataset for a temperate range of (313.15-363.15) K at pressures up to 25 MPa and \mbox{CO}_2 composition from 0.0218 to 0.9496. In addition, Bazile et al.⁹ explored $CO_2 + n$ -heptane mixture densities for a composition varying from 0.236 to

Received: October 28, 2020 Accepted: January 26, 2021 Published: February 3, 2021

0.869, at two temperatures near CO_2 critical temperature, T = (303.15 and 313.15) K, and at pressures from 10 to 70 MPa.

The $CO_2 + n$ -dodecane binary system has also been studied regarding volumetric behavior under HPHT conditions. Zhang et al.¹⁰ studied the volumetric behavior of this mixture at four carbon dioxide mole fractions: 0.2497, 0.5094, 0.7576, and 0.8610, at temperatures ranging from (313.55 to 353.55) K, and pressure up to 18 MPa. Moreover, Zambrano et al.¹¹ also measured the experimental density data for the $CO_2 + n$ dodecane binary mixture at a temperature range of (283.15– 393.15) K and p = (10-100) MPa. Recently, Bazile et al.¹² measured densities of the $CO_2 + n$ -dodecane mixture with CO_2 molar percentage ranging from 20 to 85% at pressures from (10 to 70) MPa and at two temperatures around the critical temperature of carbon dioxide (303 and 313) K. To the best of our knowledge, there are no available density data for the $CO_2 + n$ -heptane + n-dodecane ternary system.

Thus, in this study, the density of pure *n*-heptane, *n*-dodecane, their binary mixtures, and the ternary mixture comprising *n*-heptane and *n*-dodecane with dissolved CO_2 were measured in a range of temperatures from (293.15 to 363.15) K and pressure up to 70 MPa.

Two models were used to correlate the density experimental data: an empirical polynomial model presented by Amorim et al.¹³ and a Tait-based model. Amorim's equation calculates density data from other thermodynamic properties such as thermal expansion coefficient (α) and isothermal compressibility coefficient (k_T). From this approach, the density of the cyclohexane + *n*-hexadecane binary mixtures from (318.15 to 413.15) K and up to 62 MPa presented deviations within the experimental error, which was notably more accurate than the simpler empirical models such as Tait-based models. Thus, this study also attempts to evaluate the Amorim and co-authors' equation¹³ in systems that are significantly more compressible than the work previously evaluated by those authors.

2. MATERIALS AND METHODS

2.1. Materials. The pure *n*-heptane and *n*-dodecane used in this study were provided by Sigma-Aldrich with a stated mass fraction purity all higher than 0.99. Carbon dioxide was provided by White Martins with a stated mass fraction purity higher than 0.998. All reagents were used without further purification. The liquid hydrocarbons were degassed separately in vacuum flasks at least for 1 h by means of a VWR ultrasonic bath prior to their use. The details of the chemicals used in this work are listed in Table 1.

The *n*-heptane + *n*-dodecane binary mixtures are carefully prepared by the gravimetric method using a Mettler Toledo balance (ME204/A) with a combined standard uncertainty of 0.0002 g at six different *n*-heptane mole fractions: $x_1 = 0$,

Table 1. Specifications of Chemicals in Th	is Study"
--	-----------

chemical name	source	CAS registry number	mass fraction purity ^{a,b}	purification method
n-heptane	Sigma-Aldrich	142-82-5	>0.99	none
n-dodecane	Sigma-Aldrich	112-40-3	>0.99	none
carbon dioxide	White Martins	124-38-9	>0.998	none

^{*a*}All of the purities of the samples were obtained by the suppliers, and no further purity measurements were performed. ^{*b*}Analysis performed by the supplier with gas chromatography.

0.1999, 0.3991, 0.5999, 0.7998, and 1. These substances were weighted one at a time in the same flask just before the measurement. The mixture was transferred to a high-pressure cylinder (sample cylinder) immediately after preparation to prevent evaporation. The cylinder is divided into two parts by means of an inner piston. One side of it was filled with water, which was used as a hydraulic fluid, whereas the other side was filled with the sample. The sample side was bled to remove trapped air from the cylinder. The estimated combined expand uncertainty, U_{c} in the composition of the mixtures is 1×10^{-5} in mole fraction with k = 2 for a confidence level of 0.95,

For the preparation of the $CO_2 + n$ -heptane + n-dodecane ternary mixture, an equimolar mixture of n-heptane + ndodecane was first weighed in the sample cylinder using a Sartorius balance (Cubis MSU 10202S) with a combined standard uncertainty of 0.06 g. After that, the cylinder was closed to avoid evaporation and the sample side was bled to remove trapped air from the cylinder. Thus, a volumetric pump (Quizix Q5000) was used to inject the CO_2 (by sample side) in homogeneous liquid state within the measurement cell. The return line of the hydraulic fluid that connects the sample cylinder to an external vessel controlled the pressure in the system. Consequently, the mass of injected CO₂ into the measuring cell is directly determined by weighing the cylinder using mass balance principles. The composition and combined expand uncertainties in the composition of the ternary mixtures calculated by the uncertainty propagation law (k =2) are shown in Table 2.

Table 2. Mole Fraction, x, and Combined Expand Uncertainties in the Composition, $U_c(x)$, of the Ternary Mixtures

substance	x	$U_{\rm c}(x)$	x	$U_{\rm c}(x)$
carbon dioxide	0.4904	1.2×10^{-3}	0.7425	8.6×10^{-4}
n-dodecane	0.2548	7.3×10^{-4}	0.12875	5.0×10^{-4}
n-heptane	0.2548	9.0×10^{-4}	0.12875	7.6×10^{-4}

After the injection of CO_2 into the hydrocarbon mixture, the mixture is pressurized at 70 MPa and the cylinder was rocked for 24 h to generate the movement of a stainless steel ball placed inside the cylinder to achieve the homogenization of the prepared mixture.

2.2. Density Measurements. The density of the pure hydrocarbons and the mixtures was measured using a Ushaped vibrating tube densitometer Anton Paar DMA HPM, with an mPDS-5 evaluation unit as the reading device. In addition to the densitometer, the experimental setup includes one volumetric pump (Quizix Q5000) required to impose pressure within the measurement cell and a pressure transducer (AST 4300), which measures pressures up to 138 MPa with a standard uncertainty of 0.35 MPa. The measuring cell of the densitometer is maintained at a constant temperature through a liquid circulator bath Julabo 300F. The temperature is measured by a built-in temperature sensor. According to the manufacturer's specification, the temperature error is less than 0.1 K, and according to our measurements, the standard uncertainty u(T) is 0.02 K. A schematic of the experimental apparatus can be found in Figure 1. Four times the volume of the tubes from the sample cylinder to the purging of the densitometer is expelled to ensure that the sample composition in the densitometer measuring cell is the same as that prepared in the sample cylinder.

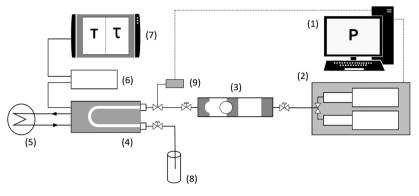


Figure 1. Schematic of the densitometer. (1) Computer, (2) Quizix Q5000 pumps, (3) sample cylinder, (4) DMA HPM, (5) Julabo 300F thermostatic bath, (6) HPM DMA interface module, (7) mPDS-5, (8) external sample receiver, and (9) pressure transducer.

The calibration of the densitometer was performed following a modification of the method presented in Lagourette et al.,¹ analogously to that described by Comuñas et al.¹⁵ using vacuum and Milli-Q water as references. The mPDS-5 evaluation unit displays the oscillating period with seven digits, which, according to Comuñas et al.¹⁵ and our experiments, corresponds to an uncertainty of the order of 10^{-2} kg·m⁻³ related only to the measured oscillating period. Thus, considering the uncertainties of the temperature, the pressure, the period of oscillation measurements for water, vacuum, and the studied liquid, and density accuracy of the water density data,¹⁶ the combined experimental uncertainty in the reported density values, by applying the law of propagating errors, is estimated to be 0.1 kg·m⁻³. Fluid viscosity can also affect the vibration of the U-tube. For viscous fluids of about 150 mPa·s, density measurements can increase by about $\delta \rho$ = $0.0005 \cdot \rho$.¹⁷ In this work, the effect of viscosity on density measurements is considered negligible since the maximum viscosity of the evaluated systems is around 3 mPa·s.¹⁸ Further analysis on sensitivity of vibrating U-tubes is reported by Holcomb and Outcalt.¹⁹

According to Chirico et al.,²⁰ for a sample of 99% mole fraction purity (*n*-heptane and *n*-dodecane; see Table 1), contribution of sample impurity to the combined standard uncertainty would be $u_c(\rho) = 0.001 \cdot \rho$. Thus, considering propagation error law, the combined expanded uncertainty U_c (k = 2 for a confidence level of 0.95) for density measurements of all systems evaluated in this study is $U_c(\rho) = 0.002 \cdot \rho$.

Density measurements were performed in the temperature range from (293.15 to 363.15) K and pressures from (5 to 70) MPa for the *n*-heptane, *n*-dodecane, and their binary mixtures. The CO_2 + *n*-heptane + *n*-dodecane ternary mixtures are also studied in the aforementioned range of temperature and pressure. However, the minimum pressures of the measurements for ternary mixtures are set to values higher than their bubble pressures, which in turn were roughly calculated using commercial modeling software with the Peng–Robinson equation of state (EoS).²¹

2.3. Modeling of Density and Calculation of Thermal Expansion Coefficient and Isothermal Compressibility Coefficient. 2.3.1. Empirical Polynomial Model from α and k_T (Polynomial). A polynomial model for thermal expansion coefficient (α , eq 1) and isothermal compressibility coefficient (k_T , eq 2) was used as presented by Amorim et al.¹³ The density model is obtained after the integration of eq 1 at a reference pressure p^* from a given temperature range (T^* to T). Density value at reference T^* and p^* must be known. In

the present study, these values were obtained experimentally. The final step is to integrate eq 2 from p^* to a pressure p.

$$\alpha(T, p^*) = -\left[\frac{\partial \ln(\rho)}{\partial T}\right]_p \tag{1}$$

$$k_{\rm T}(T, p) = \left[\frac{\partial \ln(\rho)}{\partial p}\right]_T \tag{2}$$

In this study, eqs 1 and 2 were used to obtain numerical α and $k_{\rm T}$. To calculate numerical α , the natural logarithm of experimental density at constant pressure was fitted by a polynomial equation relating density to the temperature. To calculate numerical $k_{\rm T}$, the natural logarithm of experimental density at constant temperature was fitted by a polynomial equation relating density to the pressure.

From Amorim's proposal, α and $k_{\rm T}$ are defined according to eqs 3 and 4.

$$\alpha(T, p^*) = a' + b'T + c'T^2$$
(3)

$$k_{\rm T}(T, p) = a(p) + b(p)T + c(p)T^2$$
 (4)

where

$$a(p) = a_0^P + a_1^P p + a_2^P p^2$$
(5)

$$b(p) = b_0^P + b_1^P p + b_2^P p^2$$
(6)

$$c(p) = c_0^P + c_1^P p + c_2^P p^2$$
(7)

From basic thermodynamics

$$d\rho = \left(\frac{\partial\rho}{\partial p}\right)_T dp + \left(\frac{\partial\rho}{\partial T}\right)_p dT$$
(8)

$$\frac{\mathrm{d}\rho}{\rho} = k_{\mathrm{T}} \mathrm{d}p - \alpha \mathrm{d}T \tag{9}$$

Integrating term by term eq 9 to density, pressure, and temperature, respectively, and rearranging, density can be calculated as follows

$$\rho(p, T) = \rho^* \cdot e^{\int_{p^*}^{p} k_T dp' - \int_{T^*}^{T} \alpha dT'}$$
(10)

where ρ^* is the density value at reference T^* and p^*

Thus, integrating eqs 3 and 4, the densities can be calculated as a function of pressure and temperature with eq 10.

1307

Journal of Chemical & Engineering Data

pubs.acs.org/jced

Article

Table 3. Experimental Densities ρ for *n*-Heptane (1) + *n*-Dodecane at Temperature *T*, Pressure *p*, and Mole Fraction x_1^a

	-				-		decane at	_		_			
p/MPa	T/K	<i>x</i> ₁	$\rho/\text{kg}\cdot\text{m}^{-3}$	T/K	<i>x</i> ₁	$\rho/\text{kg}\cdot\text{m}^{-3}$	p/MPa	T/K	<i>x</i> ₁	$\rho/\text{kg}\cdot\text{m}^{-3}$	T/K	<i>x</i> ₁	$\rho/\text{kg}\cdot\text{m}^{-3}$
5	293.15	0.0000	752.3	303.15	0.0000	745.3	20	313.15	0.1999	740.2	323.15	0.1999	733.9
5	293.15	0.1999	743.6	303.15	0.1999	736.6	20	313.15	0.3991	730.8	323.15	0.3991	724.0
5 5	293.15 293.15	0.3991 0.5999	734.0 721.8	303.15 303.15	0.3991 0.5999	726.6 714.3	20 20	313.15 313.15	0.5999 0.7998	718.5 704.1	323.15 323.15	0.5999 0.7998	711.6 696.9
5	293.15	0.7998	707.1	303.15	0.7998	699.3	20	313.15	1.0000	685.9	323.15	1.0000	679.2
5	293.15	1.0000	689.0	303.15	1.0000	680.7	30	313.15	0.0000	755.2	323.15	0.0000	748.9
10	293.15	0.0000 0.1999	755.7	303.15	0.0000	748.8	30	313.15	0.1999	746.9	323.15	0.1999	740.7
10	293.15		747.2	303.15	0.1999	740.2	30	313.15	0.3991	737.6	323.15	0.3991	731.1
10	293.15	0.3991	737.6	303.15	0.3991	730.5	30	313.15	0.5999	725.5	323.15	0.5999	718.9
10	293.15	0.5999	725.5	303.15	0.5999	718.4	30	313.15	0.7998	711.7	323.15	0.7998	704.8
10	293.15	0.7998	711.1	303.15	0.7998	703.6	30	313.15	1.0000	694.7	323.15	1.0000	687.5
10	293.15	1.0000	693.5	303.15	1.0000	685.3	40	313.15	0.0000	761.0	323.15	0.0000	755.0
20	293.15	0.0000	761.9	303.15	0.0000	755.3	40	313.15	0.1999	752.7	323.15	0.1999	747.0
20	293.15	0.1999	753.7	303.15	0.1999	747.1	40	313.15	0.3991	743.7	323.15	0.3991	737.7
20	293.15	0.3991	744.3	303.15	0.3991	737.5	40	313.15	0.5999	732.0	323.15	0.5999	725.7
20	293.15	0.5999	732.5	303.15	0.5999	725.6	40	313.15	0.7998	718.4	323.15	0.7998	711.8
20	293.15	0.7998	718.5	303.15	0.7998	711.3	40	313.15	1.0000	701.7	323.15	1.0000	695.0
20	293.15	1.0000	701.3	303.15	1.0000	693.7	50	313.15	0.0000	766.4	323.15	0.0000	760.7
30	293.15	0.0000	767.6	303.15	0.0000	761.3	50	313.15	0.1999	758.3	323.15	0.1999	752.9
30	293.15	0.1999	759.5	303.15	0.1999	753.2	50	313.15	0.3991	749.6	323.15	0.3991	743.7
30	293.15	0.3991	750.4	303.15	0.3991	743.9	50	313.15	0.5999	738.0	323.15	0.5999	732.0
30	293.15	0.5999	738.8	303.15	0.5999	732.4	50	313.15	0.7998	724.6	323.15	0.7998	718.5
30	293.15	0.7998	725.2	303.15	0.7998	718.4	50	313.15	1.0000	708.3	323.15	1.0000	702.0
30	293.15	1.0000	708.4	303.15	1.0000	701.2	60	313.15	0.0000	771.5	323.15	0.0000	766.1
40	293.15	0.0000	773.0	303.15	0.0000	767.0	60	313.15	0.1999	763.7	323.15	0.1999	758.4
40	293.15	0.1999	765.0	303.15	0.1999	759.0	60	313.15	0.3991	754.9	323.15	0.3991	749.3
40	293.15	0.3991	756.1	303.15	0.3991	749.9	60	313.15	0.5999	743.5	323.15	0.5999	737.8
40	293.15	0.5999	744.9	303.15	0.5999	738.6	60	313.15	0.7998	730.4	323.15	0.7998	724.5
40	293.15	0.7998	731.5	303.15	0.7998	724.9	60	313.15	1.0000	714.3	323.15	1.0000	708.4
40 50	293.15	1.0000	715.0	303.15	1.0000	708.1	70	313.15	0.0000	776.3	323.15	0.0000	771.0
50	293.15	0.0000	778.1	303.15	0.0000	772.2	70	313.15	0.1999	768.5	323.15	0.1999	763.4
50	293.15	0.1999	770.3	303.15	0.1999	764.4	70	313.15	0.3991	760.0	323.15	0.3991	754.5
50	293.15	0.3991	761.4	303.15	0.3991	755.4	70	313.15	0.5999	748.8	323.15	0.5999	743.1
50	293.15	0.5999	750.4	303.15	0.5999	744.2	70	313.15	0.7998	735.9	323.15	0.7998	730.1
50	293.15	0.7998	737.1	303.15	0.7998	730.9	70	313.15	1.0000	720.1	323.15	1.0000	714.3
50	293.15	1.0000	721.0	303.15	1.0000	714.4	5	333.15	0.0000	724.1	343.15	0.0000	717.1
60	293.15	0.0000	782.7	303.15	0.0000	777.2	5	333.15	0.1999	715.2	343.15	0.1999	707.6
60	293.15	0.1999	775.1	303.15	0.1999	769.4	5	333.15	0.3991	704.7	343.15	0.3991	697.3
60	293.15	0.3991	766.4	303.15	0.3991	760.7	5	333.15	0.5999	691.5	343.15	0.5999	683.8
60	293.15	0.5999	755.5	303.15	0.5999	749.6	5	333.15	0.7998	675.4	343.15	0.7998	667.5
60	293.15	0.7998	742.5	303.15	0.7998	736.4	5	333.15	1.0000	656.1	343.15	1.0000	647.6
60 70	293.15	1.0000	726.7	303.15	1.0000	720.2	10	333.15	0.0000	728.2	343.15	0.0000	721.4
70 70	293.15	0.0000	787.4	303.15	0.0000	781.8	10	333.15	0.1999	719.5	343.15	0.1999	712.4
70 70	293.15	0.1999	779.8	303.15	0.1999	774.2	10	333.15	0.3991	709.1	343.15	0.3991	702.0
70 70	293.15	0.3991	771.3	303.15	0.3991	765.7	10	333.15	0.5999	696.2	343.15	0.5999	688.8 672.0
70 70	293.15	0.5999	760.5	303.15	0.5999	754.7	10	333.15	0.7998	680.5	343.15	0.7998	672.9
70 70	293.15	0.7998	747.6	303.15	0.7998	741.7	10	333.15	1.0000	661.6	343.15	1.0000	653.6
70	293.15	1.0000	732.0	303.15	1.0000	726.0	20	333.15	0.0000	735.8	343.15	0.0000	729.4
5	313.15	0.0000	738.2	323.15	0.0000	731.6	20	333.15	0.1999	727.3	343.15	0.1999	720.5
5	313.15	0.1999	729.3	323.15	0.1999	722.2	20	333.15	0.3991	717.4	343.15	0.3991	710.7
5	313.15	0.3991	719.5	323.15	0.3991	712.4	20	333.15	0.5999	704.9	343.15	0.5999	698.0
5	313.15	0.5999	706.4	323.15	0.5999	699.3	20	333.15	0.7998	689.8	343.15	0.7998	682.7
5	313.15	0.7998	691.3	323.15	0.7998	683.8	20	333.15	1.0000	671.7	343.15	1.0000	664.3
5	313.15	1.0000	672.8	323.15	1.0000	664.9	30	333.15	0.0000	742.7	343.15	0.0000	736.2
10	313.15	0.0000	741.9	323.15	0.0000	735.0	30	333.15	0.1999	734.4	343.15	0.1999	728.1
10	313.15	0.1999	733.1	323.15	0.1999	725.9	30	333.15	0.3991	724.8	343.15	0.3991	718.4
10	313.15	0.3991	723.4	323.15	0.3991	716.1	30	333.15	0.5999	712.5	343.15	0.5999	706.1
10	313.15	0.5999	710.6	323.15	0.5999	703.4	30	333.15	0.7998	698.0	343.15	0.7998	691.4
10	313.15	0.7998	695.9	323.15	0.7998	688.2	30	333.15	1.0000	680.6	343.15	1.0000	673.6
10	313.15	1.0000	677.7	323.15	1.0000	669.6	40	333.15	0.0000	749.1	343.15	0.0000	743.3
20	313.15	0.0000	748.8	323.15	0.0000	742.3	40	333.15	0.1999	741.1	343.15	0.1999	735.0

Journal of Chemical & Engineering Data

Table 3. continued

rable 3	. contin	ueu											
p/MPa	T/K	x_1	$\rho/{\rm kg}{\cdot}{\rm m}^{-3}$	T/K	x_1	$ ho/{ m kg}{ m m}^{-3}$	p/MPa	T/K	x_1	$ ho/{\rm kg}{\cdot}{\rm m}^{-3}$	T/K	x_1	$ ho/{ m kg}{ m m}^{-3}$
40	333.15	0.3991	731.7	343.15	0.3991	725.6	20	353.15	0.5999	691.2	363.15	0.5999	684.1
40	333.15	0.5999	719.7	343.15	0.5999	713.6	20	353.15	0.7998	675.7	363.15	0.7998	668.3
40	333.15	0.7998	705.5	343.15	0.7998	699.2	20	353.15	1.0000	656.8	363.15	1.0000	649.1
40	333.15	1.0000	688.4	343.15	1.0000	681.8	30	353.15	0.0000	730.6	363.15	0.0000	724.2
50	333.15	0.0000	754.9	343.15	0.0000	749.4	30	353.15	0.1999	721.8	363.15	0.1999	715.7
50	333.15	0.1999	747.1	343.15	0.1999	741.3	30	353.15	0.3991	711.8	363.15	0.3991	705.6
50	333.15	0.3991	737.9	343.15	0.3991	732.1	30	353.15	0.5999	699.6	363.15	0.5999	693.0
50	333.15	0.5999	726.1	343.15	0.5999	720.3	30	353.15	0.7998	684.8	363.15	0.7998	677.9
50	333.15	0.7998	712.3	343.15	0.7998	706.2	30	353.15	1.0000	666.6	363.15	1.0000	659.4
50	333.15	1.0000	695.5	343.15	1.0000	689.3	40	353.15	0.0000	737.4	363.15	0.0000	731.5
60	333.15	0.0000	760.3	343.15	0.0000	755.0	40	353.15	0.1999	729.1	363.15	0.1999	723.1
60	333.15	0.1999	752.7	343.15	0.1999	747.0	40	353.15	0.3991	719.3	363.15	0.3991	713.4
60	333.15	0.3991	743.6	343.15	0.3991	738.0	40	353.15	0.5999	707.3	363.15	0.5999	701.1
60	333.15	0.5999	732.1	343.15	0.5999	726.5	40	353.15	0.7998	692.8	363.15	0.7998	686.3
60	333.15	0.7998	718.4	343.15	0.7998	712.7	40	353.15	1.0000	675.3	363.15	1.0000	668.6
60	333.15	1.0000	702.0	343.15	1.0000	696.1	50	353.15	0.0000	743.7	363.15	0.0000	738.1
70	333.15	0.0000	765.4	343.15	0.0000	760.6	50	353.15	0.1999	735.6	363.15	0.1999	729.9
70	333.15	0.1999	757.8	343.15	0.1999	752.7	50	353.15	0.3991	726.0	363.15	0.3991	720.5
70	333.15	0.3991	749.0	343.15	0.3991	743.9	50	353.15	0.5999	714.3	363.15	0.5999	708.3
70	333.15	0.5999	737.6	343.15	0.5999	732.5	50	353.15	0.7998	700.2	363.15	0.7998	694.0
70	333.15	0.7998	724.1	343.15	0.7998	719.0	50	353.15	1.0000	683.1	363.15	1.0000	676.8
70	333.15	1.0000	708.2	343.15	1.0000	702.8	60	353.15	0.0000	749.6	363.15	0.0000	744.1
5	353.15	0.0000	709.9	363.15	0.0000	703.0	60	353.15	0.1999	741.8	363.15	0.1999	736.1
5	353.15	0.1999	700.3	363.15	0.1999	693.6	60	353.15	0.3991	732.3	363.15	0.3991	726.8
5	353.15	0.3991	689.7	363.15	0.3991	682.5	60	353.15	0.5999	720.7	363.15	0.5999	714.9
5	353.15	0.5999	675.9	363.15	0.5999	668.3	60	353.15	0.7998	706.9	363.15	0.7998	701.0
5	353.15	0.7998	659.4	363.15	0.7998	651.2	60	353.15	1.0000	690.2	363.15	1.0000	684.1
5	353.15	1.0000	638.8	363.15	1.0000	630.2	70	353.15	0.0000	755.2	363.15	0.0000	750.0
10	353.15	0.0000	714.6	363.15	0.0000	707.7	70	353.15	0.1999	747.5	363.15	0.1999	742.2
10	353.15	0.1999	705.4	363.15	0.1999	698.4	70	353.15	0.3991	738.1	363.15	0.3991	733.1
10	353.15	0.3991	694.6	363.15	0.3991	687.6	70	353.15	0.5999	726.8	363.15	0.5999	721.4
10	353.15	0.5999	681.2	363.15	0.5999	673.9	70	353.15	0.7998	713.3	363.15	0.7998	707.7
10	353.15	0.7998	665.2	363.15	0.7998	657.3	70	353.15	1.0000	696.8	363.15	1.0000	691.1
10	353.15	1.0000	645.4	363.15	1.0000	637.1	^{<i>a</i>} Standa	rd uncerta	inties are	$U_{\rm c}(x_1) = 1$	$\times 10^{-5}$, u((T) = 0.02	K, u(p) =
20	353.15	0.0000	723.1	363.15	0.0000	716.4	0.35 M	Pa. The c	ombined e	expanded u	ncertainty	is $U_{\rm c}(\rho)$	$= 0.002 \cdot \rho$
20	353.15	0.1999	714.2	363.15	0.1999	707.6	with 0.9	95 level of	confidenc	k = 2.			
20	353.15	0.3991	703.7	363.15	0.3991	697.3							

pubs.acs.org/jced

The Nelder-Mead simplex method²² was used to fit the values of the fitting parameters found in eqs 3-7 to minimize the objective function (F_{obj}) , given by the following equation

$$F_{\rm obj} = \sqrt{\frac{\sum_{i=1}^{N} (\rho_i^{\rm exp} - \rho_i^{\rm calc})^2}{N}}$$
(11)

where ρ^{exp} is the value of the experimental property determined in this work, ρ^{calc} is the calculated value of the same property, and N is the number of experimental data points.

2.3.2. Tait Empirical Model (Tait). The experimental densities were also correlated for each of the studied systems by means of the following modified Tammann-Tait equation²³

$$\rho(T, p) = \frac{\rho(T, p_{\text{ref}})}{1 - C \ln\left(\frac{B(T) + p}{B(T) + p_{\text{ref}}}\right)}$$
(12)

where $\rho(T, p_{ref})$ is the density as a function of temperature at a reference pressure, given by the following equation

$$\rho(T, p_{\text{ref}}) = \sum_{i=0}^{m} A_i T^i$$
(13)

where C is a constant and B(T) is a temperature-dependent parameter given by

$$B(T) = \sum_{j=0}^{n} B_{j} T^{j}$$
(14)

where A_{ij} , B_{ij} , and C are fitting parameters determined by correlating simultaneously for each composition the experimental densities values versus pressure and temperature.

The fitting parameters of eqs 13 and 14 were also optimized using eq 11.

The thermal expansion coefficient and the isothermal compressibility coefficient of the systems were also calculated using the Tait-based model. These derived thermodynamic properties were calculated by differentiation of eq 12, according to eqs 15 and 16.

Article

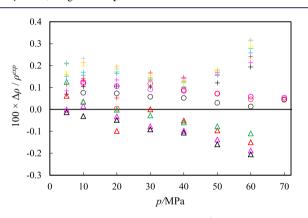
Article

Table 4. Summary of	f Density Data of <i>n</i> -Hept	ane, <i>n</i> -Dodecane, and <i>n</i>	<i>n</i> -Heptane + <i>n</i> -Dod	ecane Binary Mixture ⁴

year	author	$N_{\rm p}$	purity %	method	T/K	p/MPa
			n-heptane			
2013	Sagdeev et al. ²⁴	48	99.99	hw ^b	298-470	0.1-245
2015	Guerrero et al. ²⁵	100	99	vb ^c	283-323	0.1-65
2016	Abdussalam et al. ²⁶	208	99	vb	288-413	0.1-60
2018	Bazile et al. ⁹	14	99.5	vb	303-313	10-70
			n-dodecane			
1980	Landau and Würflinger ²⁷	226		vc ^d	252-313	0.1-300
1981	Dymond et al. ²⁸	28	99	vc	298-373	0.1-502
2003	Khasanshin et al. ²⁹	104		sv ^e	293-433	0.1-140
2007	Elizalde-Solis et al. ³⁰	150	99	vb	313-362	1-25
2008	Dzida and Cempa ³	60	99	sv	293-318	0.1-100
2009	Valencia et al. ³¹	54	99	vb	283-323	0.1-60
2014	Zhang et al. ¹⁰	38	99	msb ^f	314-354	8-18
2015	Regueira et al. ³²	63	99.8	vb	278-463	0.1-60
2017	García-Morales et al. ³³	66	99.6	vb	293-393	0.1-70
2018	Jia et al. ³⁴	108	99	vb	283-362	0.1-100
2019	Bazile et al. ¹²	14	99.6	vb	303-313	10-70
		<i>n</i> -h	eptane + <i>n</i> -dodecane			
2008	Dzida and Cempa ³	480	99	sv	293-318	0.1-100
2008	Dzida and Cempa	480	99	SV	293-318	0.1-10

"The overall number of data points, N_p ; temperature, T, and pressure, p, ranges; experimental method used; and purities of measured samples. ^bhw, hydrostatic weighing. ^cvb, vibrating tube. ^dvc, volume change. ^esv, sound velocity. ^fmsb, magnetic suspension balance.

$$k_T(T, p) = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T \equiv \frac{C}{\left[B(T) + p \right] \left[1 - C \ln \left(\frac{B(T) + p}{B(T) + p_{\text{ref}}} \right) \right]}$$
(15)


$$\begin{aligned} \alpha(T, p) &= -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p} \\ &\equiv -\frac{1}{\rho} \left(\frac{\rho'_{0}(T)D(T, p) - \rho_{0}(T)D'(T, p)}{D(T, p)^{2}} \right) \end{aligned}$$
(16)

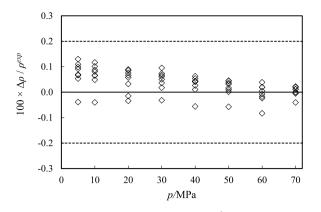
where D(T,p) is the denominator of the Tait equation (eq 12) and D'(T,p) is its temperature derivative defined as follows

$$D'(T, p) = \left(\frac{\partial D(T, p)}{\partial T}\right)_p$$
$$\equiv CB'(T) \left(\frac{1}{B(T) + 0.1} - \frac{1}{B(T) + p}\right)$$
(17)

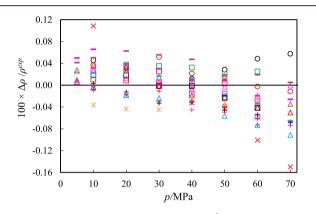
3. RESULTS AND DISCUSSION

3.1. Density. The measurements were performed along eight isotherms, (293.15-363.15) K, for various pressures ranging from (5 to 70) MPa for pure *n*-heptane, *n*-dodecane, and four different binary mixtures of *n*-heptane + *n*-dodecane, ranging from (19.99 to 79.99) mol % of *n*-heptane. The measurements were also performed for the ternary mixture CO_2 (1) + *n*-heptane (2) + *n*-dodecane in two different CO_2 proportions: $x_1 = 0.4904$ and $x_1 = 0.7525$ at the same temperature and pressure range. For ternary systems, $x_2 = x_3$. The minimum pressures of the measurements were set to values higher than the saturation pressures. Thus, for the system with lower CO_2 content, the minimum pressure measurements are 5 MPa from (293.15 to 313.15) K and 10 MPa from (323.15 to 363.15) K. For the system with a higher

Figure 2. Fractional deviations $\Delta \rho = \rho^{\text{exp}} - \rho^{\text{lit}}$ of the experimental densities ρ^{exp} of pure *n*-heptane from the values of ρ^{lit} obtained from experimental data available in the literature as a function of pressure. (O) Dzida and Cempa,³ (Δ) Guerrero et al.,²⁵ and (+) Abdussalam et al.²⁶ *T* = 293.15 (pink), *T* = 303.15 K (black), *T* = 313.15 K (red), *T* = 323.15 K (green), *T* = 333.15 K (blue), *T* = 343.15 K (yellow), *T* = 353.15 K (orange), and *T* = 363.15 K (gray).


 CO_2 content, they are 5 MPa at 293.15 K, 10 MPa from (303.15 to 333.15) K, and 20 MPa from (343.15 to 363.15) K.

For comparing the experimental density values with those obtained with the correlations presented in Section 2.3, the absolute average deviation (AAD), the maximum deviation (MD), and the standard deviation (σ) are calculated and defined according to eqs 18–20.


$$AAD/\% = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{\rho_i^{exp} - \rho_i^{calc}}{\rho_i^{exp}} \right|$$
(18)

$$MD\% = \max\left(100 \left| \frac{\rho_i^{exp} - \rho_i^{calc}}{\rho_i^{exp}} \right| \right)$$
(19)

https://dx.doi.org/10.1021/acs.jced.0c00943 J. Chem. Eng. Data 2021, 66, 1305-1318

Figure 3. Fractional deviations $\Delta \rho = \rho^{\text{exp}} - \rho^{\text{calc}}$ of the experimental densities ρ^{exp} of pure *n*-heptane at T = (293.15-363.15) K from the values of ρ^{calc} estimated from the correlation of Lemmon and Span³⁵ as a function of pressure. The dashed line is the combined expanded uncertainty $U_{c}(\rho) = 0.002^{*}\rho$ with a confidence level of 0.95 (k = 2).

Figure 4. Fractional deviations $\Delta \rho = \rho^{exp} - \rho^{lit}$ of the experimental densities ρ^{exp} of pure *n*-dodecane from the values of ρ^{lit} obtained from the experimental data available in the literature as a function of pressure. (×) Landau and Würflinger,²⁷ (Δ) Khasanshin et al.,²⁹ (+) Dzida and Cempa,³ (\Box) Valencia et al.,³¹ (*) Regueira et al.,³² (-) García-Morales et al.,³³ and (O) Bazile et al.¹² T = 293.15 (pink), T = 303.15 K (black), T = 313.15 K (red), T = 323.15 K (green), T = 333.15 K (blue), and T = 353.15 K (orange).

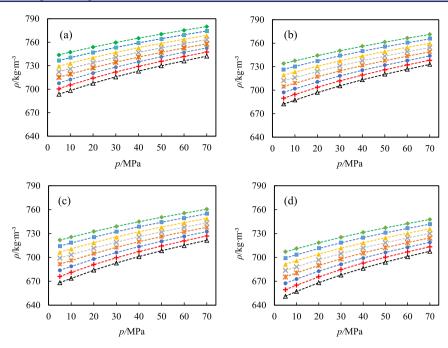
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} \left(\rho_i^{\exp} - \rho_i^{\text{calc}}\right)^2}{N - P}}$$
(20)

where *P* is the number of fitting parameters.

3.1.1. *n*-Heptane + *n*-Dodecane System. The experimental densities of *n*-heptane, *n*-dodecane, and their binary mixtures are reported in Table 3. The literature density data of these substances are listed in Table 4. However, it is important to note that Table 4 only presents studies published after 2013 for *n*-heptane, and a previous study was conducted by Sagdeev et al.²⁴ who reported an extensive survey related to *n*-heptane density data.

Figure 2 shows the differences in density of the experimental values measured in this study and those found in recent works published in the literature for pure *n*-heptane. To evaluate all of our pure *n*-heptane density data, the experimental results were compared with the density calculated from the equation of state (EoS) developed by Lemmon and Span,³⁵ which presents the volumetric properties of *n*-heptane with high accuracy. Typical density uncertainties using this equation are 0.1–0.2%. Figure 3 shows the difference between the

experimental data and those calculated from the EoS of Lemmon and Span.³⁵ The differences in density of the experimental values measured in this study and those found in the literature for *n*-dodecane are shown in Figure 4.


As can be seen in Figures 2–4, the deviations between the experimental densities and literature values (experimental and calculated) are mostly lower than 0.2%. More specifically, Figure 2 shows that data of the present study agree well with those reported by Dzida and Cempa³ with deviations ranging from 0.004 to 0.12%. However, higher deviations can occur in comparison to the data reported by Guerrero et al.²⁵ and Abdussalam et al.,²⁶ reaching 0.20 and 0.32%, respectively. Furthermore, in Figure 2, it is also possible to note that the deviations between data of this study and those of Guerrero et al.²⁵ and Abdussalam et al.,²⁶ deviate with opposite trends, being that the maximum deviation between these two studies found in the literature is 0.40%.

From the comparison of the experimental data of *n*-heptane with those obtained with the Lemmon and Span's equation shown in Figure 3, it is found that the maximum deviation is 0.13% and the average absolute deviation is 0.05%. Regardless of the experimental condition, the deviation is lower than expanded uncertainties $U_c(\rho)$ calculated with the conventional coverage factor k = 2, which are represented by dashed lines in Figure 3. Thus, these data agree within the entire range of temperature and pressure investigated.

Figure 4 shows the deviations obtained between the experimental densities of *n*-dodecane with those found in the literature. In comparison to the data reported by Valencia et al.,³¹ Regueira et al.,³² García-Morales et al.,³³ and Bazile et al.,¹² the deviations are mainly within the relative deviations of $\pm 0.05\%$. However, higher deviations occur from the data reported by Landau and Würflinger,²⁷ Khasanshin et al.,²⁹ and Dzida and Cempa³ of 0.15, 0.09, and 0.07\%, respectively. It is worth mentioning that, as in this study, the density measurements by Valencia et al.³¹ and Bazile et al.¹² were made with a vibrating tube densitometer. On the other hand, densities reported by Landau and Würflinger,²⁷ Khasanshin et al.,²⁹ and Dzida and Cempa³ were obtained from other methods (see Table 4). Thus, it can be highlighted that different methods for obtaining density might lead to higher deviations.

Figure 5 shows the densities of the binary mixtures nheptane (1) + *n*-dodecane (mole fraction $x_1 = 0.1999, 0.3991$, 0.5999, and 0.7998) along eight isotherms from (293.15 to 363.15) K at 10 K intervals and at pressures up to 70 MPa. These results are also presented in Table 3. In this figure, the usual trend of density with pressure and temperature can be observed, i.e., it increases with the increase of pressure along each isotherm. The correlative capability of density through the polynomial equation (Section 2.3) is also depicted in Figure 5 where calculated densities (dashed lines) are plotted along with experimental data. High-pressure liquid densities for the n-heptane + n-dodecane system were also reported by Dzida and Cempa;³ however, these data cannot be directly compared with our results because they were measured at different compositions x = (0.1014, 0.3007, 0.4999, 0.7007,0.8499, 0.9391, 0.9700).

Table 5 gathers the fitting parameters of the polynomial and Tait equations as well as additional statistical values for each isopleth evaluated in this study. The polynomial model presented slightly lower AAD values than the Tait-based equation for each isopleth, being on average 0.011 and 0.012%,

Figure 5. Density, ρ , of the *n*-heptane (1) + *n*-dodecane binary mixture in different isotherms as a function of pressure: (a) $x_1 = 0.1999$, (b) $x_1 = 0.3991$, (c) $x_1 = 0.5999$, (d) $x_1 = 7998$. (Green tilted square solid) 293.15 K, (blue box solid) 303.15 K, (yellow triangle up solid) 313.15 K, (gray multiplication sign) 323.15 K, (orange asterisk) 333.15 K, (blue circle solid) 343.15 K, (red plus sign) 353.15 K, and (Δ) 363.15 K. The dashed lines are densities calculated with the polynomial model.

Table 5. Parameters and Deviations for Density Correlation Obtained with the Polynomial Model and Tait Equation Related to n-Heptane (1), n-Dodecane, and Their Binary Mixtures

parameters	$x_1 = 0$	$x_1 = 0.1999$	$x_1 = 0.3991$	$x_1 = 0.5999$	$x_1 = 0.7998$	$x_1 = 1$
		Polynomial Model	$(p_{\rm ref} = 5 { m MPa}, T_{\rm ref} = 2$	93.15 K)		
$10^3 a/K^{-1}$	1.055	1.418	-0.028	3.421	1.505	2.863
$10^5 \ b/K^{-2}$	-0.182	-0.369	0.488	-1.609	-0.444	-1.328
$10^8 c/K^{-3}$	0.473	0.731	-0.494	2.738	1.043	2.563
$10^3 a_0^P / MPa^{-1}$	4.745	2.891	3.823	5.790	6.835	8.473
$10^{10} a_1^P / MPa^{-2}$	-2.543	-1.913	-2.072	-2.822	-3.318	-3.617
$10^{18} a_2^P / MPa^{-3}$	3.216	2.832	2.755	3.457	3.979	3.868
$10^5 b_0^P/MPa^{-1}\cdot K^{-1}$	-2.938	-1.794	-2.436	-3.734	-4.464	-5.614
$10^{12} b_1^P / MPa^{-2} \cdot K^{-1}$	1.608	1.215	1.342	1.842	2.177	2.410
$10^{20} b_2^P / MPa^{-3} \cdot K^{-1}$	-2.010	-1.768	-1.746	-2.219	-2.567	-2.539
$10^7 c_0^P / MPa^{-1} \cdot K^{-2}$	0.562	0.394	0.508	0.731	0.871	1.088
$10^{15} c_1^P / MPa^{-2} \cdot K^{-2}$	-2.640	-2.053	-2.290	-3.140	-3.729	-4.203
$10^{23} c_0^P / MPa^{-3} \cdot K^{-2}$	3.185	2.825	2.824	3.631	4.229	4.284
$\sigma/{\rm kg}{\cdot}{\rm m}^{-3}$	0.110	0.123	0.106	0.112	0.090	0.148
AAD/%	0.009	0.012	0.010	0.011	0.008	0.014
MD/%	0.047	0.043	0.040	0.036	0.042	0.080
		Tai	t ($p_{\rm ref} = 5 {\rm MPa}$)			
$10^{-2} A_0/\text{kg m}^{-3}$	9.545	9.531	9.273	9.349	9.127	8.790
$A_1/\text{kg m}^{-3} \text{ K}^{-1}$	-0.675	-0.709	-0.595	-0.696	-0.621	-0.493
$10^6 A_2/\text{kg m}^{-3} \text{ K}^{-2}$	-0.478	-0.165	-2.189	-1.046	-2.718	-5.281
$10^{-2} B_0 / MPa$	4.087	4.198	3.725	3.825	3.597	3.447
$B_1/\mathrm{MPa}~\mathrm{K}^{-1}$	-1.525	-1.652	-1.374	-1.487	-1.403	-1.358
$10^3 B_2/MPa K^{-2}$	1.534	1.760	1.340	1.535	1.431	1.383
10 ² C	8.759	8.617	8.868	8.805	8.789	8.965
$\sigma/{\rm kg}{\cdot}{\rm m}^{-3}$	0.108	0.126	0.110	0.125	0.094	0.156
AAD/%	0.010	0.013	0.011	0.014	0.009	0.015
MD/%	0.045	0.042	0.041	0.037	0.046	0.089

respectively. The average standard deviations of the fit (σ) are also quite similar in both models, 0.115 and 0.120 kg·m⁻³, respectively. These AAD and σ values pointed out that the two models correlate quite similarly the density values.

3.1.2. Carbon Dioxide + n-Heptane + n-Dodecane System. The measured densities for the CO₂ + n-heptane + n-dodecane ternary systems are presented in Table 6. These values are also illustrated in Figure 6 as a function of pressure

5

10

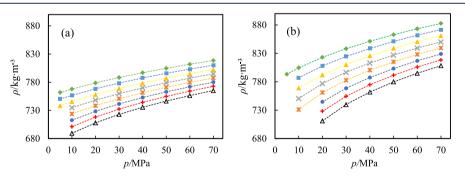
293.15

293.15

793.3

804.6

333.15

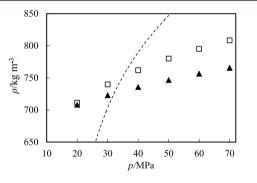

731.0

pubs.acs.org/jced

Article

Table 6. Experimental Densities, $\rho/\text{kg·m}^{-3}$, for CO₂ (1) + *n*-Heptane (2) + *n*-Dodecane Ternary Mixture at Temperature *T*, Pressure *p*, and Composition $x_2 = x_3 = (1 - x_1)/2$

p/MPa	T/K	$x_1 = 0.4904$	T/K	$x_1 = 0.4904$	p/MPa	T/K	$x_1 = 0.4904$	T/K	$x_1 = 0.4904$
5	293.15	761.7			p/MPa	T/K	$x_1 = 0.7425$	T/K	$x_1 = 0.7425$
10	293.15	768.0	333.15	723.8	20	293.15	823.1	333.15	761.1
20	293.15	778.9	333.15	738.4	30	293.15	838.2	333.15	782.7
30	293.15	788.4	333.15	750.6	40	293.15	851.3	333.15	800.4
40	293.15	797.0	333.15	761.3	50	293.15	862.8	333.15	815.1
50	293.15	804.7	333.15	770.9	60	293.15	873.3	333.15	828.1
60	293.15	812.0	333.15	779.3	70	293.15	882.7	333.15	839.4
70	293.15	818.7	333.15	787.1	10	303.15	787.2	343.15	
5	303.15	750.0			20	303.15	808.0	343.15	744.8
10	303.15	756.5	343.15	712.6	30	303.15	824.6	343.15	768.6
20	303.15	768.2	343.15	728.3	40	303.15	838.6	343.15	787.6
30	303.15	778.4	343.15	741.4	50	303.15	851.0	343.15	803.2
40	303.15	787.4	343.15	752.8	60	303.15	862.0	343.15	816.9
50	303.15	795.6	343.15	762.8	70	303.15	871.9	343.15	829.1
60	303.15	803.1	343.15	771.7	10	313.15	769.2	353.15	
70	303.15	810.1	343.15	780.1	20	313.15	792.3	353.15	728.3
5	313.15	738.7			30	313.15	810.3	353.15	754.5
10	313.15	745.8	353.15	701.1	40	313.15	826.0	353.15	774.7
20	313.15	758.3	353.15	718.3	50	313.15	839.2	353.15	791.5
30	313.15	769.1	353.15	732.3	60	313.15	850.8	353.15	805.9
40	313.15	778.8	353.15	744.3	70	313.15	861.3	353.15	818.3
50	313.15	787.4	353.15	754.8	10	323.15	750.5	363.15	
60	313.15	795.2	353.15	764.1	20	323.15	776.8	363.15	711.1
70	313.15	802.4	353.15	772.8	30	323.15	796.5	363.15	739.7
10	323.15	734.6	363.15	689.3	40	323.15	812.9	363.15	761.8
20	323.15	748.2	363.15	708.0	50	323.15	826.9	363.15	779.9
30	323.15	759.7	363.15	722.8	60	323.15	839.2	363.15	794.9
40	323.15	769.8	363.15	735.6	70	323.15	850.0	363.15	808.4
50	323.15	779.2	363.15	746.6	^{<i>a</i>} Standard u	incertainties	are $u(T) = 0.02$	2 K, $u(p) =$	0.35 MPa. Se
60	323.15	787.5	363.15	756.3	Table 2 fc	or composit	tion uncertainty.	The comb	ined expande
70	323.15	795.1	363.15	765.3	uncertainty	is $U_{\rm c}(\rho) = 0$	$0.002 \cdot \rho$ with a 0.93	5 level of cor	fidence $(k = 2)$
p/MPa	T/K	$x_1 = 0.7425$	T/K	$x_1 = 0.7425$					


Figure 6. Density, ρ , of the CO₂ (1) + *n*-heptane (2) + *n*-dodecane ternary mixture in different isotherms as a function of pressure. (Green tilted square solid) 293.15 K, (blue box solid) 303.15 K, (yellow triangle up solid) 313.15 K, (gray multiplication sign) 323.15 K, (orange asterisk sign) 333.15 K, (blue circle solid) 343.15 K, (red plus sign) 353.15 K, and (Δ) 363.15 K. (a) $x_1 = 0.4904$, $x_2 = x_3 = 0.2548$, and (b) $x_1 = 0.7425$, $x_2 = x_3 = 0.12875$. The dashed lines are densities calculated with polynomial equation.

for different isotherms. The density calculated through the polynomial model (Section 2.3) is also shown in Figure 6 (dashed lines). This figure shows that the usual trend of density with pressure and temperature can be observed, i.e., it increases with the increase of pressure along each isotherm; the opposite occurs for temperature changes, i.e., density decreases if the temperature is higher.

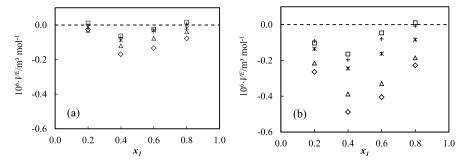
The parameters of polynomial and Tait equations as well as the additional statistical values for each isopleth are summarized in Table 7. The Tait equation was extended to permit accurate prediction of compressed densities of ternary systems. Thus, it is important to note that it was necessary to introduce an additional fitting parameter (A_3) in this equation to suitably correlate the density of the mixtures with dissolved CO_2 . In addition, the reference data used to adjust the

parameters	$x_1 = 0.4904, x_2 = x_3 = 0.2548$	$x_1 = 0.7425, x_2 = x_3 = 0.12875$
	Polynomial Model ($p_{ref} = 5$ MPa, $T_{ref} = 293.15$ K)	
$10^3 a/K^{-1}$	7.608	-1.934
$10^5 \ b/\mathrm{K}^{-2}$	-4.159	1.693
$10^8 c/K^{-3}$	7.105	-0.819
$10^3 a_0^P / MPa^{-1}$	13.778	5.625
$10^{10} a_1^P / MPa^{-2}$	-5.514	0.376
$10^{18} a_2^P / MPa^{-3}$	5.594	-1.625
$10^5 b_0^P / MPa^{-1} \cdot K^{-1}$	-9.443	-6.503
$10^{12} b_1^P / MPa^{-2} \cdot K^{-1}$	3.742	0.664
$10^{20} b_2^P / MPa^{-3} \cdot K^{-1}$	-3.730	0.354
$10^7 c_0^P / MPa^{-1} \cdot K^{-2}$	1.823	1.928
$10^{15} c_1^P / MPa^{-2} \cdot K^{-2}$	-6.644	-3.428
$10^{23} c_2^P / MPa^{-3} \cdot K^{-2}$	6.416	1.251
$\sigma/{ m kg}{\cdot}{ m m}^{-3}$	0.164	0.424
AAD/%	0.016	0.038
MD/%	0.050	0.173
Extended Tait	$p_{\rm ref} = 10 { m MPa}$	$p_{\rm ref} = 20 { m MPa}$
$10^{-3} A_0 / \text{kg m}^{-3}$	1.678	1.222
$A_1/\text{kg m}^{-3} \text{ K}^{-1}$	-6.659	-1.472
$10^2 A_2/\text{kg m}^{-3} \text{ K}^{-2}$	1.751	0.120
$10^5 A_3/\text{kg m}^{-3} \text{ K}^{-3}$	-1.837	-0.282
$10^{-2} B_0/MPa$	3.179	3.120
$B_1/\mathrm{MPa}~\mathrm{K}^{-1}$	-1.321	-1.459
$10^3 B_2/MPa K^{-2}$	1.366	1.640
$10^2 C$	8.761	9.144
$\sigma/{ m kg}{\cdot}{ m m}^{-3}$	0.138	0.217
AAD/%	0.013	0.020
MD/%	0.040	0.073

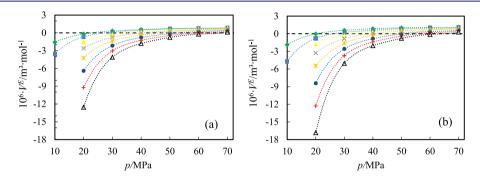
Table 7. Parameters and Deviations for Density Correlation Obtained with the Polynomial Model and Tait Equation Related to $CO_2(1) + n$ -Heptane (2) + n-Dodecane Ternary Mixtures

Figure 7. Density, ρ , as a function of pressure for two different isopleths at 363.15 K of the CO₂ (1) + *n*-heptane (2) + *n*-dodecane ternary mixtures. (\blacktriangle) $x_1 = 0.4904$, $x_2 = x_3 = 0.2548$, (\Box) $x_1 = 0.7425$, $x_2 = x_3 = 0.12875$, and (- -) density of pure CO₂ calculated by EoS of Span and Wagner³⁶ at 363.15 K.

parameters in eq 13 were set to values higher than the saturation pressures of each isopleth at the highest temperature. Thus, for the system with the lowest CO_2 content, the reference pressure is 10 MPa, and for the system with the highest CO_2 content, it is 20 MPa. As can be seen in Table 7, although both models present low deviations from experimental data, the extended Tait equation presented lower deviations than the polynomial model, especially for the mixture with a higher CO_2 concentration.


A crossover effect, the crossing of the isopleths in the (p,ρ) graph, is observed for ternary mixtures at 363.15 K and 20 MPa (Figure 7). This effect can be attributed to the density of the pure components, where the density of carbon dioxide is

lower than those of linear alkanes at low pressures. At higher CO_2 concentrations, the mixture behavior tends to approach that of CO_2 and the slope of the mixture density versus pressure is steeper, causing the crossover phenomenon to appear.


Medina-Bermúdez et al.⁸ and Bazile et al.⁹ reported this effect for the $CO_2 + n$ -heptane mixtures. Zhang et al.¹⁰ and Bazile et al.¹² also reported the crossover effect for the $CO_2 +$ n-dodecane system. In all of these studies, the crossover phenomenon was observed around 10 MPa for mixtures with a high CO_2 content (typically higher than 70 mol %). Medina-Bermúdez et al.⁸ and Bazile et al.^{9,12} only reported this effect at 313 K. However, Zhang et al.¹⁰ reported the CO_2 crossover effect at (313.55, 323.55, 333.55, and 353.55) K, and from this study, it was possible to note that it is also dependent on temperature. Therefore, as can be seen in Figure 7, the crossover phenomenon in the ternary mixtures tends to occur at higher pressures and temperatures than those reported for binary systems.

3.2. Excess Volume. To obtain the values of the excess volumes (V^{E} , eq 21), density data of all systems are required in different compositions and at different temperatures and pressures. These values were obtained experimentally in this work (Tables 3 and 4). To calculate V^{E} for ternary mixtures, densities of pure CO₂ were obtained from the EoS proposed by Span and Wagner.³⁶

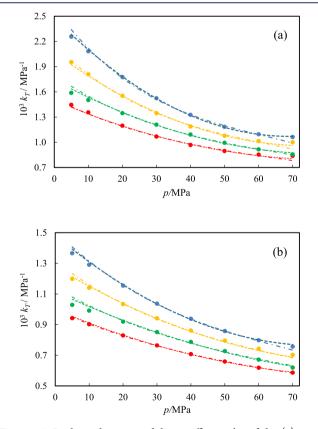

$$V^{E}(T, P) = \frac{\sum_{i=1}^{n} x_{i} M_{i}}{\rho_{\min}(T, P)} - \sum_{i=1}^{n} \left(x_{i} \frac{M_{i}}{\rho_{i}(T, P)} \right)$$
(21)

Figure 8. Plot of excess volume ($V^{\mathbb{E}}$) against mole fraction for *n*-heptane (1) + *n*-dodecane mixtures at (a) T = 293.15 K and (b) T = 363.15 K: (\Diamond) 5, (Δ) 10, (*) 30, (+) 50, (\Box) 70 MPa.

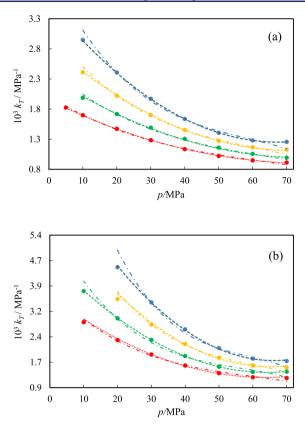

Figure 9. Excess volumes (V^{E}) of the CO₂ (1) + *n*-heptane (2) + *n*-dodecane ternary mixture in different isotherms as a function of pressure. (Green tilted square solid) 293.15 K, (blue box solid) 303.15 K, (yellow triangle up solid) 313.15 K, (gray multiplication sign) 323.15 K, (orange asterisk sign) 333.15 K, (blue circle solid) 343.15 K, (red plus sign) 353.15 K, and (Δ) 363.15 K. (a) $x_1 = 0.4904$, $x_2 = x_3 = 0.2548$, and (b) $x_1 = 0.7425$, $x_2 = x_3 = 0.12875$.

Figure 10. Isothermal compressibility coefficient, $k_{\rm T}$, of the (a) pure *n*-heptane and (b) pure *n*-dodecane. (•) Reference data, (···) polynomial model, and (-·-) Tait. (Red) 303.15 K, (green) 323.15 K, (yellow) 343.15 K, and (blue) 363.15 K.

The excess molar volumes of n-heptane + n-dodecane mixtures are shown in Figure 8 at the lowest and highest temperatures (293.15 and 363.15) K at different pressures. The $V^{\rm E}$ values increase with increasing temperature and decrease with increasing pressure. They are mostly negative over the whole concentration range but become small positive values in the heptane-rich region. It is commonly assumed that the negative $V^{\rm E}$ results mainly from the free-volume effects caused by the interstitial accommodation of the shorter alkane molecules in the structure of the longer chain alkanes, which leads to a more compact and less compressible system. The increasing pressure leads to a decrease of the mean intermolecular distances causing the repulsive forces to become predominant. Consequently, this leads to a positive volume of mixing. These results agree with those of Dzida and Cempa,³ who also reported positive V^{E} for *n*-heptane + *n*-dodecane mixtures in the heptane-rich region at pressures from 60 to 100 MPa.

The excess molar volumes of $CO_2 + n$ -heptane + n-dodecane mixtures are shown in Figure 9 as a function of pressure for the eight isotherms evaluated in this study. All of the V^E values were found to be positive at the highest pressure, and their values become more negative as the pressure decreases and the temperature increases. It is worth noting that a large negative contribution to V^E can result from the condensation of gas or supercritical CO_2 into liquid *n*-heptane + n-dodecane mixtures. The magnitude of this contribution depends on the extent of the gaslike behavior of the supercritical CO_2 , which becomes more important when pressure decreases and temperature increases. Due to these effects, the minimum pressures of the V^E calculations for ternary mixtures are defined in pressure and temperature values in which CO_2 approaches the liquidlike behavior. These points are shown in Figure 9.

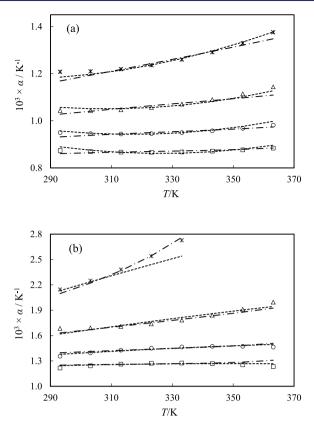


Figure 11. Isothermal compressibility coefficient, $k_{\rm T}$, of the CO₂ (1) + *n*-heptane (2) + *n*-dodecane ternary mixture. (a) $x_1 = 0.4904$, $x_2 = x_3 = 0.2548$, and (b) $x_1 = 0.7425$, $x_2 = x_3 = 0.12875$. (\odot) Reference data, (...) polynomial model, and (--.) Tait. (Red) 303.15 K, (green) 323.15 K, (yellow) 343.15 K, and (blue) 363.15 K.

3.3. Isothermal Compressibility and Thermal Expansion Coefficients. Numerical k_T obtained according to eq 2, which is adopted as reference data, and calculated k_T obtained by the models are plotted in Figures 10 and 11 at selected temperatures as a function of pressure for different studied systems. The expected trend of this property with pressure and temperature was found, that is, it decreases with an increase of pressure along the isotherms and increases with increasing temperature. The ternary system with the lowest CO₂ content presented, as expected, lower compressibility than the system with the highest CO₂ content.

Typical results of the thermal expansion coefficient as a function of temperature obtained in this study are given in Figure 12 at selected pressures for two different systems studied. In general, the α values follow similar behavior of $k_{\rm T}$, that is, decrease with increasing pressure and increase with increasing temperature under isobaric conditions, particularly for ternary mixtures. For *n*-heptane (as for *n*-dodecane and its binary mixtures), at pressures higher than 50 MPa, a small decrease of α with temperature was remarked. In addition, the ternary mixture comprising *n*-heptane and *n*-dodecane with dissolved CO₂ at near-CO₂ critical pressure (10 MPa) presented a marked variation in the expansion coefficient.

For comparing the numerical derivative properties with those obtained with the correlations presented in Section 2.3, the absolute average deviation (AAD), the maximum deviation (MD), and the standard deviation (σ) are calculated according to eqs 18–20, respectively. The results are presented in Tables 8 and 9.

Figure 12. Thermal expansion coefficient, α , of the (a) pure *n*-heptane and (b) CO₂ (1) + *n*-heptane (2) + *n*-dodecane ternary mixture ($x_1 = 0.7425$, $x_2 = x_3 = 0.12875$). (Symbols) Reference data, (...) polynomial model, and (---) Tait. (*) 10 MPa, (Δ) 30 MPa, (\bigcirc) 50 MPa, and (\Box) 70 MPa.

Although both models presented quite low deviations from experimental density, the analysis of derivative properties shows significant differences in the quality of correlations. For instance, from Table 8, it is possible to note that the isothermal compressibility coefficient obtained from the reference model (numerical k_T) is better described by the polynomial model than by the Tait model for all systems evaluated in this study. The deviations shown by the Tait model increase with increasing temperature (as seen in Figures 10 and 11). On the other hand, the polynomial model represented quite well the reference data regardless of temperature and pressure variation.

Table 9 shows that the numerical α is better described by the polynomial model than by the Tait model for *n*-heptane/*n*dodecane systems. For these systems, the Tait model leads to high deviations at the ends of the isobars mainly at low pressures (as seen in Figure 12a). This effect was not found for the polynomial model, which represented quite well this property. For ternary mixtures containing dissolved CO₂, the extended Tait and polynomial models presented quite similar performances (as seen from the AAD% values). However, it can also be seen in Figure 12b that the extended Tait performed better than the polynomial model in the vicinity of critical CO₂ conditions.

4. CONCLUSIONS

New experimental density data for the *n*-heptane + *n*-dodecane binary mixture and the ternary mixture comprising *n*-heptane and *n*-dodecane with dissolved CO₂ have been provided over wide temperature and pressure ranges. Density values for pure

Article

Table 8. Deviations for Isothermal	Compressibility	Coefficient, $k_{\rm T}$,	Using Equations 18–20
------------------------------------	-----------------	----------------------------	-----------------------

$x_1 = 0$	$x_1 = 0.2$	$x_1 = 0.4$	$x_1 = 0.6$	$x_1 = 0.8$	$x_1 = 1$	$x_{\rm CO_2} = 0.5$	$x_{\rm CO_2} = 0.75$
			Po	lynomial			
1.36	2.08	1.10	1.30	1.32	1.86	0.93	5.85
0.88	1.21	0.65	0.75	0.73	1.04	0.43	1.41
3.57	7.06	3.59	3.29	3.59	5.82	2.22	5.06
		Ta	ait			Extend	led Tait
1.56	2.25	1.57	1.80	2.18	2.96	4.48	15.33
1.13	1.64	1.01	1.07	1.21	1.64	1.80	3.72
5.03	6.33	4.94	5.35	6.51	8.39	8.94	14.68
	1.36 0.88 3.57 1.56 1.13	1.36 2.08 0.88 1.21 3.57 7.06 1.56 2.25 1.13 1.64	1.36 2.08 1.10 0.88 1.21 0.65 3.57 7.06 3.59 Tail 1.56 2.25 1.57 1.13 1.64 1.01	Po 1.36 2.08 1.10 1.30 0.88 1.21 0.65 0.75 3.57 7.06 3.59 3.29 Tait 1.56 2.25 1.57 1.80 1.13 1.64 1.01 1.07	Polynomial 1.36 2.08 1.10 1.30 1.32 0.88 1.21 0.65 0.75 0.73 3.57 7.06 3.59 3.29 3.59 Tait 1.56 2.25 1.57 1.80 2.18 1.13 1.64 1.01 1.07 1.21	Polynomial Polynomial 1.36 2.08 1.10 1.30 1.32 1.86 0.88 1.21 0.65 0.75 0.73 1.04 3.57 7.06 3.59 3.29 3.59 5.82 Tait 1.56 2.25 1.57 1.80 2.18 2.96 1.13 1.64 1.01 1.07 1.21 1.64	Polynomial 1.36 2.08 1.10 1.30 1.32 1.86 0.93 0.88 1.21 0.65 0.75 0.73 1.04 0.43 3.57 7.06 3.59 3.29 3.59 5.82 2.22 Tait Extend 1.56 2.25 1.57 1.80 2.18 2.96 4.48 1.13 1.64 1.01 1.07 1.21 1.64 1.80

Table 9. Deviations for Thermal Expansion Coefficient, α , Using Equations 18–20

	$x_1 = 0$	$x_1 = 0.2$	$x_1 = 0.4$	$x_1 = 0.6$	$x_1 = 0.8$	$x_1 = 1$	$x_{\rm CO_2} = 0.5$	$x_{\rm CO_2} = 0.75$
	Polynomial							
$10^5 \sigma/{ m K}^{-1}$	1.44	2.04	0.64	0.60	0.54	1.50	1.35	4.65
AAD/%	1.24	1.29	0.41	0.42	0.37	0.83	0.49	1.23
MD/%	3.61	6.44	2.71	1.68	1.34	5.28	3.35	6.93
		Tait				Extended Tait		
$10^{5} \sigma/{\rm K}^{-1}$	1.48	1.93	0.82	1.57	0.86	2.01	1.18	2.80
AAD/%	1.32	1.43	0.57	1.25	0.63	1.10	0.46	1.15
MD/%	4.29	6.24	3.34	5.22	2.33	7.63	4.21	5.99

n-heptane and *n*-dodecane were found to be in agreement with literature data within approximately 0.3%. All experimental data were well correlated using Amorim's polynomial model and a Tait-based model. The excess molar volume was calculated for whole ranges of temperature, pressure, and composition. In general, the excess volumes determined in this study are negative and become positive in the heptane-rich region and at pressures above 50 MPa. For ternary mixtures, the absolute values of this property have been found to be relatively high at the lowest pressures and highest temperatures studied, which can be explained by the extension of the gaslike behavior of the pure CO₂ under some conditions of temperature and pressure of the experiments. The derived thermodynamic properties, that is, the thermal expansion coefficient and the isothermal compressibility coefficient, were calculated from experimental density data using both polynomial and Tait equations. The analysis of these properties pointed out that, in general, the polynomial model provided more accurate results related to the derived thermodynamic properties.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jced.0c00943.

A detailed description of how the estimated standard uncertainties, u, used in eq S2 are obtained to obtain estimated combined uncertainties for experimental densities (Table S1) (PDF)

AUTHOR INFORMATION

Corresponding Author

Márcio L. L. Paredes – Institute of Chemistry, Rio de Janeiro State University, Rio de Janeiro, RJ 20550-900, Brazil; orcid.org/0000-0002-4623-1897; Email: paredes@ uerj.br

Authors

- David C. Santos School of Chemistry and Laboratory of Enhanced Oil Recovery, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21945-970, Brazil
- Isaque S. Gonçalves School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21945-970, Brazil
- Ana Mehl School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21945-970, Brazil
- Paulo Couto Civil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21945-970, Brazil; Laboratory of Enhanced Oil Recovery, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-594, Brazil

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jced.0c00943

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was carried out in association with the ongoing R&D project registered as ANP no 20352–1, "Caracterização de Fluidos Complexos em Condições de Reservatórios de Petróleo Brasileiros" (UFRJ/Shell Brasil/ANP), sponsored by Shell Brazil under the ANP R&D levy as "Compromisso de Investimentos com Pesquisa e Desenvolvimento".

REFERENCES

(1) Rezk, M. G.; Foroozesh, J. Effect of CO_2 mass transfer on rate of oil properties changes: Application to CO_2 -EOR projects. J. Pet. Sci. Eng. 2019, 180, 298–309.

(2) Hawthorne, S. B.; Grabanski, C. B.; Miller, D. J.; Kurz, B. A.; Sorensen, J. A. Hydrocarbon recovery from Williston Basin Shale and mudrock cores with supercritical CO_2 : 2. Mechanisms that control oil recovery rates and CO_2 permeation. *Energy Fuels* **2019**, 33, 6867– 6877.

(3) Dzida, M.; Cempa, M. Thermodynamic and acoustic properties of (heptane + dodecane) mixtures under elevated pressures. *J. Chem. Thermodyn.* **2008**, *40*, 1531–1541.

Journal of Chemical & Engineering Data

(4) Fenghour, A.; Trusler, J. P. M.; Wakeham, W. A. Densities and bubble points of binary mixtures of carbon dioxide and n-heptane and ternary mixtures of n-butane, n-heptane and n-hexadecane. *Fluid Phase Equilib.* **2001**, *185*, 349–358.

(5) Al Ghafri, S. Z.; Maitland, G. C.; Trusler, J. P. M. Experimental and modeling study of the phase behavior of synthetic crude oil +CO₂. *Fluid Phase Equilib.* **2014**, *365*, 20–40.

(6) Chacon Valero, A. M. C.; Feitosa, F. X.; Sant'Ana, H. B. Density and volumetric behavior of binary CO_2 + n-decane and ternary CO_2 + n-decane + naphthalene systems at high pressure and high temperature. J. Chem. Eng. Data **2020**, 65, 3499–3509.

(7) Cardoso, S. G.; Costa, G. M. N.; Melo, S. A. B. Assessment of the liquid mixture density effect on the prediction of supercritical carbon dioxide volume expansion of organic solvents by Peng-Robinson equation of state. *Fluid Phase Equilib.* **2016**, 425, 196–205.

(8) Medina-Bermúdez, M.; Molina, L. A. S.; Tiburcio, W. E.; Luna, L. A. G.; Solis, O. E. (p, ρ , T) Behavior for the Binary Mixtures Carbon Dioxide + Heptane and Carbon Dioxide + Tridecane. *J. Chem. Eng. Data* **2013**, *58*, 1255–1264.

(9) Bazile, J. P.; Nasri, D.; Hamani, A. W. S.; Galliero, G.; Daridon, J. L. Excess volume, isothermal compressibility, isentropic compressibility and speed of sound of carbon dioxide + n-heptane binary mixture under pressure up to 70 MPa. I Experimental Measurements. *J. Supercrit. Fluids* **2018**, *140*, 218–232.

(10) Zhang, Y.; Liu, Z.; Liu, W.; Zhao, J.; Yang, M.; Liu, Y.; Wang, D.; Song, Y. Measurement and modeling of the densities for CO_2 + dodecane system from 313.55 K to 353.55 K and pressures up to 18 MPa. *J. Chem. Eng. Data* **2014**, *59*, 3668–3676.

(11) Zambrano, J.; Soto, F. V. G.; Martín, D. L.; Martín, M. C.; Segovia, J. J. Volumetric behaviour of (carbon dioxide + hydrocarbon) mixtures at high pressures. *J. Supercrit. Fluids* **2016**, *110*, 103–109.

(12) Bazile, J. P.; Nasri, D.; Hamani, A. W. S.; Galliero, G.; Daridon, J. L. Density, Speed of Sound, Compressibility, and excess properties of carbon dioxide + n-dodecane binary mixtures from 10 to 70 MPa. *J. Chem. Eng. Data* **2019**, *64*, 3187–3204.

(13) Amorim, J. A.; Chiavone, O.; Paredes, M. L. L.; Rajagopal, K. Modeling high-pressure densities at wide temperature range with volume scaling: Cyclohexane + n-hexadecane mixtures. *Fluid Phase Equilib.* **2007**, 259, 89–98.

(14) Lagourette, B.; Boned, C.; Guirons, H.; Xans, P.; Zhou, H. Densimeter calibration method versus temperature and pressure. *Meas. Sci. Technol.* **1992**, *3*, 699–703.

(15) Comuñas, M. J.; Bazile, J. P.; Baylaucq, A.; Boned, C. Density of diethyl adipate using a new vibrating tube densimeter from (293.15 to 403.15) K and up to 140 MPa. Calibration and Measurements. *J. Chem. Eng. Data* **2008**, 53, 986–994.

(16) Wagner, W.; Pruß, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 2002, 31, 387–535.

(17) Al Motari, M. M.; Kandil, M. E.; Marsh, K. N.; Goodwin, A. R. H. Density and viscosity of diisodecyl phthalate $C_6H_4(COOC_{10}H_{21})_2$, with nominal viscosity at T = 298 K, and p = 0.1 MPa of 87 mPa·s, at temperatures from (298.15 to 423.15) K and pressures up to 70 MPa. *J. Chem. Eng. Data* **2007**, *52*, 1233–1239.

(18) Caudwell, D. R.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A. The Viscosity and Density of n-Dodecane and n-Octadecane at Pressures up to 200 MPa and Temperatures up to 473 K. *Int. J. Thermophys.* **2004**, *25*, 1339–1352.

(19) Holcomb, C. D.; Outcalt, S. L. A theoretically-based calibration and evaluation procedure for vibrating-tube densimeters. *Fluid Phase Equilib.* **1998**, *150–151*, 815–827.

(20) Chirico, R. D.; Frenkel, M.; Magee, J. W.; Diky, V.; Muzny, C. D.; Kazakov, A. F.; Kroenlein, K.; Abdulagatov, I.; Hardin, G. R.; Acree, W. E.; Brenneke, J. F.; Brown, P. L.; Cummings, P. T.; Loos, T. W.; Friend, D. G.; Goodwin, A. R. H.; Hansen, L. D.; Haynes, W. M.; Koga, N.; Mandelis, A.; Marsh, K. N.; Mathias, P. M.; McCabe, C.; O'Connell, J. P.; Padua, A.; Rives, V.; Schick, C.; Trusler, J. P. M.; Vyazovkin, S.; Weir, R. D.; Wu, J. Improvement of quality in publication of experimental thermophysical property data: Challenges,

assessment tools, global implementation, and online support. J. Chem. Eng. Data 2013, 58, 2699–2716.

(21) Peng, R. Y.; Robinson, D. B. A new two constant equation of state. *Ind. Eng. Chem. Fundam.* **1976**, *15*, 59–64.

(22) Lagarias, J. C.; Reeds, J. A.; Wright, M. H.; Wright, P. E. Convergence properties of the Nelder-Mead simplex method in low dimensions. *SIAM J. Optim.* **1998**, *9*, 112–147.

(23) Dymond, J. H.; Malhotra, R. The Tait equation: 100 years on. Int. J. Thermophys. 1988, 9, 941–951.

(24) Sagdeev, D. I.; Fomina, M. G.; Mukhamedzyanov, G. K.; Abdulagatov, I. M. Experimental study of the density and viscosity of n-heptane at temperatures from 298 K to 470 K and pressure up to 245 MPa. *Int. J. Thermophys.* **2013**, *34*, 1–33.

(25) Guerrero, H.; Royo, F. M.; Gascón, I.; Lafuente, C. Excess properties from $p\rho T$ data for n-heptane + isomeric chlorobutane mixtures. *Thermochim. Acta* **2015**, *614*, 100–109.

(26) Abdussalam, A. A.; Ivaniš, G. R.; Radovic, I. R.; Kijevcanin, M. L. Densities and derived thermodynamic properties for the (n-heptane + n-octane), (n-heptane + ethanol) and (n-octane + ethanol) systems at high pressures. J. Chem. Thermodyn. **2016**, 100, 89–99.

(27) Landau, R.; Würflinger, A. PVT-Daten von Acetonitril, Undecan und Dodecan bis 3 kbar und -50 °C. Druckabhängigkeit der Umwandlungsvolumina, -enthalpien und -entropien. *Ber. Ges. Bunsen-Ges. Phys. Chem.* **1980**, *84*, 895–902. (In German).

(28) Dymond, J. H.; Robertson, J.; Isdale, J. D. Transport properties of nonelectrolyte liquid mixtures-III. Viscosity coefficients for noctane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100 °C at pressures up to the freezing pressure or 500 MPa. *Int. J. Thermophys.* **1981**, *2*, 133–154.

(29) Khasanshin, T. S.; Shchamialiou, A. P.; Poddubskij, O. G. Thermodynamic properties of heavy n-alkanes in the liquid state: n-dodecane. *Int. J. Thermophys.* **2003**, *24*, 1277–1289.

(30) Elizalde-Solis, O. E.; Galicia-Luna, L. A.; Camacho, L. E. Highpressure vapor-liquid equilibria for CO_2 + alkanol systems and densities of n-dodecane and n-tridecane. *Fluid Phase Equilib.* **2007**, 259, 23–32.

(31) Valencia, J. L.; Salgado, D. G.; Troncoso, J.; Peleteiro, J.; Carballo, E.; Roman, L. Thermophysical characterization of liquids using precise density and isobaric heat capacity measurements as a function of pressure. *J. Chem. Eng. Data* **2009**, *54*, 904–915.

(32) Regueira, T.; Glykioti, M. L.; Stenby, E. H.; Yan, W. Densities of the Binary Systems n-Hexane + n-Decane and n-hexane + n-hexadecane up to 60 MPa and 463 K. *J. Chem. Eng. Data* 2015, 60, 3631–3645.

(33) García-Morales, R. G.; Solis, O. E.; Moreno, A. Z.; Bouchot, C.; Ramos, F. I. G.; Quevedo, M. G. A. Volumetric properties of 2,5dimethylfuran in mixtures with octane or dodecane from 293 K to 393 K and pressures up to 70 MPa. *Fuel* **201**7, 209, 299–308.

(34) Jia, T.; Bi, S.; Wu, J. Compressed liquid densities of binary mixtures of n-decane + n-dodecane at temperatures from 283 K to 363 K and pressures up to 100 MPa. *Fluid Phase Equilib.* **2018**, 459, 65–72.

(35) Lemmon, E. W.; Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 2006, 51, 785–850.

(36) Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. *J. Phys. Chem. Ref. Data* **1996**, *25*, 1509–1596.