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ABSTRACT
This work advances the approximation error model approach for
the inverse analysis of the biodiesel synthesis using soybean oil
and methanol in 3D-microreactors. Two hybrid numerical-analytical
approaches of reduced computational cost are considered to offer
an approximate forward problem solution for a three-dimensional
nonlinear coupled diffusive-convective-reactive model. First, the
Generalized Integral Transform Technique (GITT) is applied using
approximate non-converged solutions of the 3D model, by adopt-
ing low truncation orders in the eigenfunction expansions. Second,
the Coupled Integral Equations Approach (CIEA) provides a reduced
mathematical model for the average concentrations, which leads to
inherently approximate solutions. The AEM approach through the
Bayesian framework is illustrated in the simultaneous estimation of
kinetic and diffusion coefficients of the transesterification reaction.
For this purpose, the fully converged GITT results with higher trun-
cation orders for the 3D partial differential model are employed as
reference results to define the approximations errors. The results
highlight that either the non-converged solutions via GITT or
the reduced model solution obtained via CIEA, when taking into
account the model error, are robust and cost-effective alternatives
for the inverse analysis of nonlinear convection–diffusion-reaction
problems.
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Nomenclature

C∗ dimensional concentration, mol m−3

C dimensionless concentration
D∗ diffusion coefficient, m2 s−1

D diffusion parameter in the exponential format
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e vectors containing the measure error derived randomly from a known distribu-
tion function

ē vectors containing the mean values of the measurement error distribution
G kinetic terms
H total height of the microreactor, m
HTG interface position inside the microreactor, m
J sensitivity matrix
j reduced sensitivity coefficient
k kinetic constants, m3 mol−1 s−1

L total length of the microreactor, m
N number of measurements
n number of parameters to be estimated
NT truncation order of the transformed system
nt number of accepted states in the MCMCmethod
p vector of parameters
p̄ vectors containing the mean values of p
p∗ candidate vector of parameter in the MCMCmethod
q probability distribution function
Q volumetric flow rate, m3 s−1

U dimensionless velocity profile or uniform distribution
u dimensional velocity profile, m s−1

Vol volume, m3

W total width of the microreactor, m
W covariance matrix for experimental measurements error
WAp covariance matrix for approximation error
Wp covariance matrix for parameters
W̃ covariance matrix combining the experimental and approximation errors
x, y, z dimensional spatial coordinate, m
X, Y, Z dimensionless spatial coordinate
y vector of measurements

Greek symbols

α search step in the MCMCmethod
μ dynamic viscosity, Pa. s
ξ ,ς ,ω dimensionless group
ρ density, kg m−3

ε vector containing the model approximation error
ε increment for calculus of derivative
κ kinetic parameter in the exponential format
η distribution of measurements and approximate errors
η̄ vector with the mean values of η
� covariance matrix of p
�ηp covariance matrix of η and p
σ standard deviation
σ̂ reference standard deviation
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τ residence time, min
π probability distribution function

Subscripts and superscripts

A referring to the alcohol
Ac referring to the accurate solution
Av referring to the average potential
Ap referring to the approximate solution
B referring to the biodiesel
DG referring to the diglyceride
Exp referring to the experimental measurements
GL referring to the glycerol
i counter
MG referring to the monoglyceride
p referring to intermediates and products of reaction
s referring to the species
Sim referring to the simulated measurements
TG referring to the triglyceride

1. Introduction

Inverse analysis has great relevance in engineering and physical sciences, with its math-
ematical and statistical background being readily available in various sources [1–7]. The
MCMCmethod is a widely used Bayesianmethod that allows the statistical inference about
unknown parameters from its posterior probability density, considering the measurements
and the related uncertainties through the likelihood function and any prior information
from the unknownparameters [3,4,6,8]. Thismethod is especially suitablewhen it is unfea-
sible to find an analytical solvable posterior distribution and/or a large parameter space is
involved, allowing for the Bayesian inference application even in rich and complexmodels.
To speed up the MCMC calculations, approximate solutions can replace a more accurate
forward problem treatment meeting constraints in the computing time, but at the same
time ensuring accuracy in the inverse analysis, by using the so-called Approximation Error
Model (AEM) approach. The error when approximate forward solutions are used can be
accounted through statistical quantities obtained from a sampling procedure of the differ-
ence between approximate and accurate solutions. Such information can then be inserted
in the likelihood function as an approximation error [5,9–17].

In this work, a robust and efficient statistical inversion approach is implemented to esti-
mate the kinetic and diffusion coefficients of the biodiesel synthesis in 3D-microreactors
within the Bayesian framework through theMetropolis-Hastings algorithm in theMarkov
Chain Monte Carlo (MCMC) method. Forward analysis for diffusive-convective-reactive
processes governed by nonlinear coupled multidimensional mathematical models is not
a straightforward computational task and hybrid techniques are particularly attractive
since they combine numerical and analytical approaches to construct more accurate and
cost-effective solutions, as compared to purely numerical approaches. The so-called Gen-
eralized Integral Transform Technique (GITT) is an example of a hybrid method that has
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been successfully applied in the solution of various flow, heat and mass transfer prob-
lems [18–32]. Derived from the Classical Integral Transform Technique (CITT) [33,34],
the GITT is based on analytical eigenfunction expansions and numerical transformed
potentials, obtained, respectively, from the solution of a suitable eigenvalue problem and
of an infinite nonlinear coupled ordinary differential system. This transformed system
usually depends on a single independent variable, and, therefore, its numerical solution
demandsmuch less computational effort than the original multi-dimensional model, mak-
ing the GITT a successful technique for performing the time-consuming computational
task inherent to inverse analysis [27,35–43].

Another interesting alternative of reducing the computational effort in forward-inverse
analysis is the so-called Coupled Integral Equations Approach – CIEA [23,44–49,64]. The
CIEA is a problem reformulation tool that has been employed in the simplification of dif-
fusion and convection–diffusion problems via averaging processes in one or more of the
involved space coordinates. The resulting lumped-differential formulations offer substan-
tial improvement over classical lumping schemes in terms of accuracy, without introducing
additionalmathematical complexity in the corresponding final simplified differential equa-
tions to be handled. The CIEA has also been successfully applied to a few forward-inverse
analyses in different contexts [13,14,49,64], where it should be pointed out the contribu-
tion in combining the improved lumped-differential formulation with the Approximation
Error Model [14,15].

The idea of combining the AEM with hybrid methods is here further explored. The
physical problem used to demonstrate the proposed combined approach is the biodiesel
synthesis in microreactors via the transesterification reaction, which is a process that
has been widely explored in the literature due to the high conversion rate of triglyceride
obtained with low residence time and temperature levels compared to traditional processes
performed in conventional batch reactors [49–55,63,64]. Biodiesel is generally defined as
the mono alkyl esters of long chain fatty acids derived mainly from the transesterification
reaction between triglycerides, obtained from renewable raw materials such as vegetable
oils or animal fats, and alcohol, usually methanol or ethanol, in the presence of a catalyst
[53,56]. It is considered a non-toxic and biodegradable product with physical–chemical
properties very similar to those of conventional diesel and that presents low emissions of
carbon, sulfur, particulate matter and unburned hydrocarbons [53,57,58]. Microreactors
favour the reaction of the immiscible reagents in the transesterification, since the molec-
ular diffusive effects occur more rapidly due to the significant reduction in the diffusion
path length [59], resulting in more effective mass and heat transfer processes. However,
due to the complexity of this application, many effects influence the biodiesel yields, such
as the complex liquid–liquid interaction established in the reactive system, the reaction
kinetic mechanism, the solubility of the components [60], the types of reagents and their
molar feed ratio, the temperature of the system and the types and concentration of the cat-
alysts, posing some difficulties to develop an optimized design of the microreactors for the
biodiesel production. Thus, computational simulation plays a crucial role in determining
the chemical kinetic and diffusion coefficients and, for that purpose, mathematical mod-
els and methodologies for forward-inverse analysis have been addressed in the literature
[49,50,55,58,61–64].

The goal of this work is to simultaneously estimate the kinetic and diffusion coef-
ficients of the transesterification with soybean oil and methanol in microreactors, by
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using simulated experimental data and approximate solutions obtained from a diffusive-
convective-reactive nonlinear multicomponent 3D model [49,55]. The fully converged
solutions derived through the GITT approach from the 3D mathematical model are
considered as the accurate reference results [55]. Two alternative low-cost approximate
solutions are then explored, one from a reduced model derived by the CIEA and the other
directly obtained from the GITT approach, but considering non-converged solution with
low truncation orders in the eigenfunction expansions. The error analysis is performed
only once, within a prior range considered for the parameters, and then approximate solu-
tions combined with the approximation error approach are used in the inverse analysis
leading to a significant reduction in the overall computational time. A sensitivity analysis
together with the sequential experimental design are also presented to identify possible
linear dependence among the parameters and to identify which residence times should be
chosen to take the experimental measurements. In light of experimental limitations, only
data on the average concentrations of four species at themicroreactor outlet are considered
to be available, for a few values of residence time, from the simulated data.

2. Forward-Problem: formulation and solutionmethodology

The forward-problem here addressed has been posed in [55] and it consists in determining
the concentration profile of the species involved in the transesterification in microreactors
from the knowledge of inlet and boundary conditions, reactionmechanism, geometry and
parameters of the physico-chemical process.

The mathematical model for the biodiesel production in microreactors considers the
hypothesis of continuous fully developed stratified laminar and incompressible flow of oil
and alcohol, both as Newtonian fluids, where the significant reactive effects occur only in
the oil phase [50,55]. Figure 1 illustrates a scheme of the velocity profile for the stratified
flow of oil and alcohol in a microsystem obtained from the analytical solution based on the
Classical Integral Transform Technique (CITT) [55].

Since this mathematical model assumes that the reaction is carried out mainly in the oil
phase, the residence time τ can bewritten as a ratio between the volume and the volumetric
flow rate of the oil species, in the form:

τ = VolTG
QTG

= LWHTG

QTG
(1)

HTG

HA

H

x

y
z

Oil
Alcohol

Figure 1. Scheme of the velocity profile for the fully developed stratified flow between oil (soybean)
and alcohol (methanol) within a microreactor.
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where VolTG is the volume of oil layer, QTG is the oil volumetric flow rate, L and W
are the length and width of the microreactor, and HTG is the position of the interface
between the oil and the alcohol. Different volumetric flow rates lead to different resi-
dence times. By assuming the transesterification as a second order and reversible reaction
[50,55,56], the dimensionless mathematical model for the concentration of the species in
the transesterification mass transfer problem is then given by [55]:

UTG(Y,Z)
∂Cs(X,Y,Z)

∂X
= ξs

(
∂2Cs

∂Y2 + ω
∂2Cs

∂Z2

)
+ ςGs, where s = TG,DG,MG,B,A,GL

(2a)

CTG(0,Y,Z) = 1, Cs(0,Y,Z) = 0, where s = DG,MG,B,A,GL (2b,c)

∂Cs

∂Y

∣∣∣∣
Y=0

= ∂Cs

∂Z

∣∣∣∣
Z=0

= ∂Cs

∂Z

∣∣∣∣
Z=1

= 0, where s = TG,DG,MG,B,A,GL (2d-f)

CA(X,1,Z) = CAo,
∂Cs

∂Y

∣∣∣∣
Y=1

= 0, where s = TG,DG,MG,B,GL (2g,h)

with dimensionless groups defined as:

Cs = C∗
s

C∗
TGo

, CAo = C∗
Ao

C∗
TGo

, X = x
L
, Y = y

HTG
, Z = z

W
,

UTG = uTG
uTG,Av

, ς = LC∗
TGo

uTG,Av
, ξs = LD∗

s
uTG,AvH2

TG
, ω = H2

TG
W2

(2i-q)

where C∗
TGo and C

∗
Ao are the dimensional inlet concentration of triglycerides and the equi-

librium concentration of alcohol at the interface, respectively, uTG,Av is the average velocity
for the oil stream (TG), U is the dimensionless velocity profile and D∗ is the diffusion coef-
ficient of each species. Gs are the chemical kinetic terms for each species, where k1 to k6
are the kinetic constants, according to the following equations:

GTG = −k1CTGCA + k2CDGCB (2r)

GA = −k1CTGCA + k2CDGCB − k3CDGCA + k4CMGCB

− k5CMGCA + k6CGLCB (2s)

GDG = k1CTGCA − k2CDGCB − k3CDGCA + k4CMGCB (2t)

GMG = k3CDGCA − k4CMGCB − k5CMGCA + k6CGLCB (2u)

GGL = k5CMGCA − k6CGLCB (2v)

GB = k1CTGCA − k2CDGCB + k3CDGCA − k4CMGCB

+ k5CMGCA − k6CGLCB (2w)

The mathematical model defined by Equations (2) is here solved through the GITT
approach, as detailed in [55]. Also, the alternative reduced model is obtained by the CIEA
approach, as presented in further detail in [49]. Both methodologies are described for
the present application in the Electronic Supplementary Material which is associated with
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this article. The GITT methodology is employed in providing both the accurate reference
results, through the fully converged solution for sufficiently large truncation orders, and
the alternative low-cost approximate solution, considering fairly low truncation orders in
the eigenfunction expansions. In the CIEA approach, the system of lumped-differential
equations for the average concentrations results in being not dependent on the diffusion
coefficients D∗

TG and D∗
P, due to the zero flux boundary conditions at the reactor walls

for these species, but retains the influence on the diffusion coefficient for the alcohol, as
discussed in [49].On the other hand, the non-converged solutions developed byGITT con-
serve the information about all diffusion coefficients, even for very low truncation orders
in the eigenfunction expansion.

After the solution of the forward problem, the average concentrations, Cs,Av(X), can be
evaluated from:

Cs,Av(X) =
∫ 1
0

∫ 1
0 UTG(Y,Z)Cs(X,Y,Z)dYdZ∫ 1
0

∫ 1
0 UTG(Y, Z)dYdZ

(3)

3. Inverse problem: Bayesian inference withMCMC and approximation error

The inverse problem here addressed to determine the kinetic and diffusion coefficients
of the transesterification reaction shall consider the two approximate solutions previously
mentioned: lumped reformulation based on theCIEA approach (one-dimensional reduced
model) and GITT solution with a low truncation order (three-dimensional model with
non-converged solution). The relativemerits of the alternative cost-effective solutions shall
then be critically examined.

In the estimation procedure, only the concentrations of the triglyceride, diglyceride,
monoglyceride and biodiesel species are considered as available data, since, usually, after
the reaction, the alcohol and glycerol species are separated from the product [49]. In addi-
tion, this information is considered to be available only at the microreactor outlet (X=1),
in light of the experimental difficulties in measuring concentrations along the reactor
length.

3.1. Sensitivity analysis and sequential experimental design

Before addressing the estimation of the unknown parameters, a sensitivity analysis and a
sequential experimental design are proposed, in order to give some insights regarding the
influence of each additional experimental data in the inverse problem solution.

Specially in the application here considered, the characterization of the biodiesel sam-
ple is commonly performed by gas chromatography analysis, which is a sophisticated,
time consuming, and expensive technique, which makes the analysis of a larger number
of samples undesirable. Therefore, the sequential experimental design improves the esti-
mation and helps to reduce time and costs in the experimental campaign, since its output
information gives the best sequence of experiments to be performed.

Here, each experiment leads to four responses which are the concentrations of the
TG, DG, MG and B species. Each species is considered as a sensor for the concentration
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measurements, which allows to define [4]:

∂ �CT(p)

∂p
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂p1
∂

∂p2
...
∂

∂pn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[�C1 �C2 · · · �CN
]

(4a)

where �Ci = {Ci,TG, Ci,DG, Ci,MG, Ci,B}, i = 1, 2, . . . , N. Here, n represents the dimension
of the parameters vector and N is the number of measurements per species for different
residence times. Then, the sensitivity matrix J(p) can be written as:

J(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ �CT
1

∂p1

∂ �CT
1

∂p2

∂ �CT
1

∂p3
· · · ∂ �CT

1
∂pn

∂ �CT
2

∂p1

∂ �CT
2

∂p2

∂ �CT
2

∂p3
· · · ∂ �CT

2
∂pn

...
...

...
. . .

...
∂ �CT

N
∂p1

∂ �CT
N

∂p2

∂ �CT
N

∂p3
· · · ∂ �CT

N
∂pn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4b)

where the derivative (∂ �CT
i /∂p1) is calculated as:

∂ �CT
i

∂p1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ci,TG
∂p1

∂Ci,DG
∂p1

∂Ci,MG
∂p1
∂Ci,B
∂p1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
τ=τi

(4c)

The other derivatives in the complete sensitivity matrix are calculated following the pro-
posed idea presented in Equation (4c), where p ={k1, k2, k3, k4, k5, k6, D∗

TG, D
∗
A,D

∗
P} is the

vector of parameters to be estimated and D∗
P is considered to be the same for all intermedi-

ates and products of reaction (DG,MG, GL, B), following Al-Dhubabian [50]. The analysis
of the sensitivity coefficients helps to identify those parameters with lower magnitudes or
linear dependence with respect to the others, in order to reduce the ill-condition nature of
the inverse problem and lead to more accurate and precise estimates [4].

To perform the linear dependence analysis, the reduced sensitivity coefficients are
commonly applied:
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js,i = pi
∂Cs

∂pi
, where s = TG,DG,MG,B (4d)

The reduced sensitivity coefficients attenuate problems related to different orders of mag-
nitude observed in the sensitivity coefficients and, consequently, helping to perform amore
appropriate linear dependence analysis among them. The derivative of (∂Cs/∂pi) is here
computed by using the finite difference method in forward formulation with an increment
εpi that is proportional to the parameter value [4]:

∂Cs

∂pi
= Cs(p1, p2, . . . , pi + εpi, . . . , pn) − Cs(p1, p2, . . . , pi , . . . , pn)

εpi
(5)

Besides the analysis of the reduced sensitivity coefficients, the matrix J(p) is employed
to develop a sequential experimental design to identify those experiments that maximize
the determinant of the matrix JTJ reducing the uncertainty in the parameter estimation
[7,65,66].

In this work, possible experiments were proposed for different reaction residence times,
while keeping unchanged the reaction temperature, triglyceride to alcohol molar ratio, cat-
alyst concentration, type of reagents, and the microreactor geometry. The determinant
of the matrix JTJ is maximized sequentially during the addition of information on each
residence time in the matrix J, aiming to reach the best combination among them.

The GITT solution for the complete 3Dmodel with a sufficiently high truncation order,
in light of the error control capabilities through a proper convergence analysis, is taken as
the reference benchmark result and the synthetic experimental data arises from applying
noise to this ‘true value’. Synthetic measurements for the average concentrations of triglyc-
eride, diglyceride, monoglyceride and biodiesel species are considered to be taken at the
reactor outlet, for a few selected values of the residence time.

3.2. Bayesian inference with approximation error

In a Bayesian inference approach, a limited set of available information is used to reduce the
uncertainties present in an inferential or decision-making problem, [8,67]. New informa-
tion can be considered and added to the previous set according to Bayes’ theorem, building
the necessary basis to apply the statistical inversion approach by adopting the following
hypotheses:

(1) All variables included in the model are modelled as random variables;
(2) The randomness describes the degree of information concerning their realization;
(3) The degree of information concerning these values is coded in probability distribu-

tions;
(4) The solution of the inverse problem is the posterior probability distribution;

The Bayes’ theorem can be written as:

πposterior(p) = π(p|yExp) = π(yExp|p)πprior(p)

π(yExp)
(6a)

where π(yExp|p) is the likelihood function which provides the uncertainties and condi-
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tional probability of a given vector of parameters p lead to the vector of observedmeasure-
ment yExp, πprior(p) is the prior distribution containing the information and uncertainties
about the parameters before observing the measurements yExp, which in this work will
be considered as truncated Gaussian distribution for diffusion coefficients and Uniform
for kinetic coefficients, π(yExp) is the marginal probability density of the measurements
that plays the role of a normalizing constant, and π(p|yExp) is the posterior distribution
density which provides the uncertainties and conditional probability to obtain p given the
observations yExp.

Assuming that the measurements errors are additive, independent of p and follow
a Gaussian distribution with zero mean and with a known covariance matrix W, the
likelihood function can be defined as:

π(yExp|p) = (2π)−N/2|W|−1/2 exp
[
−1
2
(yExp − ySim(p))

TW−1(yExp − ySim(p))

]
(6b)

where, yExp is the vector containing the synthetic experimental data generated from the
mathematical model, and ySim is the calculated potential based on the adopted mathemat-
ical model. MatrixW is written as:

W =

⎡
⎢⎢⎢⎣

σ 2
1 0 · · · 0
0 σ 2

2 · · · 0
...

...
. . .

...
0 0 · · · σ 2

N

⎤
⎥⎥⎥⎦ (6c)

where σ represents the standard deviation of the observed measurements.
Eventually, information on the parameters are accessible and might be represented as a

Gaussian prior distribution, and can be incorporated in the inverse analysis in the form:

πprior(p) = (2π)−n/2|Wp|−1/2exp
[
−1
2
(p − p̄)TW−1

p (p − p̄)

]
(6d)

where p̄ andWp are the known mean and covariance matrix for p, respectively.
Assuming the solution via GITT for the complete 3D model with a higher truncation

order is the existing ‘truth’, ySimAc (p), so the vector of synthetic experimental data yExp arises
from applying a noise based on a known probability distribution function for themeasure-
ment errors into the vector containing the accurate values, ySimAc (p), according to Equation
(6e):

yExp = [ySimAc (p)] + e (6e)

where e is a vector containing the experimental noise.
Once the proposed approximate solution, ySimAp (p) , does not coincide with that ‘true’

one, ySimAc (p), then yExp will, at the end, float around the vector of approximate solutions,
ySimAp (p), according to [5,9–17]:

yExp = [ySimAp (p) + ε(p)] + e (6f)

where ε(p) is a vector containing the information about the discrepancy between approx-
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imate and accurate models. Equation (6f) can be written in a simpler form as:

yExp = ySimAp (p) + η(p) (6g)

η(p) = e + ε(p) (6h)

The calculation of η(p) including the error in the measurements, e, and the approximation
error, ε(p), can be done in a reasonable simple way by assuming η(p) like a Gaussian dis-
tribution. This assumption ensures effective results making possible to rewrite Equation
(6b) taking into account the error of the approximate model in the likelihood function, as
shown below [5,9–17]:

πAp(yExp|p) = (2π)−N/2|W̃|−1/2

× exp
[
−1
2
(yExp − ySimAp (p) − η̄)

TW̃−1(yExp − ySimAp (p) − η̄)

]
(6i)

where η̄ and W̃ are defined as [5,14]:

η̄ = ē + ε̄ + �ηp�
−1(p − μ) (6j)

W̃ = W + WAp − �ηp�
−1�pη (6k)

where ē is the mean of e, ε̄ is the mean of ε(p), μ is the mean of p, � is the covariance
matrix of p,WAp is the covariance matrix of ε(p) and �ηp is the covariance matrix of η

and p.
Equations (6j,k) are simplified regarding the hypothesis of Gaussian measurement

errors with zero mean used for likelihood, which leads to ē = 0, and neglecting the depen-
dence between η and p, which implies in �ηp= 0, resulting in the following expressions:

η̄ ≈ ε̄ (6l)

W̃ = W + WAp (6m)

Statistical properties of ε(p) are calculated only once, before the estimation procedure,
through a Monte Carlo simulation of the difference between the accurate and approxi-
mate solutions, ySimAc (p) − ySimAp (p), within the prior intervals assumed for the parameters.
The sampling obtained is used to calculate the mean and standard deviation which will
be used in the approximation error model approach. This task in general requires a much
lower computational effort if compared to the complete parameter estimation procedure
via MCMC using the more accurate solution in the estimation step.

3.3. MCMC throughMetropolis-Hastings algorithm

Markov ChainMonte Carlo (MCMC)method is based on a collection of a large sample of a
given probability function via a stochastic process such that the value pi, given all previous
values p(0), p(1), p(2), . . . , p(i−1), depends only on p(i−1), not mattering the past to predict
a future state, where from that it is possible to extract some desired information [6].

Here the adopted MCMC method was based on a ‘random walk’ in the space of
π(p|yExp) that converges to a stationary distribution, and which allows to summarize its
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Figure 2. Scheme of the MCMC with Metropolis-Hastings algorithm for parameter estimation proce-
dure.

information in central and dispersion values that give an idea of its variability [3]. For this,
the initial states also called burning sampling, which comprise the evolution of the chain
up to its steady behaviour, must be eliminated.

To promote the randomwalk in theMCMCmethod, theMetropolis-Hastings algorithm
is used to establish a mechanism for accepting a candidate state p∗ obtained from an aux-
iliary probability distribution q(p∗, pi) given the current state pi. The MCMC method
with Metropolis-Hastings algorithm for the parameter estimation can be schematized as
illustrated in Figure 2:

The randomness for the search step to get the candidate points in the MCMC method
can be inserted by using a uniform distribution according to:

p∗
j = pij{1 + α(2w − 1)} , 1 < j < n, n = number of parameters (7)

where α is the search step and w is an random number uniformly sampled in the range
[0,1].

The acceptance rate of the MCMC must be observed in order to avoid that the chain
stays around the same state for an excessive number of iterations or that many new states
are not accepted. The movements of the chain must be dosed to make it move throughout
the domain of πAp(p|yExp) with large displacements that have real chances of acceptance.

4. Results and discussion

The computed code was implemented in the Mathematica 10.0 platform [68], using the
NDSolve routine to numerically solve the system of ODEs for the transformed potentials
that results from the GITT approach, and in the solution of the reduced model for the
average potentials, through the CIEA approach. Table 1 presents the parameters adopted
for the simulation, obtained in the literature [49,50].
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Table 1. Parameters used in the simulation of the concentra-
tion of species involved in the transesterification reaction with
methanol and soybean oil at 25°C [49,50].

Parameter Value Parameter Value

μTG[Pa.s] 5.825 10−2 μA[Pa.s] 5.47 10−4

ρTG[kg m−3] 885 H[m] 400 10−6

D∗
TG[m

2s−1] 1.58 10−9 HTG[m] 356.592 10−6

D∗
A[m

2s−1] 1.182 10−10 k1[m3mol−1s−1] 4.368 10−6

D∗
P[m

2s−1] 1.38 10−9 k2[m3mol−1s−1] 9.623 10−6

C∗
TGo[mol m−3] 1014 k3[m3mol−1s−1] 1.88 10−5

CAo 4.4 k4[m3mol−1s−1] 1.074 10−4

QTG/QA 3.4 k5[m3mol−1s−1] 2.117 10−5

L[m] 2.33 10−2 k6[m3mol−1s−1] 9.0 10−7

W[m] 400 10−6

The concentrations of the species were evaluated for different residence times, which for
a fixed geometry are obtained by varying of volumetric flow rates of the reagents, according
to Equation (1).

Since, experimentally, the measurements of the species concentrations are performed
only on reaction products collected at the outlet of themicroreactor, even though theGITT
solution provides the analytical local information within the reactor, the results further
presented are mainly based on the comparison of the average concentration of the species,
that were constructed through Equation (3).

Figure 3 illustrates the accurate and approximate dimensionless average concentrations
of the species along the residence time, obtained through CIEA and GITT with different
truncation orders: NT = 2, 5 and 40. The concentration of triglyceride decreases through-
out the residence time, Figure 3(a), while the biodiesel and glycerol species increase,
Figures 3(e,f), respectively. The intermediate species diglyceride and monoglyceride are
initially formed, reach a maximum and decrease as the reaction progresses to equilibrium
(Figures 3(c,d), respectively). The GITTNT=40 solution is here assumed to be the most
accurate one while the other are considered approximate solutions. It is possible to notice
that, the GITTNT=5 and GITTNT=40 solutions present, at the graphic scale, a fairly good
adherence between themselves, for all the species. However, the solutions GITTNT=2 and
1D-CIEA slightly differ from that one derived via GITTNT=40.

Table 2 presents the CPU time required for the solutions through GITTNT=40,
GITTNT=5, GITTNT=2 and 1D-CIEA, during a single solution of the forward problem.
This comparative evaluation of computational time was performed on a desktop micro-
computer with Intel Core i7-7500U CPU @ 2.70GHz-2.90GHz. The accurate solution
GITTNT=40 required a computational time of only 102s, which though not optimized, can
be considered fast enough for a multidimensional nonlinear forward problem of six cou-
pled species, but would not be fast enough to be applied in the present stochastic approach
for inverse problem analysis. The two proposed approximate solutions, 1D-CIEA and
GITTNT=2 required a computational time nearly 6500 and 15000 times smaller than the
accurate solution, GITTNT=40, respectively, and therefore, they are preferable to perform
the parameter estimation in the present work.
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Figure 3. Accurate and approximate average concentration profile for the species in the transesterifica-
tion reaction: (3a) triglyceride, (3b) alcohol, (3c) diglyceride, (3d) monoglyceride, (3e) biodiesel and (3f)
glycerol.
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Table 2. Computational time for accurate and approxi-
mate solutions of the forward problem.

Solution CPU timea
CPU time reduction with respect

to the GITTNT=40 solution

3D – GITTNT=40 101.2328s -
3D – GITTNT=5 0.1239s 817
3D – GITTNT=2 0.0156s 6489
1D – CIEA 0.0070s 14461
ain a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz
2.90 GHz with RAM of 8GB.

To evaluate the reduced sensitivity coefficients of the kinetic and diffusion coefficients,
the exponential format k = 10κ and D∗ = 10D is used, where κ andD are the new param-
eters to be estimated, instead to the original value ‘k’ and ‘D∗‘ [49]. The exponential format
for the parameters has been proposed since it allows to reduce the search interval for the
parameters in theMCMCmethod and promotes a desirable increment in the sensitivity of
the concentrations, facilitating an extensive investigation within the search interval with
small values for the search step [49].

The sensitivity analysis and the sequential experimental design, which demand more
accurate information about the physical phenomenon, were performed with the accurate
solution GITTNT=40. Figure 4 illustrates the reduced sensitivity coefficients evaluated for
the different species TG, DG,MG and B, and indicates a linear dependence among some of
them, notably between κ4 and κ5 and between κ2 and κ6. Comparing Figures 3 and 4, it is
observed that the reduced sensitivity coefficients related to the parameters κ1, κ2, κ3, κ4, κ5,
κ6 and DA present large amplitudes, of the same magnitude as the species concentrations,
which somehow favours the inverse analysis. However, the reduced sensitivity coefficients
related to the parametersDTG andDP have lower amplitudes in comparison to the concen-
trations of the species and the other parameters, and thus an increased difficulty in their
estimation is expected.

It is also observed that, for low residence times, some sensitivity coefficients have a value
very close to zero, which suggest inadequate times for the collection of experimental data,
despite being a desirable result in the biodiesel production process.

For the sequential experimental design, 40 different residence times in the range from
0.5–20min, equally spaced by 0.5min, are considered as candidates to be experimented,
and the determinant of the matrix JTJ is maximized through the sequential experimental
design method.

Also, in the sequential experimental design, the quality of information carried by each
species into the inverse problem procedure was evaluated to justify which species must be
used in the likelihood. Each species, triglyceride, diglyceride,monoglyceride and biodiesel,
was evaluated singly and combined among them. The analysis of the matrix JTJ, Figure
5(a), indicates an order of importance for the species to be considered in the measurement
process (i.e.: B, DG,MGandTG), aiming at a better combination of results to be used in the
estimation process. As can be seen, the information added through the triglyceride species
does not imply in a significant change in the determinant of JTJ, so the concentration of
this species could be in principle disregarded in the inverse procedure without losing infor-
mation in the estimations. However, since information on this species is generally available



16 P. C. PONTES ET AL.

Figure 4. Reduced sensitivity coefficients evaluated for the exponential representation ‘10κ ‘ and ‘10D‘
for the kinetic and diffusion coefficients. (4a) jTG; (4b) jB; (4c) jDG and (4d) jMG.

experimentally, the triglyceride concentration was also considered in subsequent inverse
analyzes.

Figure 5(b) illustrates the gain in the determinant of JTJ considering, or not, the sequen-
tial experimental design for the case where four species would be experimentally available.
The red triangle curve represents the determinant of JTJ taking into account the list of
40 candidates, of residence times, in an ascending order from 0.5–20min, equally spaced
of 0.5min. And the black circle curve shows the increment observed in the determinant
of JTJ when the same number of cases (40 at total) was considered in a sorted sequence,
derived from the sequential design procedure. It can be noticed that the sequential design
improves values for the determinant of JTJ up to the twentieth candidate, from that point
and beyond there is no significant difference in the order of sub sequential candidates. For
this reason, the inverse analysis from this point on was performed considering measures
for the first 20 candidates indicated by the sequential experimental design: 5.5, 2.5, 18.5,
0.5, 1.5, 11, 4.5, 2, 20, 1, 6.5, 11.5, 4, 19.5, 3, 5, 10.5, 19, 3.5, and 6min.

The synthetic experimental data were simulated from the accurate solution (GITT with
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Figure 5. Analysis of the determinant of JTJ investigating (5a) the best arrangement order for the four
potentials in the matrix J considering the sequential experimental design and (5b) the improvement
providing by using of this optimum design.

NT = 40) evaluated in the 20 residence times mentioned before. At each residence time,
the dimensionless average concentrations for the 4 species (TG, DG, MG and B) at the
reactor outlet are obtained, totalling 80 synthetic experimental data. The exact solution
was disturbed by a Gaussian noise with zero mean and a standard deviation σ = σ̂ CSim

in accordance with the following expression:

CExp = CSim + σN(0, 1) (8)

Although lower values for σ̂ were investigated, such as σ̂ = 0.01 and σ̂ = 0.03, only the
results for σ̂ = 0.05 will be here presented since such estimations have more discrepant
values with respect to the original exact parameters.

Information about the approximation error in modelling is evaluated through a
Monte Carlo simulation involving the difference between the accurate and approximate
solutions,CAc(p) − CAp(p), for different vectors p randomly generated from uniform dis-
tributions. Table 3 presents the reference values and limits of the parameters considered
in the sampling procedure used in the construction of information about the model error.

Table 3. Reference values and limits of the parame-
ters κ andD considered in the sampling procedure in
the error model approach.

Parameter Exact value Inferior limit Superior limit

κ1 −5.35972 −5.62770 −5.09173
κ2 −5.01669 −5.26752 −4.76586
κ3 −4.72584 −4.96213 −4.48955
κ4 −3.96900 −4.16745 −3.77055
κ5 −4.67428 −4.90799 −4.44057
κ6 −6.04576 −6.34805 −5.74347
DTG −8.80134 −9.24141 −8.36128
DA −9.92738 −10.4238 −9.43101
DP −8.86012 −9.30313 −8.41711
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Figure 6. Error analysis. (6a) Sampling of error curves for TG with number of samples equal to 200,
NS = 200; (6b) Convergence analysis for the mean of the error for TG with approximate solution by
GITTNT=2; (6c) Mean of the error for TG and B and (6d) for DG and MG with approximate solution by
GITTNT=2 and by CIEA.

Mean and standard deviation, for this approximation error, were calculated from this sam-
pling and used in the approximate posterior formulation, Equation (6i), for those residence
times chosen for the inverse analysis.

It is also worth commenting that, in the sampling process, the variation of 5% in the
parameters (in exponential format as here proposed) leads to a wide variation in the actual
kinetic coefficient value higher than 37%. On the other hand, this variation on the kinetic
coefficients may lead to more the 370% of variation on the dimensionless concentration
for the species TG, DG, MG and B, as can be observed in Figure 6(a). These curves illus-
trate that 5% variation in the parameters is sufficient to create sampling curves (light grey
curves) that cover a very wide region around the exact solution (solid black line). Figure
6(b) exemplifies the model error curves for the species TG evaluated by the difference
between the GITTNT=40 and GITTNT=2, respectively, for an illustrative number of 200
samples of different vectors p, and therefore 200 calculations of the difference between
the accurate and approximate solutions. The number of samples, NS, must be evaluated to
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ensure a sampling which provides a fully converged value for the mean and standard devi-
ation of the error. In this sense, Figure 6(c) shows the convergence analysis referring to the
mean value of the error calculation betweenmodels for species TG, where it is noticed that
a sampling with NS = 1000 is satisfactory to ensure, at this graphical scale, a converged
behaviour to appropriately describe the mean of the error.

The same convergence analysis was performed for all other species for both approx-
imate solutions, GITTNT=2 and 1D-CIEA, even not being presented here. For all cases,
the sampling number of NS = 1000 was suitable to perform the statistical analysis on the
approximation error.

Figure 6(d) illustrate the convergedmean of the error for the species TG andB generated
for the GITTNT=2 and 1D-CIEA, where it is possible to notice that the error profiles have
behaviour completely distinct from those observed in the average concentration, but both
GITTNT=2 and 1D-CIEA error curves present similar tendency.

For all kinetic coefficients, a non-informative Uniform prior was assumed, while for the
diffusion coefficients, a truncatedGaussian priorwas consideredwithmean based on a cor-
relation available in the literature [50] and standard deviation of 5%. For the priors’ range,
for all parameters, a wide search interval for the MCMC was set as 50%, up and down,
of the exact value of each parameter. Tables 4 to 7 present the result for the estimation
of the parameters ‘κ ‘ and ‘D‘ carried out with the approximate solutions, GITTNT=2 and
1D-CIEA, respectively, considering 80 synthetic measurements with a deviation σ̂ = 0.05
for the concentration of species TG, DG, MG and B evaluated in the 20 residence times
indicated by the sequential experimental design. The MCMC was performed with an
acceptance rate smaller than 50% for a total of 200000 accepted states. The parameter esti-
mation was obtained through the calculation of the mean values and the quantiles of 99%
for the credibility interval, both calculated from the accepted states after neglecting the
burning period of 100000 states.

Tables 4 and 5 present the results obtained with the approximate solution GITTNT=2,
with and without taking into account the approximation error information in the estima-
tion procedure, respectively. Similarly, Tables 6 and 7 present the results for the estimations
obtained via 1D-CIEA, with and without, the approximation error information in the
estimation procedure, respectively.

Table 4. Results for σ̂ = 0.05 and credibility interval of 99% using the approximate solution from 3D
GITTNT=2 and the approximation error information.

Total computational timea: 4.32h

Search step: 2.0 10−3; Acceptance: 44.00%

Parameter Initial guess Exact value Estimated Minimum Maximum Error (%)

κ1 −2.67986 −5.35972 −5.23226 −5.40104 −4.94061 2.37800
κ2 −2.50834 −5.01669 −4.95242 −5.07705 −4.69741 1.28105
κ3 −2.36292 −4.72584 −4.37707 −4.80132 −4.02673 7.38011
κ4 −1.98450 −3.96900 −3.66313 −4.07241 −3.31520 7.70646
κ5 −2.33714 −4.67428 −4.61141 −4.69829 −4.51891 1.34496
κ6 −3.02288 −6.04576 −6.03114 −6.10960 −5.95595 0.24185
DTG −4.40067 −8.80134 −8.89102 −9.76302 −8.07658 1.01893
DA −4.96369 −9.92738 −10.27336 −11.21084 −9.85875 3.48511
DP −4.43006 −8.86012 −8.27231 −9.06810 −7.62360 6.63435
aIn a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz with RAM of 8GB
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Table 5. Results for σ̂ = 0.05 and credibility interval of 99% using the approximate solution from 3D
GITTNT=2 without the approximation error information.

Total computational timea: 3.57h

Search step: 2.0 10−3; Acceptance: 47%

Parameter Initial guess Exact value Estimated Minimum Maximum Error (%)

κ1 −2.67986 −5.35972 −5.39955 −5.46939 −5.32628 0.74318
κ2 −2.50834 −5.01669 −5.06979 −5.13565 −5.00246 1.05847
κ3 −2.36292 −4.72584 −4.77795 −4.87654 −4.66998 1.10254
κ4 −1.98450 −3.96900 −4.03333 −4.12840 −3.91947 1.62101
κ5 −2.33714 −4.67428 −4.66791 −4.72480 −4.61061 0.13635
κ6 −3.02288 −6.04576 −6.02765 −6.08604 −5.97200 0.29951
DTG −4.40067 −8.80134 −8.80501 −9.23042 −8.03627 0.04171
DA −4.96369 −9.92738 −9.93274 −10.04956 −9.83064 0.05396
DP −4.43006 −8.86012 −8.17955 −8.45854 −7.79879 7.68125
aIn a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz with RAM of 8GB

Table 6. Results for σ̂ = 0.05 and credibility interval of 99% using the approximate solution from CIEA
and the approximation error information.

Total computational timea: 1.71h

Search step: 2.3 10−3; Acceptance: 41%

Parameter Initial guess Exact value Estimated Minimum Maximum Error (%)

κ1 −2.67986 −5.35972 −5.29992 −5.40199 −5.20718 1.11559
κ2 −2.50834 −5.01669 −4.9868 −5.08809 −4.88792 0.59587
κ3 −2.36292 −4.72584 −4.51221 −4.76127 −4.3117 4.52044
κ4 −1.98450 −3.96900 −3.76492 −4.0118 −3.55905 5.14180
κ5 −2.33714 −4.67428 −4.6038 −4.6931 −4.50385 1.50771
κ6 −3.02288 −6.04576 −5.97438 −6.06365 −5.87371 1.18064
DA −4.96369 −9.92738 −10.0121 −10.0817 −9.93321 0.85320
aIn a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz with RAM of 8GB.

Table 7. Results for σ̂ = 0.05 and credibility interval of 99% using the approximate solution from CIEA
without the approximation error information.

Total computational timea: 1.70h

Search step: 1.5 10–3; Acceptance: 35.4%

Parameter Initial guess Exact value Estimated Minimum Maximum Error (%)

κ1 −2.67986 −5.35972 −5.22998 −5.27678 −5.18624 2.42063
κ2 −2.50834 −5.01669 −4.97135 −5.02172 −4.92484 0.903698
κ3 −2.36292 −4.72584 −4.31178 −4.38817 −4.23931 8.76163
κ4 −1.9845 −3.96900 −3.62813 −3.71185 −3.54966 8.58831
κ5 −2.33714 −4.67428 −4.55212 −4.59894 −4.50604 2.61351
κ6 −3.02288 −6.04576 −5.96144 −6.01498 −5.90869 1.39464
DA −4.96369 −9.92738 −10.1184 −10.1516 −10.0843 1.92433
aIn a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz with RAM of 8GB.

The estimated parameters for the situation where the approximation error information
was taken into account presented a relative error lower than 7.70% with respect to the
original exact values for kinetic and diffusion coefficients, and the credibility intervals are
enveloping all exact reference values of them. Results for the estimationwithout taking into
account the approximation error information for both approximate solutions (GITTNT=2
and 1D-CIEA) present more expressive relative error such as 8% which suggests a poorer
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Figure 7. Markov chains for parameters obtained from approximate error approach through GITTNT=2
assuming different initial guesses. Black curve:p0 = 0.5pexact; red curve:p0 = 0.8pexact; and Blue curve:
p0 = 1.5pexact.

estimation, certainly due to the absence of the approximation error information. The cred-
ibility intervals from the estimation without the approximation error information does
not include, for some parameters, their exact values and this seems like a deformation of
the approximate posterior domain which led to less accurate estimations. These cases are
illustrated in the Tables 5 and 7 in shaded form.

Figure 7 shows the evolution of the Markov chains of the parameters for the GITTNT=2
approximate solution, evaluated with the approximation error information considering
three different initial guesses: black curve for p0 = 0.5pexact; red curve for p0 = 0.8pexact;
and blue curve for p0 = 1.5pexact. These results illustrate the convergence and agreement
of the MCMC with approximation error model for different initial guesses, including
those away from the exact value. Even for a wide range of initial guesses, the estima-
tion converges to a region around the exact value of the parameters. It is also worth
mentioning that a variation of 50% made in the initial guesses of the parameter, in
the exponential format, represents a variation higher than 100% in the actual kinetic
coefficients.
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Figure 8. Results for the synthetic data with σ̂ = 0.05, estimated curves and their credibility intervals
of 99% for (8a) triglyceride, (8b) biodiesel, (8c) diglyceride and (8d) monoglyceride.

Figure 8 presents the final comparison for the original accurate result for the concentra-
tions of all fourmeasurable species. The obtained concentrationswith the exact parameters
via GITTNT= 40 are presented as the black solid lines, the synthetic measurements with a
standard deviation of σ̂ = 0.05 are presented by the red symbols. The estimated concen-
trations, using the GITTNT=2 solution in the inverse analysis, are presented by the blue
stars with dashed line, and their respective credibility intervals of 99% are represented by
the black dashed line.

Once the equilibrium region in the iterative process of the MCMC is reached, after the
burning period, the posterior prediction for each species was computed and stored for each
state of MCMC, and from this posterior sample it was possible to calculate the mean and
the quantiles of 99% to the estimated value of the concentration and its credibility interval.
All estimated results show a good adherence to the experimental synthetic data recovering
most of them, and in particular the agreement between the estimated curve and the exact
one can be observed.
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5. Conclusions

This work presents amethodology that allows tomarkedly reduce the computational effort
in the estimation of the kinetic and diffusion coefficients for the transesterification reaction
in microreactors, using approximate solutions and an information about the approxi-
mation error. The hybrid method GITT was used to construct an accurate solution for
the forward problem governed by a multicomponent diffusive-convective-reactive non-
linear coupled 3D mathematical model, with sufficiently high truncation orders, such as
NT = 40, while two approximate solutions were considered, one obtained by a 1D model
reformulated via an improved lumped analysis (CIEA) and another one obtained from the
3D model itself solved by GITT but with low truncation order, as low as only two terms
(NT = 2) in the eigenfunction expansion.

The ‘exact’ GITT solution (with a high truncation order, NT = 40) was used to per-
form the sensitivity analysis and the sequential experimental design for the problem,
where it was possible to verify that the representation in exponential format for the kinetic
and diffusion coefficients, k = 10κ and D∗ = 10D, instead of its original properties k and
D∗, increases the sensitivity of the new parameters to be estimated as exponents (κ and
D). From evaluating the det(JTJ) it was indicated that replicating the experiments in the
increasing order of the residence time proposed in a list of 40 different residence times
as candidates, from 0.5 until 20min with increment of 0.5min, is not the best alterna-
tive to maximize det(JTJ) and a sequence of 20 experiments collected and sorted from the
original list of 40 candidates was presented and considered as the synthetic experimental
measurements.

The approximation error information was obtained from a Monte Carlo simulation of
the difference between the accurate and approximate solutions performed in a sampling
generated from uniform distributions withmeans in the exact values of the parameters and
5%, for more and less, as interval limits. From a convergence analysis of the mean of the
error, it was found a number of samples NS = 1000 as a satisfactory amount to represent
the profile of the error representation along residence time.

The likelihood function was constructed using synthetic measurements with stan-
dard deviation of σ̂ = 0.05 for the triglyceride, diglyceride, monoglyceride and biodiesel
species, and theMCMCwas employed using approximate solutions with and without their
approximation error information. The estimation of the parameters in the exponential for-
mat 10κ and 10D were demonstrated for the case σ̂ = 0.05 with relative errors lower than
8.0% compared to the exact values when the approximation error was considered. If this
approximation is not considered, the error on estimative increases and a deformation in
the credibility intervals occur and consequently the exact values are not recovered for all
parameters. The computational time was fairly low, reaching as much as 1.71 and 4.72 h
for CIEA and GITTNT=2, respectively, in the microcomputer configuration adopted. The
estimated potentials were recovered with strong adherence to the simulated data, which
indicates that the combination of approximate solutions together with the information on
approximation errors generates accurate results and fast algorithms for the inverse problem
analysis.
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