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Multifractal systems usually have singularity spectra defined on bounded sets of Hölder expo-
nents. As a consequence, their associated multifractal scaling exponents are expected to depend
linearly upon statistical moment orders at high enough orders – a phenomenon referred to as the
linearization effect. Motivated by general ideas taken from models of turbulent intermittency and
focusing on the case of two-dimensional systems, we investigate the issue within the framework of
Gaussian multiplicative chaos. As verified by means of Monte Carlo simulations, it turns out that
the linearization effect can be accounted for by Liouville-like random measures defined in terms
of upper-bounded scalar fields. The coarse-grained statistical properties of Gaussian multiplicative
chaos are furthermore found to be preserved in the linear regime of the scaling exponents. As a
related application, we look at the problem of turbulent circulation statistics, and obtain a remark-
ably accurate evaluation of circulation statistical moments, recently determined with the help of
massive numerical simulations.

I. INTRODUCTION

Soon after the realization that strange attractors
should be characterized by a set of generalized dimen-
sions rather than a single fractal dimension [1–3], re-
lated concepts were further developed and applied to the
problem of homogeneous and isotropic turbulence [4–8].
In the latter context, domains of the fluid velocity field
which have prescribed singular Hölder exponents have
been conjectured to be fractal. This is the essential con-
tent of the multifractal approach to turbulence, which
allows one to recover, within inertial range scales, the
anomalous scaling properties of the turbulent energy cas-
cade [9–12].

The multifractal mindset has since then crossed the
borders of its fluid dynamical birth place and is by now
a valuable tool for the investigation of problems in fields
as diverse as seismology, meteorology, ecology, condensed
matter physics, dynamical systems, etc. [13–17]. In the
particular case of turbulence, its worth emphasizing that
multifractality has been noted to be closely related to the
Onsager’s long-standing conjecture on flow singularities
[18–20] and to the phenomenon of spontaneous stochas-
ticity, a subject of growing interest, as far as it leads to
a breaking of the deterministic paradigm of classical me-
chanics, in a sense which is even stronger than the one
usually implied by chaotic behavior [21–25].

Multifractal modeling, however, is expected to be bro-
ken by extreme events: at enough high orders, statistical
moments of the physical observables of interest are found
to depend linearly upon its moment orders, at variance
with the typical non-linear profiles predicted for multi-
fractal systems [26, 27]. While such a linearization effect
can be actually explained in a natural way within the
multifractal formalism [28–34], its account from alterna-
tive perspectives on multifractality has been puzzingly
and, as a consequence, a point of concern in applica-
tions. We have in mind, more specifically, the connec-
tion betweeen mutifractality and the theory of Gaussian
multiplicative chaos (GMC) [35, 36], which has been a

fruitful tool in the development of finance [37], turbu-
lence [38–41] and even quantum gravity models [42]. Our
aim, in this work, is to address the linearization effect in
the framework of GMC and to illustrate, as a meaningful
case study, an application of the proposed solution to the
problem of turbulent circulation statistics [43–45].

This paper is organized as follows. In the next section,
we clarify the problem we are interested to study, recall-
ing some relevant technical details of the multifractal for-
malism and the theory of GMC, with specific attention to
the case of two-dimensional modeling. In Sec. III, heuris-
tic arguments are introduced, based on phenomenological
descriptions of turbulent cascades [4, 9, 10], which moti-
vate us to put forward, as a proposal, the necessary ingre-
dients for the realization of the linearization effect along
the lines of GMC. Our conjectures are fully confirmed in
Sec. IV by means of Monte Carlo simulations. We then
carry out, in Sec. V, an application of the freshly de-
rived results to the problem of circulation fluctuations in
turbulence, obtaining excellent comparisons with evalua-
tions obtained from previous numerical experiments [43].
Finally, in Sec. VI, we summarize our findings and point
out directions of further research.

II. PROBLEM SETUP

To set the stage for the issues we aim to address in
this paper, let us consider the example of a d-dimensional
positive-definite multifractal scalar field ψ(x), described
by some translation invariant probability measure, in
such a way that the statistical moments of the renor-
malized fields

ψa(x) ≡ 1

ad

∫
Da

ddxψ(x) , (2.1)

where Da is the spatial domain |x′ − x| ≤ a, behave as

E[(ψa(x))q] ∼ aτq . (2.2)
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The scaling exponents τq can be derived within the mul-
tifractal language as follows [5]. Let D(h), referred to
as the singularity spectrum, be the fractal dimension of
the set of points which have Hölder exponent h in the
ensemble realizations of ψ(x). Regarding h as a ran-
dom variable to be sorted when an arbitrary region of
size a is probed, the probability to find the local scal-
ing behavior ψa(x) ∼ ah

′
where h′ ∈ [h, h+ dh] is, thus,

ρ(h)dh ∼ ad−D(h)dh. We get, from these assumptions,
that

E[(ψa(x))q] ∼
∫
dhρ(h)aqh ∼

∫
dhahq+d−D(h) . (2.3)

At small enough scales, the dependence of the above ex-
pectation values upon a can be estimated with the help
of the saddle-point method, which leads to (2.2), with

τq = infh[hq + d−D(h)] . (2.4)

The scaling exponent τq, therefore, is nothing but the
Legendre transform of the fractal codimension d−D(h).

General arguments [12] tell us that τq is a concave func-
tion of the moment order q. For the sake of clarity, we
adopt here the convention that multifractality refers to
the case of scaling exponents which are strictly concave,
that is, d2τq/dq

2 < 0. The singularity spectrum D(h) is,
accordingly, a strictly concave function of h.

As already alluded in the introductory section, multi-
fractality is expected to be broken at high enough mo-
ment orders. More concretely, this stands for the fact
that for q ≥ qc, where qc is a model-dependent critical
moment order, τq becomes a linear function of q [26–34].
An essential explanation of the linearization effect, ap-
prehended from the aforementioned works, is that the
domain of the singularity spectrum function is usually
bounded from below by a limiting Hölder exponent h∗.
Therefore, taking into account that as q grows, the value
of h which minimizes the RHS of (2.4) gets smaller, it
turns out that at some critical moment order qc the min-
imizer in (2.4) saturates to h∗, leading to the monofractal
relation

τq = h∗q + d−D(h∗) , (2.5)

for q ≥ qc.
The singularity spectrum can be well approximated in

very many instances by a parabolic function of h over
a broad range of Hölder exponents, so that fluctuations
of ψ(x) can be effectively described by lognormal prob-
ability distribution functions. In equivalent words, the
scaling exponents τq are given, in this approximation, by
quadratic functions of q. In this connection, one notes
that the combined existence of pointwise lognormal dis-
tributions for ψ(x) and the scaling behavior of the coarse-
grained variables (2.2) can be reproduced with the help
of the Liouville measures as defined in the theory of GMC
[36].

Centering our attention on two-dimensional modeling,
the GMC approximation means, in practice, that ψ(x)

may be expressed as the Liouville measure density

ψ(x) = ψ0 exp

{
γφ(x)− γ2

2
E[φ2]

}
, (2.6)

where ψ0 > 0 and γ are arbitrary parameters, and φ(x)
is a free scalar field [46] with fluctuations governed by
the functional probability measure

dµ[φ] = D[φ] exp{−S[φ]} , (2.7)

where

S[φ] =
1

2

∫
DL

d2x(∂iφ)2 . (2.8)

Periodic boundary conditions are assumed for the scalar
field φ(x) in the domain DL, which is furthermore dis-
cretized in a lattice of lattice parameter η (a necessary
technical detail for the ultraviolet regularization of the
free field Green’s functions). Taking η � a � L, it fol-
lows from (2.1) and (2.6-2.8) that (2.2) is satisfied, that
is,

E[(ψa(x))q] = cqψ
q
0

( a
L

)τq
, (2.9)

where cq is an unimportant dimensionless constant (for
our purposes) and

τq =
γ2

4π
q(1− q) . (2.10)

The bare field ψ(x) can be identified with the ultraviolet
regularized field ψη(x). A scaling relation similar to (2.9),

E[(ψ(x))q] =
( η
L

)τq
, (2.11)

can then be derived from (2.6-2.8) as well.
We wonder, thus, if it is possible to implement modifi-

cations in the GMC computational scheme based on Eqs.
(2.6-2.8) so as to get a crossover of the scaling exponents
τq, as q grows, from (2.10) to (2.5), while still having
power laws like (2.9) and (2.11). In the next section,
we propose a solution to this problem, relying on heuris-
tic arguments inspired on well-known phenomenological
models of turbulent intermittency.

The apparent methodological restriction represented
by the use of turbulence phenomenology should not be
a matter of concern at all, since multifractal phenomena
and techniques are usually traded without much difficulty
among models of completely different nature.

III. BOUNDED CASCADES

We briefly outline, in the following subsections A and
B, two phenomenological views on the turbulent cascade,
which when placed vis a vis the theory of GMC and the
multifractal formalism, give relevant hints on how to es-
tablish the linearization effect in the framework of the
GMC, a task addressed in subsection C.
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A. The Obukhov-Kolmogorov lognormal model of
turbulent intermittency

If ψ(x) is used to model the turbulent dissipation field
in homogeneous and isotropic turbulence, commonly de-
noted by ε(x), relations (2.1) and (2.2) yield a precise
formulation of the Kolmogorov refined similarity hypoth-
esis, a central point in the Obukhov-Kolmogorov (OK62)
modeling of turbulent intermittency [9, 10].

In the OK62 phenomenology, multiplicative cascade
fluctuations of the energy transfer rates per unit mass
and unit time, εa and εb, across two different length scales
a and b, respectively, are related as

εa = εbW1W2...Wn . (3.1)

The W ′s are lognormally i.i.d. random variables, with
unit mean, and n = log2(b/a), taken to be a positive
integer, gives the number of modeled steps in the turbu-
lent energy cascade between the scales a and b. They are
assumed to lay within the inertial range scales, that is,
η ≤ a < b ≤ L, where L and η define the integral and dis-
sipative length scales, respectively, of the turbulent flow.
Eq. (3.1) is to be understood in the probabilistic sense
as an equality in law for εa and εb.

Considering b = L, that is, the scale where energy is
injected into the flow with non-fluctuating energy trans-
fer rate εL, then it is a straightforward exercise to show,
from (3.1), that

E[εqa] ∼ εqL
( a
L

)τq
(3.2)

holds for η ≤ a ≤ L, in the same fashion as (2.9) and
(2.11), where τq is given as in (2.10), with

γ2 = 2π log2 E[W 2] . (3.3)

As a relevant note for future use, we introduce the Gaus-
sian random variable Xp, through

Wp ≡ exp(γXp) . (3.4)

The OK62 cascade argument (3.1) can in this way be
recalled to suggest, taking a look at (2.6), that pointwise
fluctuations of ψ(x) can be derived from ψ ∼ exp(γφ),
where

φ =

log2(L/η)∑
p=1

Xp . (3.5)

B. The random β-model of turbulent intermittency

An alternative OK62-like cascade picture of the energy
transfer rate fluctuations across scales, as synthetized in
Eq. (3.1), can be put forward in order to render it closer
to contemporary multifractal ideas and in compliance
with general physical principles like energy conservation.

In the random β-model [4], an arbitrary energy-
containing eddy defined at length scale a produces, dur-
ing its lifetime, a random number Ma ≤ 2d of descen-
dent eddies (in d dimensions), all of them defined at
length scale a/2. Energy conservation implies that the
power supplied by the mother-eddy to its descendents
has to be same as the total power supplied by the latter
ones to their further descendents and, as a consequence,
Maεa/2(a/2)d = εaa

d, that is

εa/2 = β−1a εa , (3.6)

where βa = Ma/2
d is the fraction of volume that the

whole group of descendent eddies (the “sibling-eddies”)
occupy with the respect to the volume of their mother-
eddy.

Assuming that generation after generation the β′s are
completely independent and randomly distributed ac-
cording to the same probability density function f(β),
Eq. (3.1) still holds for the energy transfer rates of each
individual eddy, with (subindices suppressed)

W = β−1 . (3.7)

We have, therefore,

εa =

[
n∏
i=1

β−1i

]
εL , (3.8)

where n = log2(L/a). Energy transfer rates have, now,
statistical moments

E[εqa] ∼ εqL
[∫ 1

0

dβf(β)β1−q
]n

= εqLE[β1−q]n ∼ εqL
( a
L

)τq
, (3.9)

where

τq = − log2 E[β1−q] . (3.10)

Note that the expectation value (3.9) takes into account
the fact that in the random β-model eddies are not space-
filling structures.

The particular modeling case where β is fixed to some
arbitrary value β0 [47], associated to the probability dis-
tribution function

f(β) = δ(β − β0) , (3.11)

gives, in view of (3.10), the linear scaling exponents

τq = (q − 1) log2 β0 . (3.12)

Furthermore, still considering the situation of fixed β,
we infer that a mother-eddy at the integral scale L (the
“mother of all mothers”) is the source, along the turbu-
lent cascade, of a number

Na ∼ (2dβ0)log2(L/a) ∼
(
L

a

)d+log2 β0

(3.13)

of descendent eddies at length scale a. The scaling law
(3.13) indicates that the fractal dimension of the energy-
containing eddies is, here,

dF = d+ log2 β0 . (3.14)
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C. The linearization effect in the theory of GMC

As discussed in Sec. II, the linearization effect takes
place when statistical moments get dominated by fluctu-
ations associated to the most singular set of configura-
tions, which are the ones which have the minimum avail-
able Hölder exponent, denoted in Eq. (2.5) by h∗. Due
to the concavity properties of the singularity spectrum,
we expect the fractal dimension of the most singular set,
D(h∗), to be the smallest allowed one (for the evaluation
of positive order moments).

We also note that Eq. (3.14) can be used to estab-
lish a mapping between values of β, from the side of the
random β-model, to the fractal dimensions encompassed
by the singularity spectrum D(h), from the side of the
multifractal formalism. In the language of the random β-
model, the linearization effect follows from the existence
of a minimum value of β, say β∗, obtained from

D(h∗) = d+ log2 β∗ . (3.15)

Taking (3.7) into account, we conclude that the cascade
factors W ′s are, under these conditions, upper bounded
random variables, viz., W ≤ 1/β∗. Correspondingly, we
see, from the context of the OK62 phenomenology, that
bounded W ′s should be related to bounded scalar fields
φ(x) in the GMC setup, as indicated by (3.4) and (3.5).

Relying upon the above heuristic considerations, we
are, now, ready to propose a modified version of the two-
dimensional GMC, as given by Eqs. (2.6-2.8), in order
to accommodate in its formal structure the linearization
effect. To do so, we actually keep the definition of the
functional probability measure (2.7), but

(i) replace the Liouville measure (2.6) by the more gen-
eral expression

ψ(x) =
ψ0

E[ψ̃(x)]
ψ̃(x) , (3.16)

where

ψ̃(x) = exp[γφ(x)] ; (3.17)

(ii) replace the Euclidean action, Eq. (2.8), by

S[φ] =

∫
d2x

[
1

2
(∂iφ)2 + V (φ)

]
, (3.18)

where

V (φ) =

{
0 , if φ < φ0 ,

V0 , if φ ≥ φ0 ,
(3.19)

with V0 →∞ and

φ0 = C ln(L/η) , (3.20)

where C is an adjustable positive constant (observe that
(3.20) follows from (3.5) by taking Xp = C ln 2).

In short words, we have just postulated that the Li-
ouville measure (3.16) gets upper bounded due to the
existence of a scalar field threshold φ0, and that it fluc-
tuates as usually determined by the free field action (2.8),
if φ(x) < φ0 in an arbitrary neighborhood of x.

An analytical treatment of the modified GMC scenario,
as defined by Eqs. (3.16-3.20), is challenging. However, it
is possible to proceed along with Monte Carlo numerical
validations, as detailed next.

IV. MONTE CARLO SIMULATIONS

We have performed Monte Carlo simulations to study
the fluctuations of the non-normalized Liouville measure
(3.17), with γ = 1, using (3.18-3.20), for the pure GMC
(φ0 =∞) and modified GMC (φ0 <∞) cases.

Statistical ensembles with configurations of ψ̃(x) have
been produced for systems of three different sizes: L/η =
30, 50, and 100, through the application of the standard
Metropolis algorithm [48]. An educated guess for the
value of C in (3.20) gives

φ0 >
√

E0[φ2] , (4.1)

where E0[·] stands for expectation values taken in the
pure GMC scheme. The rationale for (4.1) is that at low

enough orders, statistical moments of ψ̃(x) are expected
to be approximately described by quadratic scaling expo-
nents like the ones of the pure GMC case, since the scalar
field φ(x) will very rarely fluctuate beyond the standard

deviation range,
√

E0[φ2]. On the other hand, as the mo-
ment order grows, larger fluctuations of φ(x) come into
play, reaching more frequently the upper bound φ0, thus
opening the way to the onset of the linearization effect.
A direct computation yields

E0[φ2] =
1

2π
ln

(
L

η

)
. (4.2)

Taking, C ≡ 2/ ln(30), one can then easily check that the
inequality (4.1) holds in fact for all the studied system
sizes.

Each Monte Carlo run consisted of 107 iterations, sam-
pled at every other 10 steps, which evolved from the ini-
tial state φ(x) = 0. The field derivatives in the action
(3.18) were evaluated by means of central differences.
Monte Carlo variations of φ(x) (defined at lattice sites)
were given by independent pseudorandom numbers uni-
formly distributed in the interval [−1, 1].

Statistical moments of the bare and the coarse-gained
non-renormalized Liouville measures, ψ̃(x) and

ψ̃a(x) ≡ 1

ad

∫
Da

ddxψ̃(x) , (4.3)

respectively, are reported in Figs. 1 and 2. As evidenced
from Fig. 1, the linearization effect is well reproduced
in the modified GMC framework for the moment order
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range 5 ≤ q ≤ 11 (q = 11 is the largest analysed or-
der). Fig. 1 also shows the excellent collapse of data for
the investigated systems, which supports the finite-size
dependent definition of the upper bound (3.20).
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size L/η = 100. The solid straight lines have slopes which are
the scaling exponents obtained from the linear fit shown in
Fig. 1, for the moment orders q = 5, 7, and 9.

The Monte Carlo results depicted in Fig. 2 indicate

that ψ̃a(x) scales with the same scaling exponent as

ψ̃(x) ≡ ψη(x) at small length scales (a/L < 0.1), even for
moment orders where the linearization effect is observed.

The linearization effect for the coarse-grained bounded
Liouville measures is a remarkable phenomenon, which
has an immediate impact in turbulence modeling, since
it bridges the linearization effect for scaling quantities
like the velocity structure functions to the linearization
effect for the turbulent dissipation field, if one assumes, of
course, that the Kolmogorov refined similarity hypothesis
is still valid. We examine, in the following, this interest-
ing phenomenological point in connection with a recently
discussed model for the turbulent fluctuations of the cir-
culation variable [45].

V. TURBULENT CIRCULATION STATISTICS

The relevance of the circulation variable [49] as a mul-
tiscale “mathematical probe” of turbulent vortical struc-
tures, pointed for the first time some 25 years ago [50],
has recently found renewed interest with the advent of
high performance computing and improved data storage
capability [43]. Novel modeling ideas have been put for-
ward [43–45], including possible connections between the
statistics of circulation in classical and quantum turbu-
lent flows [51].

Let us center our attention on the particular definition
of circulation as

ΓR ≡
∫
C
d2rω(r) , (5.1)

where C is a disk of radius R and ω(r) is the component
of vorticity which is normal (with arbitrary orientation)
to the plane that contains C. The scaling form for the
circulation moments,

E[|ΓR|q] ∼ Rλq , (5.2)

is observed to hold for the inertial range of scales η �
R � L [43]. We are here mainly interested to model
the scaling exponents λq in (5.2). The Kolmogorov phe-
nomenological description of turbulence (K41) [12] yields
λq = 4q/3, which has been noted to be a very good ap-
proximation only for q ≤ 4 [43].

Tracing back circulation fluctuations to the presence
of vortex tubes, it was proposed, in Ref. [45], that the
vorticity field in (5.1) can be effectively represented, for
the purpose of evaluating the statistical moments (5.2),
as

ω(r) ∼ ξRω̃(r) , (5.3)

where

ξR ≡
1

πR2

∫
C
d2r

√
ε(r) (5.4)

is a functional of the dissipation field ε(r), modeled as
a Liouville measure density, and ω̃(r) is an independent
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Gaussian random field, with vanishing mean and corre-
lator

E[ω̃(r)ω̃(r′)] ∼ |r− r′|−α . (5.5)

The scaling exponent α in (5.5) can be determined, as
we will see in a moment, from the imposition of general
phenomenological constraints [52].

λ q
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FIG. 3: Scaling exponents for the circulation moments. Sym-
bols give the values obtained through direct numerical simula-
tions [43]. The dashed line is the K41 linear profile, λq = 4q/3,
while the solid line is the prediction of the present model, as
given in Eq. (5.10).

Since powers of Liouville measures are Liouville mea-
sures as well, as it can be clearly seen from the defini-
tion (3.17), we are able to obtain (5.2) by putting to-
gether (5.1), (5.3), and the coarse-grained Liouville mea-
sure (5.4), with

λq = τq/2 + (4− α)
q

2
, (5.6)

where τq is the energy transfer rate exponent formally
introduced in (3.2). We determine, now, the crossover
moment order qc that defines the onset of the lineariza-
tion effect. For q < qc the OK62 lognormal model gives
[9, 10, 12]

τq/2 =
µ

8
q(2− q) , (5.7)

where µ = 0.17± 0.01 [53]. The relation between qc and
the Hölder exponent minimizer h∗ (associated to singu-
larities of the dissipation field) can be worked out without
much difficulty; we get

qc = 1− 2
h∗
µ
. (5.8)

Determinations of the singularity spectrum of the energy
dissipation field from high Reynolds number experiments

was accomplished in Ref. [6, 7]. It turns out, from a
careful analysis of the reported data, that h∗ ' −0.5.
This leads us, from (5.8), to qc ' 6.88.

It remains to discuss the yet undetermined exponent
α. Considering that there is no anomalous scaling for
the third order velocity structure functions, as signalized
in Kolmogorov’s 4/5 law [12], we postulate that λ3 = 4,
exactly as in K41 phenomenology [54]. Using (5.6) and
(5.7) with q = 3, we obtain, thus,

α =
4

3
− µ

4
. (5.9)

Collecting all the above pieces of information, we write
down the circulation scaling exponent as

λq =

{
λ̄q ≡ 4

3q + µ
8 q(3− q) , if q < qc ,

1
2

(
h∗ + 8

3 + µ
4

)
(q − qc) + λ̄qc , if q ≥ qc .

(5.10)
The comparison of the predicted values of λq with the

results of massive numerical simulations [43] is excellent,
as shown in Fig. 3. The transition in behavior of the
statistical moments of circulation as their moment or-
ders are varied was actually observed for the first time in
Ref. [43]. We see, therefore, that it can be consistently
explained as a manifestation of multifractality breaking,
or, in other words, the linearization effect, within the
modeling arena of GMC.

VI. CONCLUSIONS

We have been able to address a variation of GMC, as
described from relations (3.16-3.20), which gives room
for the linearization effect, a phenomenon commonly ob-
served in multifractal systems. The key technical point
in the definition of the modified GMC setting is the in-
troduction of upper-bounded Liouville measures.

Our line of reasoning has been closely motivated by
cascade models of turbulent intermittency and their con-
nections with the mulifractal language and the theory
of GMC. We validated the modified picture of GMC by
means of straightforward Monte Carlo simulations and
applied it to the problem of turbulent circulation statis-
tics. We developed, in this way, accurate evaluations of
the scaling exponents for the statistical moments of cir-
culation, previously established only through extensive
numerical simulations [43].

Further work is in order. It would be very interesting
to devise a mathematically rigorous analysis of the lin-
earization effect in the GMC, as discussed in this work,
and to extend it to general space dimensions. Additional
Monte Carlo simulations are also welcome to explore the
validity range (as the field bound φ0, the system size,
and moment orders are changed) of the modified GMC
picture. The empirical (numerical) implementation of
bounded Liouville measures to models based on the the-
ory of GMC should not present any relevant technical or
conceptual difficulty.
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