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A B S T R A C T

Appraisal well testing plays a key role in optimizing a complex field’s exploitation strategy — and increasing
complexity often calls for more elaborate reservoir models for the proper interpretation of each test’s
results. The classical analytical methods usually require restrictive simplifying assumptions, which limit their
usefulness when dealing with reservoir heterogeneity. We seek to solve this issue by applying the hybrid
analytical–numerical Generalized Integral Transform Technique (GITT) to the pressure diffusivity equation —
and specifically, to the point-source problem extended to a reservoir with arbitrary permeability variation
irregularly distributed throughout the 3D domain. The technique is first demonstrated to produce an exact
alternative form of the well-known solution to the classical point-source in a homogeneous reservoir. This
equivalence is then used to derive a computationally efficient working expression for the generalized point-
source in a heterogeneous reservoir. Finally, this building block is applied to construct a uniform flow solution
for a limited entry vertical well through spatial superposition — thus demonstrating the usage of the GITT
for other wellbore geometries. Synthetic examples are used to show that the obtained expressions are in
good agreement with results from a commercial reservoir simulator. In all cases presented, the eigenfunction
expansions for both the drawdown pressure and its logarithmic derivative converge to at least four and two
significant digits, respectively, within the adopted practical ranges of the series’ truncation orders. It is clear
that the pressure expansions have better convergence characteristics, which are also influenced by the time
value and by the distance from the position under consideration to the point-source. The resulting novel
solution to the point-source provided in the present work is the most general and least restrictive expression
presented so far to this single problem in a heterogeneous domain, and it is suitable for pressure transient
analysis.
. Introduction

There is no denying that renewable energy’s share in the global
uel mix has been rapidly increasing in recent years, as public opin-
on and environmental policy changes encourage organizations and
ountries to strive towards reducing CO2 emissions (Herbert, 2016;
EA, 2021). Nevertheless, oil is still the world’s single largest energy
ource, accounting for one-third of global primary energy consump-
ion (Wachtmeister et al., 2018). Furthermore, the global demand for
rude oil has been on an increasing trajectory for the past decade — and
espite the momentary setback due to the impacts of the coronavirus
andemic, current projections still point towards continued growth
n the coming years (Sönichsen, 2021). Exploration and production
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costs rise as companies move further offshore or into increased po-
litical risk regions (Mabrouk, 2014) and drill towards deeper, more
challenging formations — all of which amplify the importance of
optimized exploitation strategies. Well testing plays a key role in this
regard (Kodhelaj and Shkëqim, 2016): early on, for the acquisition of
dynamic data to support the primary and secondary recovery phases;
and then later on, for an optimal selection of techniques and candidate
wells for enhanced oil recovery (EOR) (Green and Willhite, 1998) —
the efficiency of which will be significantly affected by prior knowledge
about the heterogeneity of the formation (Zhong et al., 2020). And
as the fields’ complexity increases, so does the need for increasingly
elaborate reservoir models for the proper interpretation of appraisal
and reservoir monitoring well testing results.
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Table 1
Characteristics and capabilities of several existing models for transient flow in heterogeneous reservoirs, for direct comparison with the present work.

References Domain Wellbore
geometry

Dimensionality Heterogeneity

Larsen (1985) Bounded Vertical 2D (𝑥, 𝑦) Homogeneous medium with polygon-shaped bounds.

Barenblatt et al.
(1960), Warren and
Root (1963)

Semi-infinite,
Bounded

Vertical 2D (𝑟, 𝜃) Dual porosity.

Ehlig-Economides and
Ayoub (1986)

Semi-infinite Vertical 2D (𝑟, 𝑧) Dual permeability in 𝑧, homogeneous in 𝑟.

Satman et al. (1980),
Nie et al. (2019)

Semi-infinite Vertical 1D (𝑟) Radial composite regions.

Kuchuk and Habashy
(1997)

Semi-infinite,
Bounded

Vertical 2D (𝑥, 𝑦) Linear composite regions.

Yaxley (1987), Hosseini
(2019), Stewart (2011)

Semi-infinite,
Bounded

Vertical 2D (𝑥, 𝑦) Vertical leaky barrier separating two homogeneous
regions.

Mavor and Walkup
(1986)

Semi-infinite,
Bounded

Vertical 0Da Parallel layers, each with its own independent model —
no cross-flow in the reservoir.

Bidaux et al. (1992) Bounded Vertical, Limited
entry, Fractured

0Da Parallel layers, each with its own independent model —
cross-flow allowed with restrictions.

Gerard and Horne
(1985)

Semi-infinite Vertical 3D (𝑥, 𝑦, 𝑧) Homogeneous medium, with a pinch-out boundary
allowed in one direction.

Larsen (1993) Semi-infinite,
Bounded

Vertical, Limited
entry

2D (𝑥, 𝑦) Intersecting linear segments, each with its own
(homogeneous) properties. Only late-time linear flow is
modeled, thus neglecting early-time behavior.

Silva-Lóez et al. (2018) Semi-infinite Fractured 1D (𝑥) Fractured vertical well in a double porosity reservoir.
Only bilinear flow is modeled, and pressure can only be
calculated along the fracture axis.

Sagawa et al. (2001) Bounded Vertical,
Horizontal

0Da Sequence of linear segments of different properties along
the wellbore axis. Homogeneous in the perpendicular
direction.

Shi et al. (2020) Bounded Vertical 2D (𝑟, 𝑧) Parallel layers with different external diameters. Flow is
1D (𝑟) within each layer, and no cross-flow is allowed.

Present work Bounded Point-source,
anyb

3D (𝑥, 𝑦, 𝑧) Block-shaped regions of different properties
arbitrarily/irregularly distributed anywhere in the 3D
domain, with no restrictions or simplifications to flow.

aThe resulting expression can only be calculated at the wellbore.
bThe point-source can be used as a building block for uniform flow solutions in any wellbore geometry — as is illustrated in the present work for the
Limited entry vertical well.
When reservoir models are developed for pressure transient analy-
is, the nature of simplifying assumptions is heavily influenced by the
vailability of mathematical techniques which enable a solution not
ependent on costly numerical simulation. In that context, traditional
nalytical solution methods in reservoir literature are only able to han-
le models: for homogeneous — possibly bounded — domains (Larsen,
985); with heterogeneity regularly distributed throughout the domain,
uch as dual porosity (Barenblatt et al., 1960; Warren and Root, 1963)
r dual permeability (Ehlig-Economides and Ayoub, 1986); for regular
omposite or coupled systems such as the radial composite (Satman
t al., 1980; Nie et al., 2019), linear composite (Kuchuk and Habashy,
997), partially communicating fault (Yaxley, 1987; Hosseini, 2019)
r two-cell compartmentalized (Stewart, 2011) models; for commin-
led (Mavor and Walkup, 1986) or coupled (Bidaux et al., 1992)
ultilayered systems; for simplified systems which are, effectively,

ne or two-dimensional (Gerard and Horne, 1985; Larsen, 1993); ne-
lecting specific flow regimes, such as radial flow in primarily linear
ystems (Larsen, 1993; Silva-Lóez et al., 2018); or restricting any
eterogeneity to one or two conveniently chosen directions (Sagawa
t al., 2001; Shi et al., 2020). A summary of the characteristics and
apabilities of each of these models — alongside those of the present
ork — is displayed in Table 1.

Going beyond what is analytically possible and yet avoiding the
omplexity, accuracy control requirements and computational costs as-
ociated with fully numerical simulators is the main reason behind the
evelopment of hybrid analytical–numerical methods. In this regard,
2

he Generalized Integral Transform Technique (GITT) (Cotta, 1986,
1990, 1993, 1994) is very appealing in reservoir engineering, since
for the pressure diffusivity equation, a given solution can describe all
flow regimes of a transient three-dimensional problem, with arbitrary
heterogeneities irregularly distributed throughout the domain. With
this technique, formal solutions are readily available for various classes
of linear and nonlinear diffusion and convection–diffusion problems;
however, specific applications might require the implementation of
convergence acceleration schemes for the eigenfunction expansions, so
that the associated computational cost remains reasonably low for the
application’s required accuracy.

The purely analytical Classical Integral Transform Technique (CITT)
(Koshlyakov, 1936; Mikhailov and Ozisik, 1984), for which the GITT
is an extension, has been used before for solving the fully pene-
trating (Hovanessian, 1961; Couto and Marsili, 2013) and partially
penetrating (Rahman and Bentsen, 2000, 2001, 2003) vertical well
problems in a homogeneous closed reservoir. The GITT has also been
employed with the two-dimensional convection–diffusion problem for
the tracer flow in a five-spot pattern (Almeida and Cotta, 1995, 1996),
the analysis of one-dimensional oil displacement through water in-
jection in a core plug (Dias et al., 2012) and the two-dimensional
energy balance for the transient sandface temperature in flowing wells
with commingled production (Deucher et al., 2017). A general GITT
formulation was suggested for heterogeneous reservoirs by Couto et al.
(2011), following a procedure previously described for heat conduction
in heterogeneous solids (Naveira-Cotta et al., 2009), while numerical
results were presented later on by Deucher et al. (2016) but only for a
one-dimensional heterogeneous medium. None of these previous works

were focused on developing solutions for pressure transient analysis,
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which means they did not tackle the issue of accurately representing
very short transient times at the sandface in a flowing well, where the
eigenfunction expansion’s rate of convergence is slower.

In this study, the GITT has been applied to Lord Kelvin’s point-
source (Kelvin, 1884) — a fundamental solution of the heat conduction
equation (Carslaw and Jaeger, 1959), which is analogous to the pres-
sure diffusivity equation. Its use in well testing literature goes back
to the partial penetration model by Nisle (1958), and it has since
then been used extensively to construct analytical solutions for many
problems of practical interest using Green’s Functions (Gringarten and
Ramey, 1973) or the method of sources and sinks (Ozkan and Ragha-
van, 1991; Raghavan, 1995).

First, the purely analytical CITT is shown to reproduce the other
methods’ well-known classical solution to the point-source problem
in a closed homogeneous reservoir (Gringarten and Ramey, 1973).
These expressions are then employed as filters to improve the rate
of convergence of the hybrid GITT, which leads to a novel solution
to the point-source in a closed heterogeneous domain that is suitable
for pressure transient analysis. Finally, the derived expression for the
point-source is used in conjunction with the superposition principle
to construct a uniform flow solution for a limited entry vertical well,
thus demonstrating the usage of the GITT for other well geometries
in heterogeneous reservoirs. Synthetic examples are used to show that
the obtained solutions are in good agreement with results from the
well-established commercial reservoir simulator Rubis (KAPPA, 2017).

2. Pressure diffusivity formulation

The pressure diffusion problem for a heterogeneous and anisotropic
reservoir 𝑉 with external closed boundary 𝑆 may be described by the
following equations:

𝛁 ⋅ (𝐊(𝐱) ⋅ 𝛁𝑝(𝐱, 𝑡)) − 𝑞𝜇𝑓 𝑠(𝐱 − 𝐱𝐰) = 𝜙𝜇𝑓 𝑐𝑡
𝜕𝑝
𝜕𝑡
, 𝐱 ∈ 𝑉 , 𝑡 > 0, (1)

𝜕𝑝
𝜕𝐧

= 𝛁𝑝(𝐱, 𝑡) ⋅ 𝐧 = 0, 𝐱 ∈ 𝑆, 𝑡 > 0, (2)

𝑝(𝐱, 0) = 𝑝𝑖, 𝐱 ∈ 𝑉 , (3)

where 𝐊(𝐱) is the permeability tensor, 𝐧 is the outward-facing normal
nit vector to 𝑆, and 𝑠(𝐱 − 𝐱𝐰) represents the effect of the flow source
r sink. Additional assumptions for this formulation include: gravity
nd capillary effects are negligible; single-phase, isothermal and non-
eactive flow; fluid and rock properties do not vary with pressure;
luid is slightly compressible; and Darcy’s law holds. An additional
ssumption in the present work — which is common in reservoir
pplications — will be that the reservoir is orthotropic with a constant
nisotropy ratio:

(𝐱) =
⎛

⎜

⎜

⎝

𝑘𝑥 0 0
0 𝑘𝑦 0
0 0 𝑘𝑧

⎞

⎟

⎟

⎠

𝑘𝐷(𝐱) (4)

here 𝑘𝐷(𝐱𝐃) is dimensionless. Eqs. (1)–(3) can then be nondimension-
lized as

⋅
[

𝑘𝐷(𝐱𝐃)𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷)
]

+ 𝑠𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =
𝜕𝑝𝐷
𝜕𝑡𝐷

, 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (5)

𝜕𝑝𝐷
𝜕𝐧

= 𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷) ⋅ 𝐧 = 0, 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (6)

𝑝𝐷(𝐱𝐃, 0) = 0, 𝐱𝐃 ∈ 𝑉 , (7)

with the dimensionless variables

𝑥𝐷 = 𝑥
𝐿

√

𝑘
𝑘𝑥
, 𝑦𝐷 =

𝑦
𝐿

√

𝑘
𝑘𝑦
, 𝑧𝐷 = 𝑧

𝐿

√

𝑘
𝑘𝑧
, (8)

𝑡𝐷 =
𝛼𝑡𝑘𝑡

𝜙𝜇𝑓 𝑐𝑡𝐿2
, (9)

𝐷(𝐱, 𝑡𝐷) =
𝑘𝐿 𝛥𝑝(𝐱, 𝑡), (10)
3

𝛼𝑝𝑞𝜇𝑓 𝑝
𝑠𝐷(𝐱𝐃 − 𝐱𝐰𝐃) = 𝐿3𝑠(𝐱 − 𝐱𝐰), (11)

here 𝑘 = 3
√

𝑘𝑥𝑘𝑦𝑘𝑧 and 𝛥𝑝(𝐱, 𝑡) = 𝑝𝑖 − 𝑝(𝐱, 𝑡). In Eqs. (8)–(11), 𝐿 is an
arbitrary reference length, and 𝛼𝑡 and 𝛼𝑝 are unit conversion factors. In
the standard oilfield unit system, 𝛼𝑡 = 0.000 263 74 and 𝛼𝑝 = 141.2. In
the metric (SI) system, 𝛼𝑡 = 1.0 and 𝛼𝑝 = 1∕2𝜋. In the present work, the
metric system was chosen for all numerical examples.

Two different flow source geometries will be considered: the con-
tinuous point-source and the limited entry vertical well. For the point-
source, the 𝑠(𝐱 − 𝐱𝐰) term in Eqs. (1) and (11) can be written as

𝑠(𝐱 − 𝐱𝐰) = 𝛿(𝐱 − 𝐱𝐰) = 𝛿(𝑥 − 𝑥𝑤)𝛿(𝑦 − 𝑦𝑤)𝛿(𝑧 − 𝑧𝑤), (12)

where 𝛿(𝑥 − 𝑥𝑤) is the Dirac delta function. As for the limited entry
vertical well:

𝑠(𝐱 − 𝐱𝐰) = 𝛿(𝑥 − 𝑥𝑤)𝛿(𝑦 − 𝑦𝑤)
1
ℎ𝑤

⋅

⋅
[

𝐻
(

𝑧 − 𝑧𝑤 +
ℎ𝑤
2

)

−𝐻
(

𝑧 − 𝑧𝑤 −
ℎ𝑤
2

)]

, (13)

where 𝐻(𝑧− 𝑧𝑤) is the Heaviside step function and ℎ𝑤 is the length of
he perforated interval. Substituting Eqs. (12) and (13) into Eq. (11),
he dimensionless source terms for each geometry become, respectively,

𝐷(𝐱𝐃 − 𝐱𝐰𝐃) = 𝛿𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =

𝛿𝐷(𝑥𝐷 − 𝑥𝑤𝐷)𝛿𝐷(𝑦𝐷 − 𝑦𝑤𝐷)𝛿𝐷(𝑧𝐷 − 𝑧𝑤𝐷) (14)

nd

𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =
𝛿𝐷(𝑥𝐷 − 𝑥𝑤𝐷)𝛿𝐷(𝑦𝐷 − 𝑦𝑤𝐷)

ℎ𝑤𝐷
⋅

⋅
[

𝐻
(

𝑧𝐷 − 𝑧𝑤𝐷 +
ℎ𝑤𝐷
2

)

−𝐻
(

𝑧𝐷 − 𝑧𝑤𝐷 −
ℎ𝑤𝐷
2

)]

, (15)

where 𝛿𝐷 = 𝐿𝛿 and ℎ𝑤𝐷 = ℎ𝑤∕𝐿. Both problems are actually particular
cases of a general nonlinear convection–diffusion formulation which
will be solved with the GITT. Once this generalized solution is avail-
able, the particular solutions for each flow source geometry can be
obtained by substitution of variables.

3. Generalized formulation and solution

The formal GITT solution for the general nonlinear convection-
diffusion problem expressed by Eqs. (16)–(20) for the pressure
𝑝𝐷(𝐱𝐃, 𝑡𝐷) will be introduced:

𝑤(𝐱𝐃)
𝜕𝑝𝐷
𝜕𝑡𝐷

+ 
{

𝑝𝐷(𝐱𝐃, 𝑡𝐷)
}

= 𝑔(𝐱𝐃, 𝑡𝐷, 𝑝𝐷), 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (16)
{

𝑝𝐷(𝐱𝐃, 𝑡𝐷)
}

= 𝜑(𝐱𝐃, 𝑡𝐷, 𝑝𝐷), 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (17)

𝐷(𝐱𝐃, 0) = 𝑓 (𝐱𝐃), 𝐱𝐃 ∈ 𝑉 , (18)

here the  and  operators are defined as

 ≡ −𝛁 ⋅
[

𝑘𝐷(𝐱𝐃)𝛁(⋅)
]

+ 𝑑(𝐱𝐃)(⋅), (19)

≡ 𝛼(𝐱𝐃)(⋅) + 𝛽(𝐱𝐃)𝑘𝐷(𝐱𝐃)
𝜕(⋅)
𝜕𝐧

. (20)

The solution procedure for the GITT is thoroughly discussed in other
works (Cotta et al., 2018), and will only be summarized here. A
convenient analytical filter is first chosen to improve the eigenfunction
expansion’s convergence rate (Cotta and Mikhailov, 1997):

𝑝𝐷(𝐱𝐃, 𝑡𝐷) = 𝐹𝐷(𝐱𝐃, 𝑡𝐷) + 𝑝∗𝐷(𝐱𝐃, 𝑡𝐷), (21)

here 𝐹𝐷(𝐱𝐃, 𝑡𝐷) is the proposed filter expression. Substituting Eq. (21)
nto Eqs. (16)–(20) results in

(𝐱𝐃)
𝜕𝑝∗𝐷
𝜕𝑡𝐷

+ 
{

𝑝∗𝐷(𝐱𝐃, 𝑡𝐷)
}

= 𝑔∗(𝐱𝐃, 𝑡𝐷, 𝑝∗𝐷), 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (22)
{

𝑝∗𝐷(𝐱𝐃, 𝑡𝐷)
}

= 𝜑∗(𝐱𝐃, 𝑡𝐷, 𝑝∗𝐷), 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (23)
∗ ∗

𝐷(𝐱𝐃, 0) = 𝑓 (𝐱𝐃), 𝐱𝐃 ∈ 𝑉 , (24)
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where

𝑔∗(𝐱𝐃, 𝑡𝐷) = 𝑔(𝐱𝐃, 𝑡𝐷) − 
{

𝐹𝐷(𝐱𝐃, 𝑡𝐷)
}

−𝑤(𝐱𝐃)
𝜕𝐹𝐷
𝜕𝑡𝐷

, (25)

∗(𝐱𝐃, 𝑡𝐷) = 𝜑(𝐱𝐃, 𝑡𝐷, 𝑝∗𝐷) − 
{

𝐹𝐷(𝐱𝐃, 𝑡𝐷)
}

, (26)
∗(𝐱𝐃) = 𝑓 (𝐱𝐃) − 𝐹𝐷(𝐱𝐃, 0). (27)

Due to the spatially concentrated nature of source terms in reservoir
pplications, failing to apply a suitable filter will result in slower con-
ergence rates — and thus higher computational cost — for positions
lose to the well, which is not acceptable for pressure transient analysis
ince this will be the region where accurate representation of the
olution is most critical.

The solution procedure can then be summarized as:

1. proposing an eigenvalue problem to transform the filtered partial
differential equation (PDE);

2. solving the transformed filtered problem;
3. solving the eigenvalue problem;
4. reconstructing the original PDE’s solution.

It should be noted that, even though the 𝐱𝐃 notation for the position
ector would seem to imply Cartesian coordinates, this is by no means
limitation for the GITT. The usage of vector notation is intentional, as
ll equations in Section 3 remain valid for any orthogonal coordinate
ystem, provided the appropriate expressions are used for the 𝛁 opera-
or, the domain’s weight function 𝑤(𝐱𝐃) and the boundary conditions.
he coordinate system to be actually adopted in the solution of the
roblem is the modeler’s choice, based on relative advantages due to
he exploration of possible symmetries and/or the representation of
oundaries and heterogeneous subregions.

Section 2 explicitly uses Cartesian coordinates, as do the subsequent
ections of the present work, for the purposes of demonstrating the
sefulness of the GITT in reservoir applications and providing the
forementioned novel expression for the generalized point-source in
rbitrarily heterogeneous media.

.1. Proposing an eigenvalue problem

Separation of Variables can be applied to the homogeneous version
f Eqs. (22)–(24), which leads to an eigenvalue problem carrying the
riginal PDE’s spatially variable coefficients:


{

𝜓𝑖(𝐱𝐃)
}

= 𝜇2𝑖 𝑤(𝐱𝐃)𝜓𝑖(𝐱𝐃), 𝐱𝐃 ∈ 𝑉 , (28)
{

𝜓𝑖(𝐱𝐃)
}

= 0, 𝐱𝐃 ∈ 𝑆. (29)

he eigenfunctions’ orthogonality property then allows for the follow-
ng integral transform pair:

𝑝∗𝐷𝑖(𝑡𝐷) = ∫𝑉
𝑤(𝐱𝐃)𝜓̃𝑖(𝐱𝐃)𝑝∗𝐷(𝐱𝐃, 𝑡𝐷)𝑑𝑣, (transform) (30)

𝑝∗𝐷(𝐱𝐃, 𝑡𝐷) =
∞
∑

𝑖=1
𝑝∗𝐷𝑖(𝑡𝐷)𝜓̃𝑖(𝐱𝐃), (inverse) (31)

with normalized eigenfunctions and norms given by

𝜓̃𝑖(𝐱𝐃) =
𝜓𝑖(𝐱𝐃)
√

𝑁𝜓𝑖

, (32)

𝜓𝑖 = ∫𝑉
𝑤(𝐱𝐃)𝜓2

𝑖 (𝐱𝐃)𝑑𝑣. (33)

.2. Solving the transformed filtered problem

Operating on Eqs. (22)–(24) with ∫𝑉 𝜓̃𝑖(𝐱)(⋅)𝑑𝑣 yields the following
system for the transformed filtered potentials:

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

+ 𝜇2𝑖 𝑝
∗
𝐷𝑖(𝑡𝐷) = 𝑔∗𝑖 (𝑡𝐷,𝐩

∗
𝐃(𝑡𝐷)), 𝑡𝐷 > 0, (34)

𝑝∗ (0) = 𝑓 , (35)
4

𝐷𝑖 𝑖
here

𝑔∗𝑖 (𝑡𝐷,𝐩
∗
𝐃(𝑡𝐷)) = ∫𝑉

𝜓̃𝑖(𝐱𝐃)𝑔∗(𝐱𝐃, 𝑡𝐷, 𝑝∗𝐷)𝑑𝑣−

− ∫𝑆

𝜑∗(𝐱𝐃, 𝑡𝐷, 𝑝∗𝐷)
[

𝑘𝐷(𝐱𝐃)
𝜕𝜓̃𝑖
𝜕𝐧 − 𝜓̃𝑖(𝐱𝐃)

]

𝛼(𝐱𝐃) + 𝛽(𝐱𝐃)
𝑑𝑠, (36)

𝑓 𝑖 = ∫𝑉
𝑤(𝐱𝐃)𝜓̃𝑖(𝐱𝐃)𝑓 (𝐱𝐃)𝑑𝑣, (37)

𝐩∗𝐃(𝑡𝐷) =
{

𝑝∗𝐷1(𝑡𝐷), 𝑝
∗
𝐷2(𝑡𝐷),…

}𝑇
. (38)

he original PDE in (𝐱𝐃, 𝑡𝐷) is then reduced to an infinite coupled
ystem of ordinary differential equations (ODE) in 𝑡𝐷 which can be
olved numerically with reliable, readily available routines for stiff
DE systems after truncation to a sufficiently large finite order. If

𝑔∗𝑖 (𝑡𝐷,𝐩
∗
𝐃(𝑡𝐷)) = 𝑔∗𝑖 (𝑡𝐷), the system becomes uncoupled and admits

nalytical solution by the method of integrating factors:

𝑝∗𝐷𝑖(𝑡𝐷) = 𝑒−𝜇
2
𝑖 𝑡𝐷

[

𝑓𝑖 + ∫

𝑡𝐷

0
𝑒𝜇

2
𝑖 𝜏𝑔∗𝑖 (𝜏)𝑑𝜏

]

. (39)

This is actually the case for the applications proposed in the present
work, since they remain purely diffusive and linear problems even in a
heterogeneous domain.

3.3. Solving the eigenvalue problem

Assuming the eigenvalue problem in Eqs. (28) and (29) admits no
analytical solution, it can still itself be solved by the GITT. For that, a
simpler auxiliary eigenvalue problem with a known analytical solution
can be proposed:

̂
{

𝛺𝑗 (𝐱𝐃)
}

= 𝜂2𝑗 𝑤̂(𝐱𝐃)𝛺𝑗 (𝐱𝐃), 𝐱𝐃 ∈ 𝑉 , (40)

̂{𝛺𝑗 (𝐱𝐃)
}

= 0, 𝐱𝐃 ∈ 𝑆, (41)

here the ̂ and ̂ auxiliary operators are defined as

̂ ≡ −𝛁 ⋅
[

𝑘̂𝐷(𝐱𝐃)𝛁(⋅)
]

+ 𝑑(𝐱𝐃)(⋅), (42)

̂ ≡ 𝛼(𝐱𝐃)(⋅) + 𝛽(𝐱𝐃)𝑘̂𝐷(𝐱𝐃)
𝜕(⋅)
𝜕𝐧

. (43)

The auxiliary integral transform pair can then be defined as

𝜓 𝑖𝑗 = ∫𝑉
𝑤̂(𝐱𝐃)𝛺𝑗 (𝐱𝐃)𝜓𝑖(𝐱𝐃)𝑑𝑣, (transform) (44)

𝑖(𝐱𝐃) =
∞
∑

𝑗=1
𝜓 𝑖𝑗𝛺𝑗 (𝐱𝐃), (inverse) (45)

with normalized auxiliary eigenfunctions and norms

𝛺𝑗 (𝐱𝐃) =
𝛺𝑗 (𝐱𝐃)
√

𝑁𝛺𝑗

, (46)

𝛺𝑗 = ∫𝑉
𝑤̂(𝐱𝐃)𝛺2

𝑗 (𝐱𝐃)𝑑𝑣. (47)

perating on Eqs. (28) and (29) with ∫𝑉 𝛺𝑗 (𝐱𝐃)(⋅)𝑑𝑣 yields the follow-
ng infinite algebraic eigenvalue problem:

(𝐀 + 𝐂) − 𝜇2𝑖 𝐁]𝝍 𝑖 = 𝟎, (48)

where the 𝐀, 𝐁 and 𝐂 matrices are given by

𝐀 ≡ 𝐴𝑗𝑘 = −∫𝑆
𝜁𝑗 (𝐱𝐃)(̂ − )

{

𝛺𝑘(𝐱𝐃)
}

𝑑𝑠−

− ∫𝑉
𝛺𝑗 (𝐱𝐃)(̂ − )

{

𝛺𝑘(𝐱𝐃)
}

𝑑𝑣, (49)

≡ 𝐵𝑗𝑘 = ∫𝑉
𝑤̂(𝐱𝐃)𝛺𝑗 (𝐱𝐃)𝛺𝑘(𝐱𝐃)𝑑𝑣, (50)

≡ 𝐶𝑗𝑘 = 𝜂2𝑗 𝛿𝑗𝑘, (51)

here

𝑗 (𝐱𝐃) =
𝛺𝑗 (𝐱𝐃) − 𝑘̂𝐷(𝐱𝐃)

𝜕𝛺𝑗
𝜕𝐧 , (52)
𝛼(𝐱𝐃) + 𝛽(𝐱𝐃)
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and where 𝛿𝑗𝑘 is the Kronecker delta. Eq. (48) can then be solved
numerically for the eigenvalues 𝜇𝑖 and transformed eigenvectors 𝝍 𝑖
fter truncation to a sufficiently large finite order, and the results
sed with the auxiliary inverse formula of Eq. (45) to reconstruct the
igenfunctions 𝜓𝑖(𝐱𝐃).

In multidimensional problems, the eigenvalues should be sorted
n order of increasing magnitude — which correspond to decreasing
ontribution to the final result — before truncation (Cotta et al., 2018).
or homogeneous media this is straightforward, as the eigenvalue prob-
em admits analytical solution. In heterogeneous media, the ordering
ust be chosen a priori as it affects the calculation of the eigenvalues

hemselves in Eq. (48) through the components of the 𝐀, 𝐁 and 𝐂
atrices. All numerical calculations in the present work employ a

equence of two complementary reordering criteria:

1. Select the auxiliary eigenvalues 𝜂𝑗 in order of increasing magni-
tude of the main diagonal of 𝐁−1𝐂 — which takes into account
the length of the domain, but not its heterogeneity 𝑘𝐷(𝐱𝐃).

2. Augment the selection with additional elements from the main
diagonal of 𝐁−1𝐀, also in order of increasing magnitude — which
takes into account the domain’s heterogeneity 𝑘𝐷(𝐱𝐃), but not its
base dimensions.

.4. Reconstructing the original PDE’s solution

Once the transformed filtered potentials 𝑝∗𝐷𝑖(𝑡𝐷) and the eigenfunc-
tions 𝜓𝑖(𝐱𝐃) have been calculated, the inverse formula in Eq. (31) can
be used to reconstruct the filtered pressure 𝑝∗𝐷(𝐱𝐃, 𝑡𝐷). Combining this
with the proposed filter expression 𝐹𝐷(𝐱𝐃, 𝑡𝐷) in Eq. (21) then yields
𝑝𝐷(𝐱𝐃, 𝑡𝐷) — the original PDE’s solution.

. Applications

.1. Point-source in a homogeneous reservoir

The problem for the continuous point-source in a homogeneous
eservoir 𝑉 with external closed boundary 𝑆 is obtained by substituting
q. (14) into Eqs. (5)–(7), as well as making 𝑘𝐷(𝐱𝐃) = 1:

2𝑝𝐷(𝐱𝐃, 𝑡𝐷) + 𝛿𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =
𝜕𝑝𝐷
𝜕𝑡𝐷

, 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (53)

𝜕𝑝𝐷
𝜕𝐧

= 𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷) ⋅ 𝐧 = 0, 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (54)

𝑝𝐷(𝐱𝐃, 0) = 0, 𝐱𝐃 ∈ 𝑉 . (55)

The formulation in Eqs. (53)–(55) is well-known in well testing liter-
ature, and its solution is usually a two-step process: i) calculate the
point-source solution in an infinite domain; ii) apply the method of
images (Larsen, 1985) to create virtual boundaries in each direction by
direct superposition of as many infinite domain solutions as required.
By contrast, the present solution through integral transforms calculates
the finite domain solution directly. Applying this method to infinite
domains is possible, but it requires a different approach because the
discrete sequence of eigenvalues becomes a continuous spectrum.

In the case of a linear problem in a homogeneous medium, the
summation of the inverse formula in Eq. (31) will simply turn into
an integral through a limit operation (Ozisik, 1993). In contrast, if the
problem is nonlinear or the medium is heterogeneous, the alternatives
would be to: truncate the infinite domain down to a sufficiently large
size; propose a change of variables mapping the infinite domain into
a finite domain (Almeida and Cotta, 1999); or define a virtual mov-
ing boundary (Naveira et al., 2009), analogous to the boundary layer
concept in fluid mechanics.

Only finite domains will be considered in the present work, which is
the mathematical equivalent of truncating a potentially infinite domain
down to a sufficiently large size.
5

a

4.1.1. Integral transform solution
Applying the procedure in Section 3 to Eqs. (53)–(55) with the

variable substitutions 𝑤(𝐱𝐃) = 1, 𝑘𝐷(𝐱𝐃) = 1, 𝑑(𝐱𝐃) = 0, 𝛼(𝐱𝐃) = 0,
(𝐱𝐃) = 1, 𝑓 (𝐱𝐃) = 0, 𝜑(𝐱𝐃, 𝑡𝐷, 𝑝𝐷) = 0, 𝑔(𝐱𝐃, 𝑡𝐷, 𝑝𝐷) = 𝛿𝐷(𝐱𝐃 − 𝐱𝐰𝐃) and
𝐷(𝐱𝐃, 𝑡𝐷) = 0 yields the following transformed problem:

𝑑𝑝𝐷𝑖
𝑑𝑡𝐷

+ 𝜂2𝑖 𝑝𝐷𝑖(𝑡𝐷) = 𝛺𝑖(𝐱𝐰𝐃), 𝑡𝐷 > 0, (56)

𝑝𝐷𝑖(0) = 0. (57)

For clarity, the 𝜇𝑖 and 𝜓̃𝑖(𝐱𝐃) notations, respectively, for the eigenvalues
nd eigenfunctions, will be reserved for heterogeneous media. For homo-
eneous media, the 𝜂𝑖 and 𝛺𝑖(𝐱𝐃) notations will be preferred. This is the
ame convention used in Section 3.3 to refer to the auxiliary eigenvalue
roblem which, in the present work, will always be a homogeneous ver-
ion of the eigenvalue problem proposed for the original heterogeneous
eservoir.

As the ODE system of Eqs. (56) and (57) is uncoupled, its analytical
olution is found by direct application of Eq. (39) (the zeroth index
= 0 refers to the null eigenvalue 𝜂0 = 0):

𝑝𝐷𝑖(𝑡𝐷) =

⎧

⎪

⎨

⎪

⎩

𝛺0(𝐱𝐰𝐃)𝑡𝐷, 𝑖 = 0,

𝛺𝑖(𝐱𝐰𝐃)
𝜂2𝑖

(

1 − 𝑒−𝜂
2
𝑖 𝑡𝐷

)

, 𝑖 ≥ 1.
(58)

The proposed eigenvalue problem is

∇2𝛺𝑖(𝐱𝐃) + 𝜂2𝑖 𝛺𝑖(𝐱𝐃) = 0, 𝐱𝐃 ∈ 𝑉 , (59)
𝜕𝛺𝑖
𝜕𝐧

= 0, 𝐱𝐃 ∈ 𝑆, (60)

hich is obtained from Eqs. (40)–(43) by substituting 𝑤̂(𝐱𝐃) = 1,
̂𝐷(𝐱𝐃) = 1, 𝑑(𝐱𝐃) = 0, 𝛼(𝐱𝐃) = 0 and 𝛽(𝐱𝐃) = 1. Eq. (59) is recognizable
s the multidimensional Helmholtz Equation, whose solution can be
btained by Separation of Variables. In three-dimensional Cartesian
oordinates this is given by

̃𝑖(𝐱𝐃) = 𝑋𝑖𝑥 (𝑥𝐷)𝑌𝑖𝑦 (𝑦𝐷)𝑍𝑖𝑧 (𝑧𝐷), (61)
2
𝑖 = 𝜆2𝑖𝑥 + 𝛾

2
𝑖𝑦
+ 𝜈2𝑖𝑧 , (62)

here ̃𝑘(𝑣𝐷) ∈
{

𝑋𝑖𝑥 (𝑥𝐷), 𝑌𝑖𝑦 (𝑦𝐷), 𝑍𝑖𝑧 (𝑧𝐷)
}

are the one-dimensional
igenfunctions given by

𝑘(𝑣𝐷) = cos
(

𝜌𝑘𝑣𝐷
)

, (63)

𝑘 =
𝑘𝜋
𝐿𝑣𝐷

, (64)

𝑁𝑘 =

{

𝐿𝑣𝐷, 𝑘 = 0,
𝐿𝑣𝐷
2 , 𝑘 ≥ 1,

(65)

̃𝑘(𝑣𝐷) =
𝑘(𝑣𝐷)
√

𝑁𝑘

, (66)

here 𝜌𝑘 ∈
{

𝜆𝑖𝑥 , 𝛾𝑖𝑦 , 𝜈𝑖𝑧
}

, 𝑣𝐷 ∈
{

𝑥𝐷, 𝑦𝐷, 𝑧𝐷
}

and 𝑘 ∈ {0, 1, 2,…}.
ubstituting Eqs. (58) and (61)–(66) into the inversion formula of
q. (31) yields the point-source solution by integral transform:

𝐷(𝐱𝐃, 𝑡𝐷) = 𝛺0(𝐱𝐰𝐃)𝛺0(𝐱𝐃)𝑡𝐷 +
∞
∑

𝑖=1

𝛺𝑖(𝐱𝐰𝐃)𝛺𝑖(𝐱𝐃)
𝜂2𝑖

(

1 − 𝑒−𝜂
2
𝑖 𝑡𝐷

)

. (67)

nd, taking the derivative with respect to time:

𝜕𝑝𝐷
𝜕𝑡𝐷

=
∞
∑

𝑖=0
𝛺𝑖(𝐱𝐰𝐃)𝛺𝑖(𝐱𝐃)𝑒−𝜂

2
𝑖 𝑡𝐷 . (68)

For well testing applications, solution accuracy is most needed at
he well, which happens to be the location where Eqs. (67) and (68)
ill be the slowest to converge, due to the influence of the Dirac
elta source term. The 1∕𝜂2𝑖 term in Eq. (67), in particular, does not
ave exponential decay and will never perform adequately for such

pplications. Nevertheless, these expressions are formally correct, and
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Section 4.1.2 will show how appropriate algebraic manipulation may
be used to improve their computational performance during the early
transient period.

4.1.2. Relationship between the method of images and integral transform
solutions

As the CITT solution of Eq. (67) and the method of images solution
of Eq. (A.1) both satisfy the problem in Eqs. (53)–(55), it should be
possible to demonstrate their mathematical equivalence. Starting from
the time derivative of the CITT solution in Eq. (68), substituting the
eigenvalue problem solution of Eqs. (61)–(66), rewriting the single
summation as a triple summation and grouping together the terms in
each orthogonal direction yields

𝜕𝑝𝐷
𝜕𝑡𝐷

=

( ∞
∑

𝑚=0

1
𝑁𝑋𝑚

cos
(

𝜆𝑚𝑥𝑤𝐷
)

cos
(

𝜆𝑚𝑥𝐷
)

𝑒−𝜆
2
𝑚𝑡𝐷

)

⋅

⋅

( ∞
∑

𝑛=0

1
𝑁𝑌𝑛

cos
(

𝛾𝑛𝑦𝑤𝐷
)

cos
(

𝛾𝑛𝑦𝐷
)

𝑒−𝛾
2
𝑛 𝑡𝐷

)

⋅

⋅

( ∞
∑

𝑝=0

1
𝑁𝑍𝑝

cos
(

𝜈𝑝𝑧𝑤𝐷
)

cos
(

𝜈𝑝𝑧𝐷
)

𝑒−𝜈
2
𝑝 𝑡𝐷

)

(69)

s the three terms in Eq. (69) are analogous, any algebraic manip-
lations on one term can be readily extended to the remaining two.
pplying the trigonometric identities for the sum and subtraction of
osines, the term in 𝑥 can be written as
∞
∑

=0

1
𝑁𝑋𝑚

cos
(

𝜆𝑚𝑥𝑤𝐷
)

cos
(

𝜆𝑚𝑥𝐷
)

𝑒−𝜆
2
𝑚𝑡𝐷

=
2
∑

𝑘=1

1
2𝐿𝑥𝐷

[

1 + 2
∞
∑

𝑚=1
exp

(

−
𝑚2𝜋2𝑡𝐷
𝐿2
𝑥𝐷

)

⋅

⋅ cos
(

𝑚𝜋
𝑥𝐷 + (−1)𝑘𝑥𝑤𝐷

𝐿𝑥𝐷

)

]

(70)

xcept for the change in notation, each term on the right-hand side
f Eq. (70) corresponds exactly to the right-hand side of the Poisson
ummation formula (Raghavan, 1995):
+∞
∑

=−∞
exp

[

−
(𝜉 − 2𝑛𝜉𝑒)2

4𝑡

]

=

√

𝜋𝑡
𝜉𝑒

[

1 + 2
∞
∑

𝑛=1
exp

(

− 𝑛
2𝜋2𝑡
𝜉2𝑒

)

cos
(

𝑛𝜋
𝜉
𝜉𝑒

)

]

(71)

As such, rewriting Eq. (70) with Eq. (71) yields
∞
∑

𝑚=0

1
𝑁𝑋𝑚

cos
(

𝜆𝑚𝑥𝑤𝐷
)

cos
(

𝜆𝑚𝑥𝐷
)

𝑒−𝜆
2
𝑚𝑡𝐷

= 1
(

4𝜋𝑡𝐷
)3∕2

+∞
∑

𝑛=−∞

2
∑

𝑘=1
exp

[

−
(𝑥𝐷 + (−1)𝑘𝑥𝑤𝐷)2

4𝑡𝐷

]

(72)

xtending the manipulation in Eq. (72) to the 𝑦 and 𝑧 terms, Eq. (69)
an be rewritten as

𝜕𝑝𝐷
𝜕𝑡𝐷

= 1
(4𝜋𝑡𝐷)3∕2

+∞
∑

𝑚=−∞

+∞
∑

𝑛=−∞

+∞
∑

𝑝=−∞

2
∑

𝑘=1

2
∑

𝑗=1

2
∑

𝑖=1
exp

(

−
𝑅2
𝐷𝑘𝑚,𝑗𝑛,𝑖𝑝

4𝑡𝐷

)

, (73)

where 𝑅𝐷𝑘𝑚,𝑗𝑛,𝑖𝑝 is given by Eq. (A.2). Eq. (73) is identical to Eq. (A.3),
which is the time derivative of the classical method of images solution.
Therefore, both methods produce, in fact, alternative forms of the same
solution.

It should be noted, however, that these alternative forms are known
to display distinct convergence characteristics (Raghavan, 1995): the
exponential form of Eqs. (A.1) and (A.3) converges rapidly in early
imes, when 𝑡𝐷 ≤ 𝐿2

𝑣𝐷∕𝜋 in each orthogonal direction 𝑣; whereas the
ntegral transform form of Eqs. (67) and (68) converges rapidly in the
ate time, when 𝑡𝐷 ≥ 𝐿2

𝑣𝐷∕𝜋. Using the numerical parameters of Table 2
n Section 5.1, these reference values for 𝑡 would be 8.2 days (197
6

𝐷

hours) in the 𝑥 and 𝑦 directions, and 3.1 hours in the 𝑧 direction. This
improved convergence behavior in the early-time region, which is of
main interest to well testing applications, is the reason for which the ex-
ponential form will be preferred for numerical calculations throughout
the present work.

4.2. Point-source in a heterogeneous reservoir

The problem for the continuous point-source in a heterogeneous
reservoir 𝑉 with external closed boundary 𝑆 is obtained by substituting
Eq. (14) into Eqs. (5)–(7):

𝛁 ⋅
[

𝑘𝐷(𝐱𝐃)𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷)
]

+ 𝛿𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =
𝜕𝑝𝐷
𝜕𝑡𝐷

, 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (74)

𝜕𝑝𝐷
𝜕𝐧

= 𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷) ⋅ 𝐧 = 0, 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (75)

𝐷(𝐱𝐃, 0) = 0, 𝐱𝐃 ∈ 𝑉 , (76)

he point-source solution in Eq. (67) for a homogeneous reservoir
or its exponential equivalent in Eq. (A.4) — accounts directly for

he effects of the Dirac delta during the early transient period in this
DE, and does not create any additional nonhomogeneities in the
nitial or boundary conditions. For these reasons, it is likely a good
hoice for the filter expression 𝐹𝐷(𝐱𝐃, 𝑡𝐷), to improve the convergence
ate of the eigenfunction expansion for the heterogeneous reservoir.
ince the filter expression represents a homogeneous domain, a single
ermeability value must be chosen to remove as much information
s possible from the heterogeneous PDE’s source term, and the most
atural candidate is the permeability at the Dirac delta’s position:

𝑘𝐷(𝐱𝐃)
|

|

|

|𝐱𝐃=𝐱𝐰𝐃
= 𝑘𝐷(𝐱𝐰𝐃) ≡ 𝑘𝑤𝐷 (77)

ewriting Eqs. (53)–(55) for the filter 𝐹𝐷(𝐱𝐃, 𝑡𝐷) with 𝑘𝐷(𝐱𝐃) = 𝑘𝑤𝐷
nstead of 𝑘𝐷(𝐱𝐃) = 1 yields

𝑤𝐷∇2𝐹𝐷(𝐱𝐃, 𝑡𝐷) + 𝛿𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =
𝜕𝐹𝐷
𝜕𝑡𝐷

, 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (78)

𝜕𝐹𝐷
𝜕𝐧

= 𝛁𝐹𝐷(𝐱𝐃, 𝑡𝐷) ⋅ 𝐧 = 0, 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (79)

𝐷(𝐱𝐃, 0) = 0, 𝐱𝐃 ∈ 𝑉 . (80)

hose solution and time derivative can be adapted from Eqs. (67) and
68) by replacing 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 with, respectively, 𝑘𝑥𝑘𝑤𝐷, 𝑘𝑦𝑘𝑤𝐷 and
𝑧𝑘𝑤𝐷 in the definition of the dimensionless numbers in Eqs. (8)–(10):

𝐷(𝐱𝐃, 𝑡𝐷) = 𝛺0(𝐱𝐰𝐃)𝛺0(𝐱𝐃)𝑡𝐷+

+
∞
∑

𝑗=1

𝛺𝑗 (𝐱𝐰𝐃)𝛺𝑗 (𝐱𝐃)

𝑘𝑤𝐷𝜂2𝑗

(

1 − 𝑒−𝑘𝑤𝐷𝜂
2
𝑗 𝑡𝐷

)

,
(81)

𝜕𝐹𝐷
𝜕𝑡𝐷

=
∞
∑

𝑗=0
𝛺𝑗 (𝐱𝐰𝐃)𝛺𝑗 (𝐱𝐃)𝑒

−𝑘𝑤𝐷𝜂2𝑗 𝑡𝐷 . (82)

r, alternatively, in the exponential form:

𝐷(𝐱𝐃, 𝑡𝐷) =
∞
∑

𝑗=0

1
4𝜋𝑘𝑤𝐷𝑅𝐷𝑗 (𝐱𝐃)

erfc

(

𝑅𝐷𝑗 (𝐱𝐃)

2
√

𝑘𝑤𝐷𝑡𝐷

)

, (83)

𝜕𝐹𝐷
𝜕𝑡𝐷

=
∞
∑

𝑗=0

1
(4𝜋𝑘𝑤𝐷𝑡𝐷)3∕2

exp

(

−
𝑅𝐷2

𝑗 (𝐱𝐃)
4𝑘𝑤𝐷𝑡𝐷

)

, (84)

hich correspond to Eqs. (A.4) and (A.5) when 𝑘𝑤𝐷 = 1.
Applying the GITT procedure to Eqs. (74)–(76) with the variable

ubstitutions 𝑤(𝐱𝐃) = 1, 𝑑(𝐱𝐃) = 0, 𝛼(𝐱𝐃) = 0, 𝛽(𝐱𝐃) = 1∕𝑘𝐷(𝐱𝐃),
(𝐱𝐃) = 0, 𝜑(𝐱𝐃, 𝑡𝐷, 𝑝𝐷) = 0, 𝑔(𝐱𝐃, 𝑡𝐷, 𝑝𝐷) = 𝛿𝐷(𝐱𝐃 − 𝐱𝐰𝐃) and 𝐹𝐷(𝐱𝐃, 𝑡𝐷)

rom Eq. (81) yields the following filtered problem:

⋅
[

𝑘𝐷(𝐱𝐃)𝛁𝑝∗𝐷(𝐱𝐃, 𝑡𝐷)
]

+ 𝑔∗(𝐱𝐃, 𝑡𝐷) =
𝜕𝑝∗𝐷
𝜕𝑡𝐷

, 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (85)

𝜕𝑝∗𝐷 = 𝛁𝑝∗ (𝐱 , 𝑡 ) ⋅ 𝐧 = 0, 𝐱 ∈ 𝑆, 𝑡 > 0, (86)

𝜕𝐧 𝐷 𝐃 𝐷 𝐃 𝐷
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𝑝∗𝐷(𝐱𝐃, 0) = 0, 𝐱𝐃 ∈ 𝑉 , (87)

where

𝑔∗(𝐱𝐃, 𝑡𝐷) = 𝛁 ⋅
[

(𝑘𝐷(𝐱𝐃) − 𝑘𝑤𝐷)𝛁𝐹𝐷(𝐱𝐃, 𝑡𝐷)
]

(88)

It is clear in Eq. (88) that the spatially concentrated Dirac delta source
term was replaced by a continuous, distributed function. This change
is expected to have a positive impact on the solution’s rate of conver-
gence, especially for positions close to the point-source. It should be
noted that by choosing 𝑘𝑤𝐷 as the characteristic coefficient, the filtered
source term becomes zero at the actual source’s original position.

The solution 𝑝𝐷(𝐱𝐃, 𝑡𝐷) to Eqs. (74)–(76) will be obtained by substi-
tuting Eq. (31) into Eq. (21):

𝑝𝐷(𝐱𝐃, 𝑡𝐷) = 𝐹𝐷(𝐱𝐃, 𝑡𝐷) +
∞
∑

𝑖=0
𝑝∗𝐷𝑖(𝑡𝐷)𝜓̃𝑖(𝐱𝐃), (89)

with time derivative given by

𝜕𝑝𝐷
𝜕𝑡𝐷

=
𝜕𝐹𝐷
𝜕𝑡𝐷

+
∞
∑

𝑖=0

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

𝜓̃𝑖(𝐱𝐃). (90)

While the filter expressions 𝐹𝐷(𝐱𝐃, 𝑡𝐷) and 𝜕𝐹𝐷
𝜕𝑡𝐷

are shown in
Eqs. (81)–(84), the transformed potentials 𝑝∗𝐷𝑖(𝑡𝐷), their derivatives
𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

and the eigenfunctions 𝜓̃𝑖(𝐱𝐃) remain to be calculated.

4.2.1. Solving the eigenvalue problem
The eigenvalue problem is defined in Eqs. (28) and (29). As it has

no analytical solution for a general 𝑘𝐷 = 𝑘𝐷(𝐱𝐃), the GITT itself can
be applied to provide a solution. The variable substitutions 𝑤̂(𝐱𝐃) = 1,
𝑑(𝐱𝐃) = 0 and 𝑘̂𝐷(𝐱𝐃) = 𝑘𝑤𝐷 yield the auxiliary eigenvalue problem

𝑘𝑤𝐷∇2𝛺𝑚(𝐱𝐃) + 𝜂2𝑚𝛺𝑚(𝐱𝐃) = 0, 𝐱𝐃 ∈ 𝑉 , (91)
𝜕𝛺𝑚
𝜕𝐧

= 0, 𝐱𝐃 ∈ 𝑆, (92)

with its corresponding transform and inverse formulae: transform:

𝜓 𝑖𝑚 = ∫𝑉
𝜓𝑖(𝐱𝐃)𝛺𝑚(𝐱𝐃)𝑑𝑣, (93)

inverse:

𝜓𝑖(𝐱𝐃) =
∞
∑

𝑚=0
𝜓 𝑖𝑚𝛺𝑚(𝐱𝐃), (94)

The resulting algebraic eigenvalue problem is then obtained from
Eqs. (48)–(51):

(𝐀 − 𝜇2𝑖 𝐈)𝝍 𝑖 = 𝟎, (95)

where

𝐀 ≡ 𝐴𝑗𝑘 = ∫𝑉
𝑘𝐷(𝐱𝐃)𝛁𝛺𝑗

(

𝐱𝐃
)

⋅ 𝛁𝛺𝑘
(

𝐱𝐃
)

𝑑𝑣, (96)

and 𝐈 is the identity matrix. For particular forms of the function
𝑘𝐷(𝐱𝐃), the integration of 𝐴𝑗𝑘 may be carried out analytically. For more
complicated forms of 𝑘𝐷(𝐱𝐃), numeric integration might not be the most
appropriate alternative because the integration of the eigenfunctions
𝛺𝑗

(

𝐱𝐃
)

, which become highly oscillatory as 𝑗 increases, can have a
high associated computational cost. In contrast, 𝑘𝐷(𝐱𝐃) is generally a
well-behaved function in most practical applications. A semi-analytical
integration technique may be employed in these cases (Cotta and
Mikhailov, 2005; Cotta et al., 2015), where the integration domain is
partitioned into disjoint sub-domains in which the 𝑘𝐷(𝐱𝐃) function can
be approximated and removed from the integral.

Using this concept, the heterogeneous domain will be constructed
over a starting homogeneous domain 𝑉 from 𝑁 disjoint rectangular
blocks inside which the 𝑘𝐷(𝐱𝐃) function is constant, as illustrated in
Fig. 1. It should be noted that the GITT is certainly not limited to these
kinds of geometries, having been previously applied in heat transfer
7

Fig. 1. Heterogeneous domain constructed over a starting homogeneous domain 𝑉
from 𝑁 disjoint rectangular blocks inside which the 𝑘𝐷(𝐱𝐃) function is constant.

to more irregular forms (Knupp et al., 2015; Almeida et al., 2020).
That said, the block geometry is simpler to construct and can still
approximate many cases of practical interest. The integral in Eq. (96)
for 𝑉 can then be split into separate integrals for each rectangular
block, thus removing 𝑘𝐷(𝐱𝐃) from the integrand:

𝐴𝑗𝑘 = 𝑘𝑤𝐷𝐼𝑗𝑘(𝑉 ) −
𝑁
∑

𝑛=1
(𝑘𝑤𝐷 − 𝑘𝐷𝑛)𝐼𝑗𝑘(𝑉𝑛), (97)

where

𝐼𝑗𝑘(𝑉𝑛) = ∫𝑉𝑛
𝛁𝛺𝑗

(

𝐱𝐃
)

⋅ 𝛁𝛺𝑘
(

𝐱𝐃
)

𝑑𝑣. (98)

For the whole domain 𝑉 , the expression for 𝐼𝑗𝑘(𝑉 ) can be further
simplified through the application of Green’s first identity, which yields

𝐼𝑗𝑘(𝑉 ) =
𝜂2𝑘
𝑘𝑤𝐷

𝛿𝑗𝑘. (99)

For the rectangular blocks 𝑉𝑛, it should be noted that the auxiliary
eigenvalue problem for 𝛺𝑚

(

𝐱𝐃
)

in Eqs. (91) and (92) is identical to
Eqs. (59) and (60) for the homogeneous point-source after the change
of variables 𝜂𝑚 = 𝜂′𝑚

√

𝑘𝑤𝐷. Therefore, its solution is given by Eqs. (61)–
(66) with the same change of variables. The remaining integrals 𝐼𝑗𝑘(𝑉𝑛)
can then be simplified from Eq. (98) as

𝐼𝑗𝑘(𝑉𝑛) = 𝐼𝑋′𝐼𝑌 𝐼𝑍 + 𝐼𝑋𝐼𝑌 ′𝐼𝑍 + 𝐼𝑋𝐼𝑌 𝐼𝑍′ , (100)

with the various one-dimensional integrals given by

𝐼 = ∫ ̃𝑗𝑣 (𝑣𝐷)̃𝑘𝑣 (𝑣𝐷)𝑑𝑣𝐷

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

if 𝜌𝑗𝑣 ≠ 𝜌𝑘𝑣 :

1

2
√

𝑁𝑗𝑣
𝑁𝑘𝑣

⎡

⎢

⎢

⎢

⎣

sin
[

(𝜌𝑗𝑣 − 𝜌𝑘𝑣 )𝑣𝐷
]

𝜌𝑗𝑣 − 𝜌𝑘𝑣
+

sin
[

(𝜌𝑗𝑣 + 𝜌𝑘𝑣 )𝑣𝐷
]

𝜌𝑗𝑣 + 𝜌𝑘𝑣

⎤

⎥

⎥

⎥

⎦

if 𝜌𝑗𝑣 = 𝜌𝑘𝑣 ≠ 0:

1
2𝑁𝑗𝑣

[

𝑣𝐷 +
sin (2𝜌𝑗𝑣𝑣𝐷)

2𝜌𝑗𝑣

]

if 𝜌𝑗𝑣 = 𝜌𝑘𝑣 = 0:
𝑣𝐷

(101)
⎩

𝑁𝑗𝑣
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e
t

1
t

𝑁

e
o
e

W
b
E 𝑝

E

𝐼 ′ = ∫ ̃ ′
𝑗𝑣
(𝑣𝐷)̃ ′

𝑘𝑣
(𝑣𝐷)𝑑𝑣𝐷

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

if 𝜌𝑗𝑣 ≠ 𝜌𝑘𝑣 :

𝜌𝑗𝑣𝜌𝑘𝑣
2
√

𝑁𝑗𝑣
𝑁𝑘𝑣

⎡

⎢

⎢

⎢

⎣

sin
[

(𝜌𝑗𝑣 − 𝜌𝑘𝑣 )𝑣𝐷
]

𝜌𝑗𝑣 − 𝜌𝑘𝑣
−

sin
[

(𝜌𝑗𝑣 + 𝜌𝑘𝑣 )𝑣𝐷
]

𝜌𝑗𝑣 + 𝜌𝑘𝑣

⎤

⎥

⎥

⎥

⎦

if 𝜌𝑗𝑣 = 𝜌𝑘𝑣 :𝜌𝑗𝑣
4𝑁𝑗𝑣

[

2𝜌𝑗𝑣𝑣𝐷 − sin (2𝜌𝑗𝑣𝑣𝐷)
] (102)

with the same conventions adopted in Eqs. (63)–(66). Substituting
Eqs. (99)–(102) into Eqs. (97) and (98), all elements in the 𝐀 matrix
of the algebraic eigenvalue problem of Eqs. (95) and (96) can be
calculated. The solution to this problem, using a sufficiently large trun-
cation order, yields the eigenvalues 𝜇𝑖 and their associated transformed
igenvectors 𝜓 𝑖𝑗 . The inverse formula in Eq. (94) can then be used
o reconstruct the eigenfunctions 𝜓𝑖

(

𝐱𝐃
)

of the original heterogeneous
eigenvalue problem. As the respective orthogonality properties of both
𝜓𝑖
(

𝐱𝐃
)

and 𝛺𝑚
(

𝐱𝐃
)

share the same weighting function 𝑤(𝐱𝐃) = 𝑤̂(𝐱𝐃) =
, substituting Eq. (45) into Eq. (33) allows for the eigenfunctions’ norm
o be conveniently simplified to

𝜓𝑖 =
∞
∑

𝑗=1
𝜓2
𝑖𝑗 (103)

4.2.2. Calculating the transformed potentials

The GITT procedure yields the following problem for the trans-
formed potentials:

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

+ 𝜇2𝑖 𝑝
∗
𝐷𝑖(𝑡𝐷) = 𝑔∗𝑖 (𝑡𝐷), (104)

𝑝∗𝐷𝑖(0) = 0, (105)

where

𝑔∗𝑖 (𝑡𝐷) = ∫𝑉
𝜓̃𝑖(𝐱𝐃)𝑔∗(𝐱𝐃, 𝑡𝐷)𝑑𝑣. (106)

Substituting Eq. (88) into Eq. (106) and simplifying through the use of
Green’s second identity yields

𝑔∗𝑖 (𝑡𝐷) =
1

√

𝑁𝜓𝑖

∞
∑

𝑚=0
𝜓 𝑖𝑚

(

𝜂2𝑚 − 𝜇2𝑖
)

∫𝑉
𝐹𝐷(𝐱𝐃, 𝑡𝐷)𝛺𝑚(𝐱𝐃)𝑑𝑣, (107)

where the eigenfunctions 𝜓̃𝑖(𝐱𝐃) have been transformed by the auxiliary
igenfunctions𝛺𝑚(𝐱𝐃), according to the transform and inverse formulae
f Eqs. (93) and (94). By substituting Eq. (81) into Eq. (107), the final
xpression for the transformed source 𝑔∗𝑖 (𝑡𝐷) is obtained:

𝑔∗𝑖 (𝑡𝐷) =
1

√

𝑁𝜓𝑖

[

−𝜓 𝑖0𝜇2𝑖𝛺0
(

𝐱𝐰𝐃
)

𝑡𝐷 +

+
∞
∑

𝑚=1
𝜓 𝑖𝑚

(

𝜂2𝑚 − 𝜇2𝑖
𝑘𝑤𝐷𝜂2𝑚

)

𝛺𝑚
(

𝐱𝐰𝐃
)

(

1 − 𝑒−𝑘𝑤𝐷𝜂
2
𝑚𝑡𝐷

)

]

. (108)

ith Eq. (108), the linear ODE system of Eqs. (104) and (105) can now
e solved. It is uncoupled, therefore its analytical solution is given by
q. (39):

𝑝∗ (𝑡𝐷) =
𝑡𝐷
𝑒−𝜇

2
𝑖 (𝑡𝐷−𝜏)𝑔∗(𝜏)𝑑𝜏
8

𝐷𝑖 ∫0 𝑖 l
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if 𝑖 = 0:
1

√

𝑁𝜓0

∞
∑

𝑚=1
𝜓0𝑚

𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷
𝑇0𝑚(𝑡𝐷),

if 𝑖 ≥ 1:
1

√

𝑁𝜓𝑖

[

−𝜓 𝑖0𝛺0
(

𝐱𝐰𝐃
)

𝑇𝑖0(𝑡𝐷) +

+
∞
∑

𝑚=1
𝜓 𝑖𝑚

𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷
𝑇𝑖𝑚(𝑡𝐷)

]

(109)

where

𝑇𝑖𝑚(𝑡𝐷) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if 𝑖 = 0, 𝑚 ≥ 1:
𝑡𝐷 − 1

𝑘𝑤𝐷𝜂2𝑚

(

1 − 𝑒−𝑘𝑤𝐷𝜂
2
𝑚𝑡𝐷

)

if 𝑖 ≥ 1, 𝑚 = 0:
𝑡𝐷 − 1

𝜇2𝑖

(

1 − 𝑒−𝜇
2
𝑖 𝑡𝐷

)

if 𝑖 ≥ 1, 𝑚 ≥ 1:
(

1
𝜇2𝑖

− 1
𝜂2𝑚

)

(

1 − 𝑒−𝜇
2
𝑖 𝑡𝐷

)

−

− 1
𝜂2𝑚

(

𝜂2𝑚 − 𝜇2𝑖
𝑘𝑤𝐷𝜂2𝑚 − 𝜇2𝑖

)

[

𝑒−𝜇
2
𝑖 𝑡𝐷 − 𝑒−𝑘𝑤𝐷𝜂

2
𝑚𝑡𝐷

]

(110)

The time derivative can then be directly obtained from Eq. (109):

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if 𝑖 = 0:
1

√

𝑁𝜓0

∞
∑

𝑚=1
𝜓0𝑚

𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷

𝑑𝑇0𝑚
𝑑𝑡𝐷

if 𝑖 ≥ 1:
1

√

𝑁𝜓𝑖

[

−𝜓 𝑖0𝛺0
(

𝐱𝐰𝐃
)𝑑𝑇𝑖0
𝑑𝑡𝐷

+

+
∞
∑

𝑚=1
𝜓 𝑖𝑚

𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷

𝑑𝑇𝑖𝑚
𝑑𝑡𝐷

]

(111)

where

𝑑𝑇𝑖𝑚
𝑑𝑡𝐷

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if 𝑖 = 0, 𝑚 ≥ 1:
1 − 𝑒−𝑘𝑤𝐷𝜂

2
𝑚𝑡𝐷

if 𝑖 ≥ 1, 𝑚 = 0:
1 − 𝑒−𝜇

2
𝑖 𝑡𝐷

if 𝑖 ≥ 1, 𝑚 ≥ 1:
(

1 −
𝜇2𝑖
𝜂2𝑚

)

𝑒−𝜇
2
𝑖 𝑡𝐷 −

(

𝜂2𝑚 − 𝜇2𝑖
𝑘𝑤𝐷𝜂2𝑚 − 𝜇2𝑖

)

⋅

⋅

[

𝑘𝑤𝐷𝑒
−𝑘𝑤𝐷𝜂2𝑚𝑡𝐷 −

𝜇2𝑖
𝜂2𝑚
𝑒−𝜇

2
𝑖 𝑡𝐷

]

(112)

4.3. Limited entry vertical well in a heterogeneous reservoir

The problem for a limited entry vertical well in a heterogeneous
reservoir 𝑉 with external closed boundary 𝑆 is obtained by substituting
Eq. (15) into Eqs. (5)–(7):

𝛁 ⋅
[

𝑘𝐷(𝐱𝐃)𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷)
]

+ 𝑠𝐷(𝐱𝐃 − 𝐱𝐰𝐃) =
𝜕𝑝𝐷
𝜕𝑡𝐷

, 𝐱𝐃 ∈ 𝑉 , 𝑡𝐷 > 0, (113)
𝜕𝑝𝐷
𝜕𝐧

= 𝛁𝑝𝐷(𝐱𝐃, 𝑡𝐷) ⋅ 𝐧 = 0, 𝐱𝐃 ∈ 𝑆, 𝑡𝐷 > 0, (114)

𝐷(𝐱𝐃, 0) = 0, 𝐱𝐃 ∈ 𝑉 . (115)

qs. (113)–(115) describe a uniform flow formulation. Since the prob-
ems for 𝑝 (𝐱 , 𝑡 ) in the limited entry well and 𝑝 (𝐱 , 𝑡 ) in the
𝐷 𝐃 𝐷 𝐷𝑝𝑠 𝐃 𝐷
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point-source are both linear, it is convenient to apply the superposition
principle:

𝑝𝐷(𝐱𝐃, 𝑡𝐷) =
1
 ∫

𝑝𝐷𝑝𝑠(𝐱𝐃, 𝑡𝐷)𝑑𝑠, (116)

where  represents the length, area or volume of the source. With
Eq. (116), the GITT solution for the point-source demonstrated in
the present work can be used as a building block to obtain linear
uniform flow solutions for any well geometry in heterogeneous reser-
voirs. If necessary, these uniform flow solutions could then be used
as building blocks themselves, to obtain infinite conductivity solutions
either through traditional procedures (Gringarten and Ramey, 1973)
or more recently proposed methods (Biryukov and Kuchuk, 2012b).
Alternatively, if the problem under consideration was nonlinear, the
generalized solution in Section 3 could still be applied directly — in
this case, restricting the usage of the superposition principle for build-
ing a convenient linear filter expression 𝐹𝐷(𝐱𝐃, 𝑡𝐷) from the simpler
homogeneous point-source.

Substituting Eq. (89) for 𝑝𝐷𝑝𝑠(𝐱𝐃, 𝑡𝐷) into Eq. (116), where  stands
or the length of the perforated interval from 𝑧𝐷 = 𝑧𝑤𝐷 − ℎ𝑤𝐷∕2 to
𝐷 = 𝑧𝑤𝐷 + ℎ𝑤𝐷∕2, yields

𝐷(𝐱𝐃, 𝑡𝐷) = 𝐹𝐷(𝐱𝐃, 𝑡𝐷) +
∞
∑

𝑖=0
𝑝∗𝐷𝑖(𝑡𝐷)𝜓̃𝑖(𝐱𝐃), (117)

here

𝐷(𝐱𝐃, 𝑡𝐷) =
1

ℎ𝑤𝐷 ∫

𝑧𝑤𝐷+ℎ𝑤𝐷∕2

𝑧𝑤𝐷−ℎ𝑤𝐷∕2
𝐹𝐷𝑝𝑠(𝐱𝐃, 𝑡𝐷)𝑑𝑧′𝑤𝐷, (118)

𝑝∗𝐷𝑖(𝑡𝐷) =
1

ℎ𝑤𝐷 ∫

𝑧𝑤𝐷+ℎ𝑤𝐷∕2

𝑧𝑤𝐷−ℎ𝑤𝐷∕2

[

𝑝∗𝐷𝑖
]

𝑝𝑠
(𝐱𝐃, 𝑡𝐷)𝑑𝑧′𝑤𝐷, (119)

with the corresponding time derivative

𝜕𝑝𝐷
𝜕𝑡𝐷

=
𝜕𝐹𝐷
𝜕𝑡𝐷

+
∞
∑

𝑖=0

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

𝜓̃𝑖(𝐱𝐃). (120)

he 𝑝∗𝐷𝑖(𝑡𝐷) term in Eq. (117) can be obtained by integrating Eq. (109):

𝑝∗𝐷𝑖(𝑡𝐷) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if 𝑖 = 0:
1

√

𝑁𝜓0

∞
∑

𝑚=1
𝜓0𝑚

𝜉𝑚(ℎ𝑤𝐷)𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷
𝑇0𝑚(𝑡𝐷)

if 𝑖 ≥ 1:
1

√

𝑁𝜓𝑖

[

−𝜓 𝑖0𝜉0(ℎ𝑤𝐷)𝛺0
(

𝐱𝐰𝐃
)

𝑇𝑖0(𝑡𝐷) +

+
∞
∑

𝑚=1
𝜓 𝑖𝑚

𝜉𝑚(ℎ𝑤𝐷)𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷
𝑇𝑖𝑚(𝑡𝐷)

]

(121)

where 𝑇𝑖𝑚(𝑡𝐷) is given by Eq. (110) and where

𝜉𝑚(ℎ𝑤𝐷) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

if 𝑚𝑧 = 0:
1

if 𝑚𝑧 ≥ 1:
2

ℎ𝑤𝐷𝜈𝑚𝑧
sin

(

ℎ𝑤𝐷
2
𝜈𝑚𝑧

)

(122)

ith index 𝑚𝑧 standing for the one-dimensional eigenvalue in the 𝑧
irection corresponding to the 𝑚th three-dimensional eigenvalue in the
9

hosen global reordering. The time derivative is taken directly from
q. (121):

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

if 𝑖 = 0:
1

√

𝑁𝜓0

∞
∑

𝑚=1
𝜓0𝑚

𝜉𝑚(ℎ𝑤𝐷)𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷

𝑑𝑇0𝑚
𝑑𝑡𝐷

if 𝑖 ≥ 1:
1

√

𝑁𝜓𝑖

[

−𝜓 𝑖0𝜉𝑚(ℎ𝑤𝐷)𝛺0
(

𝐱𝐰𝐃
)𝑑𝑇𝑖0
𝑑𝑡𝐷

+

+
∞
∑

𝑚=1
𝜓 𝑖𝑚

𝜉𝑚(ℎ𝑤𝐷)𝛺𝑚
(

𝐱𝐰𝐃
)

𝑘𝑤𝐷

𝑑𝑇𝑖𝑚
𝑑𝑡𝐷

]

(123)

with 𝑑𝑇𝑖𝑚
𝑑𝑡𝐷

given by Eq. (112).
The 𝐹𝐷(𝐱𝐃, 𝑡𝐷) and 𝜕𝐹𝐷

𝜕𝑡𝐷
terms in Eqs. (117) and (120) are obtained

y integrating Eqs. (81) and (82):

𝐷(𝐱𝐃, 𝑡𝐷) = 𝜉0(ℎ𝑤𝐷)𝛺0(𝐱𝐰𝐃)𝛺0(𝐱𝐃)𝑡𝐷+

+
∞
∑

𝑗=1

𝜉𝑗 (ℎ𝑤𝐷)𝛺𝑗 (𝐱𝐰𝐃)𝛺𝑗 (𝐱𝐃)

𝑘𝑤𝐷𝜂2𝑗

(

1 − 𝑒−𝑘𝑤𝐷𝜂
2
𝑗 𝑡𝐷

)

, (124)

𝜕𝐹𝐷
𝜕𝑡𝐷

=
∞
∑

𝑗=0
𝜉𝑗 (ℎ𝑤𝐷)𝛺𝑗 (𝐱𝐰𝐃)𝛺𝑗 (𝐱𝐃)𝑒

−𝑘𝑤𝐷𝜂2𝑗 𝑡𝐷 . (125)

r, alternatively, by integrating Eqs. (83) and (84):

𝐷(𝐱𝐃, 𝑡𝐷) = ∫

𝑡𝐷

0

𝜕𝐹𝐷
𝜕𝑡𝐷

𝑑𝜏, (126)

𝜕𝐹𝐷
𝜕𝑡𝐷

=
∞
∑

𝑗=0

(−1)𝑙(𝑗)

8𝜋ℎ𝑤𝐷𝑘𝑤𝐷𝑡𝐷
exp

(

−
𝑟2𝐷𝑗

4𝑘𝑤𝐷𝑡𝐷

)

⋅

⋅

[

erf

(

𝑓𝑧,𝑙(𝑗)
2
√

𝑘𝑤𝐷𝑡𝐷

)

− erf

(

𝑓𝑧,(𝑙+1)(𝑗)
2
√

𝑘𝑤𝐷𝑡𝐷

)]

,

(127)

which correspond to Eqs. (B.1) and (B.8) when 𝑘𝑤𝐷 = 1.
It should be noted that the eigenvalues 𝜇𝑖 and the eigenfunctions

̃𝑖
(

𝐱𝐃
)

depend only on the domain’s heterogeneity, and not on the ge-
metry of the source or sink. Therefore, their expressions are identical
o the ones calculated for the point-source in Eqs. (91)–(102), and they
ould remain the same for any other well geometry.

.3.1. Approximate infinite conductivity solution
The problem of using uniform flow expressions to approximate

he solution within the wellbore (which effectively displays uniform
ressure) is well known, and various methods have been proposed —
he most flexible and accurate (Biryukov and Kuchuk, 2012a) of which
s averaging the pressure along the wellbore (Streltsova-Adams, 1979):

𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) =
1

ℎ𝑤𝐷 ∫

𝑧𝑤𝐷+ℎ𝑤𝐷∕2

𝑧𝑤𝐷−ℎ𝑤𝐷∕2
𝑝𝐷(𝐱𝐃, 𝑡𝐷)𝑑𝑧𝐷 (128)

ubstituting Eq. (117) into Eq. (128) yields

𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) = 𝐹𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) +
∞
∑

𝑖=0
𝑝∗𝐷𝑖(𝑡𝐷)𝜓̃𝑧,𝑖(𝑥𝐷, 𝑦𝐷), (129)

here

𝜓̃𝑧,𝑖(𝑥𝐷, 𝑦𝐷) =
1

√

𝑁𝜓𝑖

∞
∑

𝑚=0
𝜓 𝑖𝑚𝛺𝑚(𝑥𝐷, 𝑦𝐷, 𝑧𝑤𝐷)𝜉𝑚(ℎ𝑤𝐷), (130)

nd 𝐹𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) obtained either from Eq. (124):

𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) = 𝜉2𝑗 (ℎ𝑤𝐷)𝛺0(𝐱𝐰𝐃)𝛺0(𝑥𝐷, 𝑦𝐷, 𝑧𝑤𝐷)𝑡𝐷 +

+
∞
∑

𝑗=1

𝜉2𝑗 (ℎ𝑤𝐷)𝛺𝑗 (𝐱𝐰𝐃)𝛺𝑗 (𝑥𝐷, 𝑦𝐷, 𝑧𝑤𝐷)

𝑘𝑤𝐷𝜂2𝑗

(

1 − 𝑒−𝑘𝑤𝐷𝜂
2
𝑗 𝑡𝐷

)

, (131)

or from Eq. (126):

𝐹𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) =
𝑡𝐷 𝜕𝐹𝑤𝐷 𝑑𝜏. (132)
∫0 𝜕𝑡𝐷
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Table 2
Numerical properties for the point-source application examples.
Parameters Values Units

Flowrate, 𝑞 70 m3 d−1

Permeability in 𝑥, 𝑘𝑥 2000 mD
Permeability in 𝑦, 𝑘𝑦 2000 mD
Permeability in 𝑧, 𝑘𝑧 20 mD
Porosity, 𝜙 30 %
Viscosity, 𝜇𝑓 1 × 10−3 Pa s
Compressibility, 𝑐𝑡 2.5493 × 10−6 kPa−1

Initial pressure, 𝑝𝑖 29 419.95 kPa
Well radius, 𝑟𝑤 0.120 65 m
Reservoir 𝑥 length, 𝐿𝑥 2400 m
Reservoir 𝑦 length, 𝐿𝑦 2400 m
Reservoir 𝑧 length, 𝐿𝑧 30 m
Point-source 𝑥 coordinate, 𝑥𝑤 1200 m
Point-source 𝑦 coordinate, 𝑦𝑤 1200 m
Point-source 𝑧 coordinate, 𝑧𝑤 15 m

The time derivatives for Eqs. (129), (131) and (132) are, respectively,

𝜕𝑝𝑤𝐷
𝜕𝑡𝐷

=
𝜕𝐹𝑤𝐷
𝜕𝑡𝐷

+
∞
∑

𝑖=0

𝑑𝑝∗𝐷𝑖
𝑑𝑡𝐷

𝜓̃𝑧,𝑖(𝑥𝐷, 𝑦𝐷), (133)

𝜕𝐹𝑤𝐷
𝜕𝑡𝐷

=
∞
∑

𝑗=0
𝜉2𝑗 (ℎ𝑤𝐷)𝛺𝑗 (𝐱𝐰𝐃)𝜓̃𝑧,𝑖(𝑥𝐷, 𝑦𝐷)𝑒

−𝑘𝑤𝐷𝜂2𝑗 𝑡𝐷 , (134)

𝜕𝐹𝑤𝐷
𝜕𝑡𝐷

=
∞
∑

𝑖=0

(−1)𝑙(𝑖)

8𝜋ℎ2𝑤𝐷𝑘𝑤𝐷𝑡𝐷
exp

(

−
𝑟2𝐷𝑖

4𝑘𝑤𝐷𝑡𝐷

)

{

𝐹+
𝑧,𝑙(𝑖)

(

𝑧+𝑤𝐷, 𝑘𝑤𝐷𝑡𝐷
)

− 𝐹+
𝑧,𝑙(𝑖)

(

𝑧−𝑤𝐷, 𝑘𝑤𝐷𝑡𝐷
)

−

−𝐹−
𝑧,𝑙(𝑖)

(

𝑧+𝑤𝐷, 𝑘𝑤𝐷𝑡𝐷
)

+ 𝐹−
𝑧,𝑙(𝑖)

(

𝑧−𝑤𝐷, 𝑘𝑤𝐷𝑡𝐷
)

}

,

(135)

ith 𝐹+
𝑧,𝑙(𝑖) and 𝐹−

𝑧,𝑙(𝑖) defined in Eqs. (B.11) and (B.12).
It should be noted that only the filter expression 𝐹𝐷(𝐱𝐃, 𝑡𝐷) and the

uxiliary eigenfunctions 𝛺𝑚(𝐱𝐃) required integration to account for the
niform pressure condition at the wellbore. This would remain true for
ny other well geometry: the transformed filtered potentials 𝑝∗𝐷𝑖(𝑡𝐷) and
ransformed eigenvectors 𝜓 𝑖𝑚 from the uniform flow solution should al-
ays be directly applicable for the corresponding approximate infinite

onductivity expression.

. Results and discussion

.1. Point-source in a homogeneous reservoir

As pointed out in Section 4.1, the integral transform solution in
qs. (67) and (68) will not perform adequately for well testing ap-
lications. Instead, the equivalent solution obtained by the method of
mages of Eqs. (A.4) and (A.5) should be preferred for computations
uring the early transient period. To illustrate this point, the numer-
cal parameters in Table 2 were used to generate the log–log plot of
ig. 2, which compares the drawdown pressure 𝛥𝑝(𝐱, 𝑡) and its loga-
ithmic derivative 𝜕𝛥𝑝∕𝜕 ln 𝑡 for each of these alternative expressions
t (𝑥, 𝑦, 𝑧) = (𝑥𝑤 + 𝑟𝑤, 𝑦𝑤, 𝑧𝑤) — the sandface. Eqs. (A.4) and (A.5) were
valuated with 900 terms in the summation, whereas Eqs. (67) and (68)
re shown with increasing truncation orders.

The derivative in Fig. 2 displays all expected flow regimes: short-
erm spherical flow near the point-source (𝑡 < 0.5 h); infinite acting

radial flow between the two no-flow boundaries in the 𝑧 direction
(1.5 < 𝑡 < 30 h); and boundary-dominated pseudo-steady state flow (𝑡 >
50 h). The time interval where the derivative of both solutions match
increases with the truncation order of the eigenfunction expansion:
convergence happens first at the late time, and progressively moves
towards the early time. Notably, the derivative achieves convergence on
the graphical scale at 𝑡 > 8 h with only 10 terms, whereas it requires at
least 10 000 terms for 𝑡 < 0.03 h. And even for truncation orders as high
as 100 000 terms, the drawdown pressure still differs from the method
10

of images solution by roughly two orders of magnitude.
Fig. 2. Log–log plot for the sandface drawdown pressure and its logarithmic derivative
calculated by: the classical method of images; and the integral transform (CITT), with
increasing truncation orders.

The reason behind the slow convergence behavior of the integral
transform in this particular application lies within the structure of the
expansion in Eq. (67). The eigenfunctions 𝛺𝑖(𝐱𝐃) are purely oscillatory,
and thus have no influence on the rate of convergence. Instead, the
decay of the infinite summation is produced by the 𝑒−𝜂

2
𝑖 𝑡𝐷∕𝜂2𝑖 and 1∕𝜂2𝑖

terms — the second of which is merely inverse square, and thus dom-
inates the rate of convergence. Comparatively, the method of images
solution in Eq. (A.4) has exponential decay. The same happens with
the time derivative in Eq. (68), which is also driven by exponential
decay. Finally, the faster convergence at later times is clearly due to
the 𝑒−𝜂

2
𝑖 𝑡𝐷∕𝜂2𝑖 term — which is also exponentially decreasing with time.

In particular cases where only the derivative is required, this perfor-
ance could still be reasonable for practical applications. However, the
athematical equivalence between these two solutions demonstrated

n Section 4.1.2 allows for the use of the exponential form, with its
ssociated performance advantages, in all subsequent computations.

.2. Point-source in a heterogeneous reservoir

.2.1. Layered reservoir
Fig. 3 illustrates a layered reservoir containing three layers of

ifferent permeabilities. This is obtained from Eq. (74) by making

𝐷(𝐱𝐃) =
{

1, 1
3𝐿𝑧𝐷 ≤ 𝑧𝐷 ≤ 2

3𝐿𝑧𝐷,
0.5, otherwise.

(136)

By using Table 2 again for the dimensional parameters, Eq. (136) de-
scribes three 10m layers in the 𝑧 direction, for a total reservoir thickness
of 30m. The point-source is located at 𝑧𝑤𝐷 = 0.5 ⋅𝐿𝑧𝐷, in the middle of
the highest permeability layer, and observation points have been placed
in the coordinates relative to the point-source represented in Table 3.
These points are logarithmically spaced and progressively farther from
the point-source in the 𝑥–𝑦 plane in order to demonstrate the solution’s
ateral behavior, and they sample both the higher permeability middle
ayer and the lower permeability top layer.

Fig. 4 displays the behavior for the drawdown pressure 𝛥𝑝(𝐱, 𝑡) and
ts logarithmic derivative 𝜕𝛥𝑝∕𝜕 ln 𝑡 at (𝑥, 𝑦, 𝑧) = (𝑥𝑤 + 𝑟𝑤, 𝑦𝑤, 𝑧𝑤) — the
andface — using a standard pressure derivative log–log plot and the
ollowing solutions:

1. The classical method of images solution for the point-source
given by Eqs. (A.4) and (A.5) with 1900 terms in the summation,
when the permeability of the middle layer is used for the whole

domain.
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Fig. 3. Schematic of the heterogeneous layered reservoir model used with the
point-source solution.

Table 3
Layered reservoir observation points’ positions relative
to the point-source: 𝛥𝐱 = 𝐱obs − 𝐱𝐰.
Point 𝛥𝑥(m) 𝛥𝑦(m) 𝛥𝑧(m)

Obs 1 bot 0 50 0
Obs 2 bot 0 125 0
Obs 3 bot 0 300 0
Obs 1 top 0 50 10
Obs 2 top 0 125 10
Obs 3 top 0 300 10

2. The same method of images solution using the long-term equiva-
lent horizontal permeability 𝑘𝐷equiv for the heterogeneous three
layers model, with 500 terms in the summation:

𝑘𝐷(𝐱𝐃) = 𝑘𝐷equiv =
∑3
𝑖=1 𝑘𝐷𝑖𝐿𝑧𝐷𝑖
∑3
𝑖=1 𝐿𝑧𝐷𝑖

= 2
3
. (137)

3. A numerical solution for the three layers heterogeneous problem
obtained in the commercial reservoir 3D flow simulator Ru-
bis (KAPPA, 2017), using an unstructured Voronoi grid with au-
tomatic refinement around wells tuned to reproduce short-term
pressure transient behavior.

The derivative in Fig. 4 displays all expected flow regimes: short-
term spherical flow within the middle layer (𝑡 < 0.1 h); a transition
11
Fig. 4. Log–log plot for the sandface drawdown pressure and its derivative with the
analytical method of images and numerical Rubis (KAPPA, 2017) solutions of the
layered reservoir problem.

Table 4
Convergence behavior in a sample of the first 30 eigenvalues for the layered reservoir
problem, with increasing truncation orders.
𝜇𝑖 𝑛(𝑚), where 𝑚 = 𝑛 + 𝛥𝑛

100 500 1000 2000 8000 12 000
(110) (580) (1350) (2781) (11 338) (17 086)

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.2825 1.2823 1.2823 1.2823 1.2823 1.2823
3 1.2825 1.2823 1.2823 1.2823 1.2823 1.2823
4 1.8138 1.8131 1.8131 1.8131 1.8131 1.8131
5 2.5651 2.5632 2.5632 2.5632 2.5631 2.5631
6 2.5651 2.5632 2.5632 2.5632 2.5631 2.5631
7 2.8679 2.8652 2.8652 2.8652 2.8651 2.8651
8 2.8679 2.8652 2.8652 2.8652 2.8651 2.8651
9 3.6276 3.6222 3.6222 3.6222 3.6220 3.6220
10 3.8476 3.8412 3.8412 3.8412 3.8410 3.8410
15 4.6243 4.6132 4.6132 4.6132 4.6128 4.6128
20 5.4414 5.4233 5.4233 5.4233 5.4227 5.4227
25 6.4127 6.3832 6.3832 6.3832 6.3823 6.3823
30 6.9067 6.8699 6.8699 6.8699 6.8688 6.8688

influenced by the top and bottom layers, as well as the no-flow bound-
aries in the 𝑧 direction (0.1 < 𝑡 < 5 h); infinite acting radial flow with
𝑘𝐷(𝐱𝐃) = 𝑘𝐷equiv as in Eq. (137) (5 < 𝑡 < 50 h); and boundary-dominated
pseudo-steady state flow (𝑡 > 50 h). The analytical homogeneous reser-
voir solutions are shown as limiting cases: the 𝑘𝐷(𝐱𝐃) = 1 solution is in
agreement with the numerical model in the short-term, whereas the
𝑘𝐷(𝐱𝐃) = 𝑘𝐷equiv solution matches the system’s long-term behavior,
with the heterogeneous numerical model transitioning between these
two limits in the middle-time region.

Table 4 displays the convergence in a sample of the first 30 eigen-
values of the GITT solution, with a truncation order of 𝑚 = 𝑛 + 𝛥𝑛
terms in the eigenvalue problem: 𝑛 auxiliary eigenvalues 𝜂𝑖 selected
in order of increasing magnitude; and 𝛥𝑛 additional terms from the
main diagonal of the 𝐁−1𝐀 matrix. In order to understand the small dif-
ferences appearing between the decimal digits as the truncation order
increases, it is important to consider Table 5 with the number of distinct
one-dimensional eigenvalues selected in each orthogonal direction. In
reservoir applications, the domain is usually much smaller in the 𝑧
direction than in the 𝑥 and 𝑦 directions. For the current example,
the domain’s dimensionless lengths obey the following relationships:
𝐿𝑥𝐷∕𝐿𝑦𝐷 = 1 and 𝐿𝑥𝐷∕𝐿𝑧𝐷 = 𝐿𝑦𝐷∕𝐿𝑧𝐷 = 8. Consequently, according
to Eq. (64), the auxiliary one-dimensional eigenvalues in the 𝑥 and
𝑦 directions will have much lower magnitudes than those in the 𝑧
direction, meaning they will be sorted first by the criterion of increasing
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Fig. 5. Layered reservoir numerical Rubis (KAPPA, 2017) and GITT solutions at the point-source, with increasing truncation orders.
Table 5
Number of distinct one-dimensional eigenvalues se-
lected in each orthogonal direction for the layered
reservoir problem, with increasing truncation orders.
𝑛 (𝑚) 1D eigenvalues

x y z

50 (63) 8 8 2
100 (110) 10 10 2
500 (580) 20 20 3
1000 (1350 26 26 4
2000 (2781) 34 34 5
8000 (11 338) 56 56 8
12 000 (17 086) 65 65 8

magnitude. A comparison of Tables 4 and 5 suggests a correlation
between the inclusion of additional terms in the 𝑧 direction and the
ifferences appearing in the first few digits of the eigenvalues. Although
he additional reordering criterium complements the selection of terms,
ncreasing the participation of the 𝑧 direction, further improvement
an be envisioned through a new more comprehensive criterium or a
econd reordering pass.

Fig. 5 and Table 6 show a comparison between the GITT results at
he sandface, with increasing truncation orders, and the other meth-
ds’ solutions previously shown in Fig. 4. The eigenvalue problem is
lways truncated to the same order as the potential, in each case.
he filter expression, which is the homogeneous reservoir solution in

ts exponential form (Eqs. (A.4) and (A.5)), was calculated with 1900
erms in the summation. While the solutions are in good agreement,
he convergence rate is not uniform: 50 terms in the eigenfunction

expansion are enough for all but the 0.1 to 6 hours interval; 1000 terms
educe this to between 0.1 and 1 hours; and 8000 terms further restrict
his to a small interval around 0.1 hour, which still oscillates even
fter 12 000 terms. Since Table 4 shows the eigenvalue problem to be
ractically converged after only 100 terms, the 8000 terms requirement
or the potential must be caused by the filtered source term itself, which
tarts deviating from the solution once the top and bottom layers start
o have an effect on the pressure response measured at the point-source.

Figs. 6(a) and 6(b) display the GITT solution’s pressure derivative
ehavior at the chosen observation points, truncated to 1000 and 12 000
erms. It is mostly in good agreement with the numerical solution,
12

xcept for points Obs 1 bot and Obs 1 top which are the closest to the
Fig. 6. Layered reservoir. (a) Numerical Rubis (KAPPA, 2017) and GITT solution at the
observation points, truncated to 1000 (1350) terms. (b) Comparison of GITT solutions
with 1000 (1350) and 12 000 (17 086) terms.

point-source in the 𝑥–𝑦 plane. The non-uniform rate of convergence
is also apparent when comparing both truncation orders, as the only
observation point with any significant difference is Obs 1 bot — which
is closest to the point-source.

5.2.2. Linear channel reservoir
Fig. 7 illustrates a reservoir containing a higher permeability linear

channel. This is obtained from Eq. (74) by making

𝑘𝐷(𝐱𝐃) =
{

1, 5
12𝐿𝑥𝐷 ≤ 𝑥𝐷 ≤ 7

12𝐿𝑥𝐷,
0.5, otherwise.

(138)

By using Table 2 again for the dimensional parameters, Eq. (138)
describes a 400m wide region in a total reservoir 𝑥 length of 2400m.
The point-source is located at 𝑥𝑤𝐷 = 0.5 ⋅ 𝐿𝑥𝐷, in the middle of the
higher permeability region, and observation points have been placed

in the coordinates relative to the point-source represented in Table 7.
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Table 6
Convergence behavior for the sandface drawdown pressure and its logarithmic derivative for the layered reservoir problem, with
increasing truncation orders.
Time 50 100 500 2000 8000 12 000 Rubis
(h) (63) (110) (580) (2781) (11 338) (17 086)

𝛥𝑝(𝐱𝐰 , 𝑡) = 𝑝𝑖 − 𝑝(𝐱𝐰 , 𝑡) (kPa)

0.01 2688.2 2688.2 2688.2 2688.2 2688.2 2688.2 2688.2
0.1 2701.2 2701.2 2701.3 2701.5 2701.7 2701.7 2701.6
1 2705.5 2705.5 2706.3 2706.8 2706.6 2706.5 2706.9
10 2708.8 2709.0 2709.9 2710.3 2710.0 2710.0 2710.4
100 2712.8 2713.0 2713.8 2714.2 2714.0 2713.9 2714.4

𝛥𝑝′(𝐱𝐰 , 𝑡) = 𝜕𝛥𝑝∕𝜕 ln 𝑡 (kPa)

0.01 9.5587 9.5588 9.5598 9.5689 9.6089 9.6323 9.9203
0.1 3.0243 3.0261 3.0986 3.3910 3.2334 3.1229 3.1321
1 1.2183 1.2963 1.6775 1.4853 1.4902 1.4902 1.5479
10 1.6301 1.6331 1.5892 1.5890 1.5902 1.5902 1.6332
100 2.3354 2.3354 2.3343 2.3343 2.3344 2.3344 2.2745
Fig. 7. Schematic of the heterogeneous channel reservoir model used with the
point-source solution.

These points are logarithmically spaced and progressively farther from
the point-source both within the channel and crossing into the lower
permeability outer region; the sampling is restricted to the 𝑥–𝑦 plane,
as the system is effectively homogeneous along 𝑧.

Fig. 8 displays the behavior for the drawdown pressure 𝛥𝑝(𝐱, 𝑡) and
its logarithmic derivative 𝜕𝛥𝑝∕𝜕 ln 𝑡 at (𝑥, 𝑦, 𝑧) = (𝑥 + 𝑟 , 𝑦 , 𝑧 ) — the
13

𝑤 𝑤 𝑤 𝑤
Table 7
Linear channel reservoir observation points’ positions
relative to the point-source: 𝛥𝐱 = 𝐱obs − 𝐱𝐰.
Point 𝛥𝑥(m) 𝛥𝑦(m) 𝛥𝑧(m)

Obs N1 0 125 0
Obs N2 0 300 0
Obs N3 0 500 0
Obs W1 −125 0 0
Obs W2 −300 0 0
Obs W3 −500 0 0

Fig. 8. Log–log plot for the sandface drawdown pressure and its derivative with the
analytical method of images and numerical Rubis (KAPPA, 2017) solutions of the linear
channel reservoir problem.

sandface — using a standard pressure derivative log–log plot and the
following solutions:

1. The classical method of images solution for the point-source
given by Eqs. (A.4) and (A.5) with 1900 terms in the summation,
when the higher permeability within the channel is used for the
whole domain.

2. The same method of images solution using the lower permeabil-
ity outside the channel for the whole domain, with 500 terms in
the summation.

3. A numerical solution for the linear channel heterogeneous prob-
lem obtained in the commercial reservoir 3D flow simulator
Rubis, using an unstructured Voronoi grid with automatic re-
finement around wells tuned to reproduce short-term pressure
transient behavior.
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Table 8
Convergence behavior in a sample of the first 30 eigenvalues for the linear channel
reservoir problem, with increasing truncation orders.
𝜇𝑖 𝑛(𝑚), where 𝑚 = 𝑛 + 𝛥𝑛

50 100 200 500 1000 10 000
(56) (115) (247) (613) (1188) (12 765)

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.1928 1.1928 1.1927 1.1927 1.1927 1.1926
3 1.2200 1.2189 1.2182 1.2157 1.2149 1.2125
4 1.6508 1.6500 1.6495 1.6476 1.6470 1.6453
5 2.2456 2.2405 2.2396 2.2393 2.2384 2.2377
6 2.3520 2.3520 2.3516 2.3514 2.3513 2.3512
7 2.5368 2.5362 2.5359 2.5347 2.5343 2.5331
8 2.5751 2.5722 2.5703 2.5701 2.5695 2.5690
9 3.3805 3.3784 3.3779 3.3777 3.3775 3.3774
10 3.4743 3.4742 3.4734 3.4732 3.4730 3.4727
15 4.3944 4.3932 4.3929 4.3922 4.3922 4.3919
20 4.9616 4.9557 4.9555 4.9499 4.9480 4.9435
25 5.8090 5.7821 5.7755 5.7706 5.7688 5.7648
30 6.5287 6.5174 6.5127 6.5103 6.5097 6.5078

Table 9
Number of distinct one-dimensional eigenvalues selected in
each orthogonal direction for the linear channel reservoir
problem, with increasing truncation orders.
𝑛 (𝑚) 1D eigenvalues

x y z

50 (56) 8 9 2
100 (115) 11 11 2
200 (247) 14 15 2
500 (613) 19 21 3
1000 (1188) 25 27 4
10 000 (12 765) 56 61 8

The derivative in Fig. 8 displays all expected flow regimes: short-
erm spherical flow (𝑡 < 1 h); a transition in which the higher perme-
bility channel receives pressure support from outside (1 < 𝑡 < 50 h),
kipping infinite acting radial flow entirely due to the channel’s reduced
idth; and boundary-dominated pseudo-steady state flow (𝑡 > 50 h).
he analytical homogeneous reservoir solutions are shown as limiting
ases: the 𝑘𝐷(𝐱𝐃) = 1 solution is in agreement with the numerical
odel in the short-term, whereas the 𝑘𝐷 = 0.5 solution matches the

system’s long-term behavior, with the heterogeneous numerical model
transitioning between these two limits in the middle-time region.

Table 8 displays the convergence in a sample of the first 30 eigenval-
ues of the GITT solution, with a truncation order of 𝑚 = 𝑛+𝛥𝑛 terms in
the eigenvalue problem: 𝑛 auxiliary eigenvalues 𝜂𝑖 selected in order of
increasing magnitude; and 𝛥𝑛 additional terms from the main diagonal
of the 𝐁−1𝐀 matrix. Small differences appear between the first decimal
digits as the truncation order increases, much like what happened in the
layered reservoir problem. Tables 5 and 9 show a comparable number
of distinct one-dimensional eigenvalues, even though the heterogeneity
in each problem has very distinct characteristics. The similarity lies in
the domain’s lengths in each direction, which dictate the reordering cri-
terion of increasing magnitude. Therefore, it is clear that this criterion
is dominant over the heterogeneity one in terms of selecting elements
for the 𝐀 matrix of the algebraic eigenvalue problem.

Fig. 9 and Table 10 show a comparison between the GITT results at
the sandface, with increasing truncation orders, and the other methods’
solutions, already shown in Fig. 8. The eigenvalue problem is always
truncated to the same order as the potential, in each case. The filter
expression, which is the homogeneous reservoir solution in its expo-
nential form (Eqs. (A.4) and (A.5)), was calculated with 1900 terms
in the summation. The pressure derivative is practically converged on
the graphical scale with only 200 terms, unlike the 8000 terms which
were required for the layered reservoir. In order to understand this
14

significant performance difference, it should be noted that: s
1. The layered reservoir exhibits essentially homogeneous behavior
until 0.1 hour, when the top and bottom layers start to have an
effect on the pressure response. For the channel reservoir, the
homogeneous behavior lasts 1 hour before the channel boundary
is perceived.

2. It was previously demonstrated that the classical method of
images and the CITT produce alternative forms of the same
solution, with distinct convergence characteristics: the first con-
verges rapidly in early times, whereas the second performs better
at late time.

3. The chosen filter for this problem is the method of images
solution for a homogeneous reservoir.

An alternative interpretation for Eq. (21) is that the GITT solution for
the filtered problem is simply a correction term to be applied to the
homogeneous solution in order to take into account the reservoir’s
heterogeneity. Since the filter expression converges rapidly in early
times and the GITT performs better at late time, the earlier the GITT
correction term has to be applied to the homogeneous solution, the
larger the number of terms required to reach convergence.

Figs. 10(a) and 10(b) displays the GITT solution’s pressure deriva-
tive behavior at the chosen observation points, truncated to 200 and
2000 terms. It is mostly in good agreement with the numerical solution,
and no significant difference can be seen between these two truncation
orders, except for points N1 and W1 — which are closest to the point-
source. While the pressure interferences at these closest points are
practically indistinguishable in either direction, the higher permeability
within the channel causes it to be perceived earlier at N3 than at W3,
as expected.

5.2.3. Compartmentalized reservoir
Fig. 11 illustrates a reservoir containing: two disjoint compartments

𝑉1 and 𝑉2 with the same permeabilities; a region 𝑉3 of very low
permeability which separates 𝑉1 from 𝑉2; a high permeability layer 𝑉4
cutting through both compartments at the reservoir’s bottom boundary;
and a very high permeability region 𝑉5 next to the outer boundary of
𝑉2. This is obtained from Eq. (113) by making

𝑘𝐷(𝐱𝐃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, in 𝑉1 and 𝑉2
1 × 10−4, in 𝑉3
10, in 𝑉4
100, in 𝑉5

(139)

where

𝑉1 ∶ 0 < 𝑥𝐷 <
3
5
𝐿𝑥𝐷, 0 < 𝑦𝐷 < 𝐿𝑦𝐷,

1
11
𝐿𝑧𝐷 < 𝑧𝐷 < 𝐿𝑧𝐷,

𝑉2 ∶ 18
25
𝐿𝑥𝐷 < 𝑥𝐷 < 𝐿𝑥𝐷, 0 < 𝑦𝐷 <

4
5
𝐿𝑦𝐷,

1
11
𝐿𝑧𝐷 < 𝑧𝐷 < 𝐿𝑧𝐷,

𝑉3 ∶ 3
5
𝐿𝑥𝐷 < 𝑥𝐷 <

18
25
𝐿𝑥𝐷, 0 < 𝑦𝐷 < 𝐿𝑦𝐷,

1
11
𝐿𝑧𝐷 < 𝑧𝐷 < 𝐿𝑧𝐷,

𝑉4 ∶
{

0 < 𝑥𝐷 <
18
25
𝐿𝑥𝐷, 0 < 𝑦𝐷 < 1, 0 < 𝑧𝐷 < 1

}

∪

∪
{18
25
𝐿𝑥𝐷 < 𝑥𝐷 < 𝐿𝑥𝐷, 0 < 𝑦𝐷 <

4
5
𝐿𝑦𝐷, 0 < 𝑧𝐷 <

1
11
𝐿𝑧𝐷

}

𝑉5 ∶ 18
25
𝐿𝑥𝐷 < 𝑥𝐷 < 𝐿𝑥𝐷,

4
5
𝐿𝑦𝐷 < 𝑦𝐷 < 𝐿𝑦𝐷, 0 < 𝑧𝐷 < 𝐿𝑧𝐷. (140)

Using numerical values from Table 11 for the dimensional parameters,
a limited entry vertical well is placed in region 𝑉1, and observation
points are chosen in the coordinates relative to the center of the
well represented in Table 12, in order to demonstrate the influence
of the higher permeability regions in the propagation of the pressure
interference.

Fig. 12 displays the behavior for the drawdown pressure 𝛥𝑝𝑤(𝐱, 𝑡)
nd its logarithmic derivative 𝜕𝛥𝑝𝑤∕𝜕 ln 𝑡 at (𝑥, 𝑦) = (𝑥𝑤 + 𝑟𝑤, 𝑦𝑤) — the
pproximate infinite conductivity solution at the sandface — using a

tandard pressure derivative log–log plot and the following solutions:
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Fig. 9. Linear channel reservoir numerical Rubis (KAPPA, 2017) and GITT solutions at the point-source, with increasing truncation orders.
Table 10
Convergence behavior for the sandface drawdown pressure and its logarithmic derivative for the linear channel reservoir problem,
with increasing truncation orders.
Time 50 100 200 500 1000 5000 10 000 Rubis
(h) (56) (115) (247) (613) (1188) (6434) (12 765)

𝛥𝑝(𝐱𝐰 , 𝑡) = 𝑝𝑖 − 𝑝(𝐱𝐰 , 𝑡) (kPa)

0.01 2688.2 2688.2 2688.2 2688.2 2688.2 2688.2 2688.2 2688.2
0.1 2701.2 2701.2 2701.2 2701.3 2701.3 2701.3 2701.4 2701.6
1 2705.5 2705.5 2705.5 2705.6 2705.6 2705.6 2705.6 2706.1
2 2706.3 2706.4 2706.3 2706.3 2706.3 2706.3 2706.4 2706.9
10 2708.6 2708.5 2708.3 2708.3 2708.4 2708.4 2708.4 2709.0
100 2712.5 2712.4 2712.3 2712.3 2712.3 2712.3 2712.3 2713.0

𝛥𝑝′(𝐱𝐰 , 𝑡) = 𝜕𝛥𝑝∕𝜕 ln 𝑡 (kPa)

0.01 9.5587 9.5587 9.5588 9.5591 9.5596 9.5655 9.5747 9.9124
0.1 3.0242 3.0253 3.0275 3.0464 3.0628 3.0840 3.0580 3.0160
1 1.2045 1.2246 1.1962 1.1381 1.1253 1.1259 1.1336 1.2114
2 1.2720 1.2595 1.1517 1.1057 1.1328 1.1310 1.1372 1.1877
10 1.4576 1.4061 1.3979 1.4045 1.4160 1.4153 1.4177 1.4486
100 2.4269 2.4263 2.4267 2.4272 2.4288 2.4288 2.4291 2.3609
𝑛
s
f
T
p
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h
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t
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1. The classical method of images solution for the limited entry
vertical well given by Eqs. (B.9) and (B.10) with 539 terms in
the summation (7, 7 and 11 terms in directions 𝑥, 𝑦 and 𝑧,
respectively), when the permeability in region 𝑉1 is used for the
whole domain.

2. Two numerical solutions obtained in the commercial reservoir
3D flow simulator Rubis, using an unstructured Voronoi grid
with automatic refinement around wells tuned to reproduce
short-term pressure transient behavior: one for a homogeneous
reservoir with the permeability in 𝑉1; the other for the hetero-
geneous reservoir described by the 5 regions in Eq. (139).

The derivative in Fig. 12 displays the following flow regimes: early-
ime radial flow within the perforated interval (𝑡 < 0.01 h); spherical

flow due to the vertical investigation of the reservoir (0.01 < 𝑡 < 1 h); a
transition which resembles radial flow when the top and bottom no-
flow boundaries have been reached (2 < 𝑡 < 6 h); classic U-Shaped
reservoir flow due to the north, south and west no-flow boundaries
(10 < 𝑡 < 80 h); and boundary-dominated pseudo-steady state flow (𝑡 >
80 h). As all solutions were calculated with the same reservoir thickness
𝐿𝑧, the higher equivalent transmissibility of the heterogeneous model
within the transition period (2 < 𝑡 < 6 h) is caused by the higher
permeability of layer 𝑉 .
15

4 (
Table 13 displays the convergence in a sample of the first 30
eigenvalues of the GITT solution, with a truncation order of 𝑚 =
+ 𝛥𝑛 terms in the eigenvalue problem: 𝑛 auxiliary eigenvalues 𝜂𝑖

elected in order of increasing magnitude; and 𝛥𝑛 additional terms
rom the main diagonal of the 𝐁−1𝐀 matrix. It is clear from comparing
ables 4, 8 and 13 that the required truncation order for this eigenvalue
roblem is much higher than those in previous sections. Likewise, a
omparison of Tables 5, 9 and 14 shows that the number of distinct
ne-dimensional eigenvalues selected in each orthogonal direction by
he heterogeneity criterion is also higher. This result can be explained
y comparing Eqs. (136), (138) and (139): while previous examples
ad the heterogeneity 𝑘𝐷(𝐱𝐃) restricted to a single direction and taking
alues in the 0.5 to 1 range, in this case 𝑘𝐷(𝐱𝐃) varies: from 1 (𝑉1 ∪𝑉2)
o 10 (𝑉4) in the 𝑧 direction; from 1 (𝑉2) to 100 (𝑉5) in the 𝑦 direction;
nd from 1 × 10−4 (𝑉3) to 100 (𝑉5) in the 𝑧 direction. It is reasonable to
xpect a higher number of terms in the eigenvalue problem for such a
eterogeneous domain.

Fig. 13 and Table 15 show a comparison between the GITT results at
he sandface, with increasing truncation orders, and the other methods’
olutions, already shown in Fig. 12. The eigenvalue problem is always
runcated to the same order as the potential, in each case. The filter
xpression, which is the homogeneous reservoir solution (Eqs. (B.9) and
B.10)), was calculated with 539 terms in the summation (7, 7 and 11
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Fig. 10. Linear channel reservoir. (a) Numerical Rubis (KAPPA, 2017) and GITT
solution at the observation points, truncated to 200 (247) terms. (b) Comparison of
GITT solutions with 200 (247) and 2000 (2407) terms.

Fig. 11. Schematic of the compartmentalized reservoir model used with the limited
entry vertical well solution.
16
Fig. 12. Log–log plot for the sandface drawdown pressure and its derivative with
the analytical method of images and numerical Rubis (KAPPA, 2017) solutions of the
compartmentalized reservoir problem.

Table 11
Numerical properties for the Limited entry vertical well application
example.
Parameters Values Units

Flowrate, 𝑞 2500 m3 d−1

Permeability in 𝑥, 𝑘𝑥 1000 mD
Permeability in 𝑦, 𝑘𝑦 1000 mD
Permeability in 𝑧, 𝑘𝑧 50 mD
Porosity, 𝜙 15 %
Viscosity, 𝜇𝑓 1 × 10−3 Pa s
Compressibility, 𝑐𝑡 2.0394 × 10−6 kPa−1

Initial pressure, 𝑝𝑖 29 419.95 kPa
Well radius, 𝑟𝑤 0.120 65 m
Reservoir 𝑥 length, 𝐿𝑥 2500 m
Reservoir 𝑦 length, 𝐿𝑦 1000 m
Reservoir 𝑧 length, 𝐿𝑧 110 m
Point-source 𝑥 coordinate, 𝑥𝑤 500 m
Point-source 𝑦 coordinate, 𝑦𝑤 500 m
Point-source 𝑧 coordinate, 𝑧𝑤 55 m
Perforated length, ℎ𝑤 15 m

Table 12
Compartmentalized reservoir observation points’ positions
relative to the center of the well: 𝛥𝐱 = 𝐱obs − 𝐱𝐰.
Point 𝛥𝑥(m) 𝛥𝑦(m) 𝛥𝑧(m)

Obs 1 1650 0 0
Obs 2 1650 400 0

terms in directions 𝑥, 𝑦 and 𝑧, respectively). The pressure derivative
is practically converged on the graphical scale with 300 terms, which
is similar to the 200 terms required for the linear channel and unlike
the 8000 terms for the layered reservoir. It should be noted that the
early homogeneous reservoir behavior is much longer in this and the
linear channel examples (1 hour) than in the layered reservoir (0.1
hour). This corroborates the already presented discussion: the earlier
the GITT correction term has to be applied, the larger the number of
terms required to reach convergence.

Figs. 14(a) and 14(b) displays the GITT solution’s pressure deriva-
tive behavior at the chosen observation points, truncated to 300 and
2000 terms. It is mostly in good agreement with the numerical Ru-
bis (KAPPA, 2017) solution, and no significant difference can be seen
between these two truncation orders. Even though point Obs 1 is closer
to the well than Obs 2, the pressure interference is perceived first at
Obs 2 — which is expected, since Obs 2 is located within the very high
permeability region 𝑉 .
5
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Fig. 13. Compartmentalized reservoir numerical Rubis (KAPPA, 2017) and GITT solutions at the well, with increasing truncation orders.
s
G

Table 13
Convergence behavior in a sample of the first 30 eigenvalues for the compartmentalized
reservoir problem, with increasing truncation orders.
𝜇𝑖 𝑛(𝑚), where 𝑚 = 𝑛 + 𝛥𝑛

100 300 500 1000 2000 3000
(223) (642) (1463) (2807) (4807) (7661)

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.6432 1.5789 1.4706 0.5648 0.2464 0.1791
3 3.1760 2.9882 1.6980 0.6408 0.2853 0.2078
4 3.8708 3.4224 1.8278 0.8510 0.3579 0.2145
5 4.3943 3.6180 2.0570 0.9262 0.4085 0.2209
6 4.7080 3.8581 2.1050 0.9388 0.4185 0.2391
7 4.9786 4.0592 2.1253 0.9581 0.4347 0.2437
8 5.2810 4.1187 2.1551 0.9635 0.4389 0.2543
9 5.4802 4.1999 2.1831 0.9817 0.4530 0.2558
10 6.1536 4.3083 2.1998 0.9829 0.4556 0.2727
15 7.4885 5.5390 2.7250 1.0429 0.4876 0.3011
20 8.3070 6.9399 3.3110 1.1519 0.5334 0.3326
25 9.1402 7.5202 4.3890 1.4710 0.5642 0.3693
30 9.9298 8.3935 5.1840 1.6505 0.6191 0.3952

Conclusions

The present work provides a novel solution to the continuous point-
source problem in heterogeneous reservoirs through the use of the hy-
brid analytical–numerical approach of the Generalized Integral Trans-
form Technique — GITT. The research suggests this model is the most
general and least restrictive expression presented so far to this single
problem, capable of handling different permeability regions arbitrarily
and irregularly distributed throughout the 3D domain. Although the
point-source is an idealized geometry, it was demonstrated in Sec-
tion 4.3 — using the limited entry vertical well as an example —
that this expression can easily be used as a building block to obtain
uniform flow solutions in heterogeneous reservoirs for any other well
geometry through spatial superposition. The proposed expressions are
verified against known analytical models and results from a commercial
numerical simulator, and are shown to be in good agreement.

Due to the combined requirements of large domains, short times of
interest and spatially concentrated source functions, which are intrinsic
to the context of well-test interpretation problems, the computational
17
Fig. 14. Compartmentalized reservoir. (a) Numerical Rubis (KAPPA, 2017) and GITT
olution at the observation points, truncated to 300 (642) terms. (b) Comparison of
ITT solutions with 300 (642) and 2000 (4807) terms.

Table 14
Number of distinct one-dimensional eigenvalues selected in
each orthogonal direction for the compartmentalized reservoir
problem, with increasing truncation orders.
𝑛 (𝑚) 1D eigenvalues

x y z

100 (223) 17 8 4
300 (642) 24 11 6
500 (1463) 33 14 8
1000 (2807) 41 18 10
2000 (4807) 49 22 12
3000 (7661) 58 25 14
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Table 15
Convergence behavior for the sandface drawdown pressure and its logarithmic derivative for the compartmentalized reservoir problem,
with increasing truncation orders.
Time 100 200 300 400 500 1000 2000 Rubis
(h) (223) (334) (642) (709) (1463) (2807) (4807)

𝛥𝑝𝑤(𝐱𝐰 , 𝑡) = 𝑝𝑖 − 𝑝𝑤(𝐱𝐰 , 𝑡) (kPa)

0.01 1468.6 1468.5 1468.5 1468.5 1468.4 1468.2 1468.0 1565.1
0.1 1707.1 1706.7 1706.0 1706.0 1705.0 1704.6 1704.8 1797.9
0.4 1782.6 1782.5 1783.5 1783.8 1783.8 1783.8 1784.5 1878.4
10 1857.6 1858.8 1862.2 1863.4 1862.9 1862.1 1863.9 1959.2
100 2007.6 2009.8 2013.8 2015.0 2016.4 2016.9 2019.2 2121.7
200 2133.9 2136.5 2140.9 2142.3 2144.7 2149.0 2152.5 2265.8

𝛥𝑝′𝑤(𝐱𝐰 , 𝑡) = 𝜕𝛥𝑝𝑤∕𝜕 ln 𝑡 (kPa)

0.01 127.30 127.27 127.20 127.20 127.02 126.75 126.51 123.64
0.1 73.350 73.023 72.805 72.815 73.050 73.983 74.703 75.207
0.4 38.103 39.178 41.657 42.179 42.313 41.561 42.097 42.237
10 25.818 25.877 25.910 25.926 26.011 25.971 26.067 26.684
100 133.11 133.97 134.72 134.87 136.81 140.06 140.71 143.03
200 245.33 245.58 245.87 245.93 246.84 254.38 257.97 279.66
l

s

t
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performance of the inverse formula was found to be slower when the
early homogeneous reservoir behavior was very short. Future works
may explore additional convergence acceleration techniques to reduce
the required truncation orders in the algebraic eigenvalue problem
and the eigenfunction expansion, such as three-dimensional integral
balance procedures (Cotta et al., 2016) and virtual moving bound-
aries (Naveira et al., 2009). Furthermore, as this formulation is fully ap-
plicable for nonlinear partial differential equations (Cotta et al., 2018),
it might be a viable hybrid analytical–numerical approach to tackle
more complicated reservoir problems such as multiphase flow (Clark-
son et al., 2020) — including water, gas or water-alternating-gas (WAG)
injection (Wang et al., 2021) — and pressure-dependent reservoir and
fluid properties (Luo et al., 2018; Liu and Emami-Meybodi, 2021).

Nomenclature

Roman letters

𝐀,𝐁,𝐂: algebraic eigenvalue problem matrices in vector notation,
dimensionless

𝐴𝑗𝑘, 𝐵𝑗𝑘, 𝐶𝑗𝑘: algebraic eigenvalue problem matrices in tensor nota-
ion, dimensionless

: GITT operator for the boundary condition
𝑐𝑡: total compressibility, kPa−1
𝑑: generalized GITT formulation term, dimensionless
𝑓 : generalized GITT formulation initial condition, dimensionless
𝑓+
𝑧,𝑙 , 𝑓

−
𝑧,𝑙: expressions defined in Eqs. (B.4) and (B.5), dimensionless

𝐹+
𝑧,𝑙 , 𝐹

−
𝑧,𝑙: expressions defined in Eqs. (B.11) and (B.12), dimension-

less
𝐹𝐷: generalized GITT formulation filter expression, dimensionless
𝑔: generalized GITT formulation source term, dimensionless
ℎ𝑤: length of the perforated interval, m
𝐻 : Heaviside step function, dimensionless
𝐈: identity matrix, dimensionless
𝐼𝑗𝑘: integral of the auxiliary eigenvalues in Eq. (98), dimensionless
𝐼𝑋 , 𝐼𝑌 , 𝐼𝑍 , 𝐼𝑋′ , 𝐼𝑌 ′ , 𝐼𝑍′ : one-dimensional components of Eq. (100)

defined in Eqs. (101) and (102), dimensionless
𝐼 , 𝐼 ′ : placeholders for the components in Eq. (100), defined in

Eqs. (101) and (102), dimensionless
𝑘: spherical equivalent permeability, mD
𝑘𝑤: permeability in position 𝐱𝐰, mD
𝑘𝑥, 𝑘𝑦, 𝑘𝑧: permeability in directions 𝑥, 𝑦, 𝑧, mD
𝑘𝐷: permeability multiplier in Eq. (4), dimensionless
𝑘𝐷equiv: long-term equivalent horizontal permeability in Eq. (137),

dimensionless
𝐊: permeability tensor, mD
𝐿: reference length, m
18
𝐿𝑥, 𝐿𝑦, 𝐿𝑧: length of the domain in the 𝑥, 𝑦, 𝑧 directions, m
: GITT operator for the differential equation
𝑛: outward-facing normal unit vector to 𝑆
𝑁𝑋𝑚 , 𝑁𝑌𝑚 , 𝑁𝑍𝑚 : norms of the eigenfunctions in Eq. (69), dimension-

ess
𝑁𝜓𝑖 : norm of the eigenfunction 𝜓𝑖, dimensionless
𝑁𝛺𝑖 : norm of the auxiliary eigenfunction 𝛺𝑖, dimensionless
𝑝: pressure, kPa
𝑝𝑖: initial pressure, kPa
𝐩∗𝐃: vector of transformed potentials in Eq. (38), dimensionless
𝑞: bottomhole volumetric flow rate, m3 d−1

𝑟𝑤: well radius, m
𝑟𝐷: expression defined in Eq. (B.3), dimensionless
𝑅𝐷: distance to the point-source in Eq. (A.2), dimensionless
𝑠: diffusivity equation source term geometry, m−3

𝑆: the domain’s external boundary
: length, area or volume of the source
𝑡: time, h
𝑇𝑖𝑚: expression defined in Eq. (110), dimensionless
𝑣𝐷: placeholder for 𝑥𝐷, 𝑦𝐷 or 𝑧𝐷, dimensionless
𝑉 : problem formulation domain
𝑤: weight function for the eigenfunctions’ orthogonality property,

dimensionless
𝐱: position vector (𝑥, 𝑦, 𝑧), m
𝐱𝐰: position vector (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) of the well (source term), m
𝑋, 𝑌 ,𝑍: auxiliary one-dimensional eigenfunctions, dimensionless
 : placeholder for auxiliary one-dimensional eigenfunctions, dimen-

ionless
𝑧+𝑤𝐷, 𝑧

−
𝑤𝐷: top and bottom coordinates of the limited entry perfora-

ion defined in Eq. (B.6), dimensionless

reek letters

𝛼: generalized GITT formulation boundary conditions coefficient,
imensionless
𝛼𝑝: unit conversion factor, 1∕2𝜋 in SI units and 141.2 in oilfield units
𝛼𝑡: unit conversion factor, 1.0 in SI units and 0.000 263 74 in oilfield

nits
𝛽: generalized GITT formulation boundary conditions coefficient,

imensionless
𝛿(𝑥): Dirac delta, m−1

𝛿(𝐱): three-dimensional Dirac delta, m−3

𝛿𝑖𝑗 : Kronecker delta, dimensionless
𝛥𝑝: drawdown pressure 𝑝 − 𝑝𝑖, kPa
𝛥𝑝′: drawdown pressure logarithmic derivative, kPa

𝜁𝑗 (𝐱𝐃): expression defined in Eq. (52), dimensionless
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𝜂: generalized GITT formulation auxiliary eigenvalues, dimension-
less

𝜂′: change of variables used in simplifying Eq. (98), dimensionless
𝜆, 𝛾, 𝜈: auxiliary eigenvalues in directions 𝑥, 𝑦, 𝑧, dimensionless
𝜇: generalized GITT formulation eigenvalues, dimensionless
𝜇𝑓 : viscosity, Pa s
𝜉, 𝜉𝑒: placeholders in the Poisson summation formula in Eq. (71)
𝜉𝑗 : expression defined in Eq. (122), dimensionless
𝜌: placeholder for auxiliary one-dimensional eigenvalues, dimen-

sionless
𝜏: integration variable, dimensionless
𝜙: porosity, %
𝜑: generalized GITT formulation boundary condition, dimensionless
𝜓 : generalized GITT formulation eigenfunctions, dimensionless
𝛺: generalized GITT formulation auxiliary eigenfunctions, dimen-

sionless

Subscripts and superscripts

𝑖, 𝑗, 𝑘, 𝑚, 𝑛, 𝑙: summation indices
𝑖𝑥, 𝑖𝑦, 𝑖𝑧: one-dimensional indices corresponding to the three-

dimensional index 𝑖
̃: normalization of the eigenfunction
̂ : refers to the auxiliary eigenvalue problem
̄ : transformed function
∗ : refers to the filtered problem
𝑇 : transposed vector or matrix
−1: inverse matrix
𝑝𝑠 : refers to the point-source
𝐷 : dimensionless
𝑤 : refers to the wellbore
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Appendix A. Point-source in a homogeneous reservoir by the
method of images

The formulation in Eqs. (53)–(55) for the point-source in a closed
homogeneous reservoir is usually solved in well testing literature
through a two-step process: (i) calculate the point-source solution in
an infinite domain; (ii) apply the method of images (Larsen, 1985) to
create virtual boundaries in each direction by direct superposition of
as many infinite domain solutions as required. The solution found in
the literature for this process is (Ozkan and Raghavan, 1991)

𝑝𝐷(𝐱𝐃, 𝑡𝐷) =
+∞
∑

+∞
∑

+∞
∑

2
∑

2
∑

2
∑ 1

4𝜋𝑅
⋅
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𝑘=−∞ 𝑚=−∞ 𝑛=−∞ 𝑝=1 𝑗=1 𝑙=1 𝐷𝑝𝑘,𝑗𝑚,𝑙𝑛
⋅ erfc

(

𝑅𝐷𝑝𝑘,𝑗𝑚,𝑙𝑛
2
√

𝑡𝐷

)

, (A.1)

where
𝑅2
𝐷𝑝𝑘,𝑗𝑚,𝑙𝑛 = (𝑥𝐷 + (−1)𝑝𝑥𝑤𝐷 − 2𝑘𝐿𝑥𝐷)2+

+ (𝑦𝐷 + (−1)𝑗𝑦𝑤𝐷 − 2𝑚𝐿𝑦𝐷)2+

+ (𝑧𝐷 + (−1)𝑙𝑧𝑤𝐷 − 2𝑛𝐿𝑧𝐷)2,

(A.2)

with time derivative

𝜕𝑝𝐷
𝜕𝑡𝐷

= 1
(4𝜋𝑡𝐷)3∕2

+∞
∑

𝑘=−∞

+∞
∑

𝑚=−∞

+∞
∑

𝑛=−∞

2
∑

𝑝=1

2
∑

𝑗=1

2
∑

𝑙=1
exp

(

−
𝑅2
𝐷𝑝𝑘,𝑗𝑚,𝑙𝑛

4𝑡𝐷

)

. (A.3)

y choosing an appropriate sorting order, Eqs. (A.1) and (A.3) can be
ewritten as the single summation

𝐷(𝐱𝐃, 𝑡𝐷) =
∞
∑

𝑖=0

1
4𝜋𝑅𝐷𝑖(𝐱𝐃)

erfc

(

𝑅𝐷𝑖(𝐱𝐃)
2
√

𝑡𝐷

)

, (A.4)

𝜕𝑝𝐷
𝜕𝑡𝐷

=
∞
∑

𝑖=0

1
(4𝜋𝑡𝐷)3∕2

exp

(

−
𝑅𝐷2

𝑖 (𝐱𝐃)
4𝑡𝐷

)

, (A.5)

here each index 𝑖 stands for a single combination of the original
ultiple summations. The most appropriate reordering criterion, in this

ase, is by increasing order of 𝑅𝐷𝑖(𝐱𝐃), thus prioritizing those images
losest to the point-source.

ppendix B. Limited entry vertical well in a homogeneous reser-
oir by the method of images

The solution for the limited entry vertical well in a homogeneous
eservoir can be obtained by applying the superposition principle
Eq. (116)) directly to the point-source solution (Eq. (A.1)). This results
n

𝐷(𝐱𝐃, 𝑡𝐷) = ∫

𝑡𝐷

0

𝜕𝑝𝐷
𝜕𝑡𝐷

𝑑𝜏, (B.1)

where the time derivative 𝜕𝑝𝐷
𝜕𝑡𝐷

is given by

𝜕𝑝𝐷
𝜕𝑡𝐷

=
+∞
∑

𝑘=−∞

+∞
∑

𝑚=−∞

+∞
∑

𝑛=−∞

2
∑

𝑝=1

2
∑

𝑗=1

2
∑

𝑙=1

(−1)𝑙

8𝜋ℎ𝑤𝐷𝑡𝐷
⋅

⋅ exp

(

−
𝑟2𝐷𝑝𝑘,𝑗𝑚
4𝑡𝐷

)[

erf

(

𝑓+
𝑧,𝑙(𝑧𝐷)

2
√

𝑡𝐷

)

− erf

(

𝑓−
𝑧,𝑙(𝑧𝐷)

2
√

𝑡𝐷

)]

, (B.2)

with
𝑟2𝐷𝑝𝑘,𝑗𝑚 = (𝑥𝐷 + (−1)𝑝𝑥𝑤𝐷 − 2𝑘𝐿𝑥𝐷)2+

+ (𝑦𝐷 + (−1)𝑗𝑦𝑤𝐷 − 2𝑚𝐿𝑦𝐷)2,
(B.3)

𝑓+
𝑧,𝑙(𝑧𝐷) = 𝑧𝐷 + (−1)𝑙𝑧+𝑤𝐷 − 2𝑛𝐿𝑧𝐷, (B.4)
−
𝑧,𝑙(𝑧𝐷) = 𝑧𝐷 + (−1)𝑙𝑧−𝑤𝐷 − 2𝑛𝐿𝑧𝐷, (B.5)
+
𝑤𝐷 = 𝑧𝑤𝐷 + ℎ𝑤𝐷∕2, (B.6)
−
𝑤𝐷 = 𝑧𝑤𝐷 − ℎ𝑤𝐷∕2. (B.7)

y choosing an appropriate sorting order, Eq. (B.2) can be rewritten as
he single summation

𝜕𝑝𝐷
𝜕𝑡𝐷

=
∞
∑

𝑖=0

(−1)𝑙(𝑖)

8𝜋ℎ𝑤𝐷𝑡𝐷
exp

(

−
𝑟2𝐷𝑖
4𝑡𝐷

)

⋅

⋅

[

erf

(

𝑓+
𝑧,𝑙(𝑖)(𝑧𝐷)

2
√

𝑡𝐷

)

− erf

(

𝑓−
𝑧,𝑙(𝑖)(𝑧𝐷)

2
√

𝑡𝐷

)]

, (B.8)

where each index 𝑖 stands for a single combination of the original
multiple summations. But unlike the classical point-source (Eq. (A.4)),
creating a reordering criterion that adequately takes into account the
𝑧 direction is difficult. Moreover, the 𝜏 integral in Eq. (B.1) does not
have an analytical solution. Numerical integration was adopted for the
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w

𝐹

reference implementation of the present work, following the traditional
procedure of independent summation of each orthogonal direction.

Finally, as already described in Section 4.3.1, an approximate infi-
nite conductivity solution may be obtained by averaging Eqs. (B.1) and
(B.8) along the wellbore, which results in

𝑝𝑤𝐷(𝑥𝐷, 𝑦𝐷, 𝑡𝐷) = ∫

𝑡𝐷

0

𝜕𝑝𝑤𝐷
𝜕𝑡𝐷

𝑑𝜏, (B.9)

𝜕𝑝𝑤𝐷
𝜕𝑡𝐷

=
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𝑖=0

(−1)𝑙(𝑖)

8𝜋ℎ2𝑤𝐷𝑡𝐷
exp

(

−
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4𝑡𝐷

)

{
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𝑧,𝑙(𝑖)

(

𝑧+𝑤𝐷, 𝑡𝐷
)

−

−𝐹+
𝑧,𝑙(𝑖)

(

𝑧−𝑤𝐷, 𝑡𝐷
)

− 𝐹−
𝑧,𝑙(𝑖)

(

𝑧+𝑤𝐷, 𝑡𝐷
)

+ 𝐹−
𝑧,𝑙(𝑖)

(

𝑧−𝑤𝐷, 𝑡𝐷
)

}

. (B.10)

hich are no longer functions of 𝑧𝐷, and where

+
𝑧,𝑙(𝑧𝐷, 𝑡𝐷) = 2

√

𝑡𝐷
𝜋 exp

[

−
(

𝑓+𝑧,𝑙 (𝑧𝐷)

2
√

𝑡𝐷

)2
]

+ 𝑓+
𝑧,𝑙(𝑧𝐷) erf

(

𝑓+𝑧,𝑙 (𝑧𝐷)

2
√

𝑡𝐷

)

, (B.11)

𝐹−
𝑧,𝑙(𝑧𝐷, 𝑡𝐷) = 2

√

𝑡𝐷
𝜋 exp

[

−
(

𝑓−𝑧,𝑙 (𝑧𝐷)

2
√

𝑡𝐷

)2
]
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(

𝑓−𝑧,𝑙 (𝑧𝐷)

2
√

𝑡𝐷

)

. (B.12)
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