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The decay of quantum vortex rings in counterflow regimes, visualized in Helium II with the help of 
solid hydrogen particles trapped to their cores, has been a puzzling issue within the usual description of 
superfluid vortex dynamics, grounded on the hypothesis that a vortex filament is, effectively, an extended 
massless object subject to a canceling superposition of Magnus and mutual friction forces. We discuss, 
from a general energy-budget point of view, a phenomenological solution of this problem, which relies on 
viscous and quantum dissipation mechanisms, the later associated to the backreaction of vortex singular 
structures on the surrounding two-component fluid mixture.
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1. Introduction

Superfluid (quantum) vortices, conjectured by Onsager in 1949 
[1] and further discussed by Feynman a few years later [2], are 
well-defined flow structures, which have atomic-sized singular 
cores, and dynamical evolution ruled, in the zero temperature 
limit, by the classical Euler equation [3]. Due to macroscopic quan-
tum coherence, the circulation around superfluid vortices is quan-
tized in integer multiples of h/m (h is the Planck constant and 
m is the mass of the superfluid particle constituents). These topo-
logically stable excitations are assumed to play fundamental roles 
in the description of both equilibrium and out-of-equilibrium su-
perfluid phenomena. Actually, while the suppression of superfluid 
phase coherence near the critical temperature is related to the pro-
liferation of quantum vortex loops induced by thermal fluctuations 
[4,5], turbulence below the lambda point has been generally de-
picted as a complex tangle of superfluid vortices [6,7]. A proper 
modeling of quantum vortex evolution is thus believed to be the 
key for a phenomenological understanding of quantum turbulent 
regimes.

Even though objectively defined from the topological proper-
ties of the condensate wavefunction, and detected long ago by 
means of ingenious mechanical experiments [8,9], the direct ob-
servation of superfluid vortices has been a challenging task. The 
breakthrough experiments of Yarmchuk, Gordon and Packard [10]
provided clear visualizations of stationary arrays of He-II quan-
tum vortices in a rotating tank. However, their observation tech-
nique, based on electric discharges produced from electron bubbles 
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trapped in the vortex cores [11], where pressure is depleted, is not 
suitable for the investigation of evolving vortex filaments.

After a time gap of almost three decades, a turning point in the 
problem of quantum vortex visualization was reached through the 
use of micro-sized solid hydrogen or deuterium particles [12–14], 
which are often trapped in quantum vortex cores. This approach 
has paved the way for an ongoing wave of new experiments, as 
the visualization of vortices near the superfluid transition [12], the 
study of quantum vortex reconnection [15], the decay of quantum 
vortex rings [16] – our main focus in this work – and the obser-
vation of Kelvin waves in vortex filaments [17]. Interesting open 
challenges are furthermore related to the amount of dynamic in-
formation that one can obtain from the recorded trajectories of 
tracking particles in superfluid turbulent regimes [18–24].

The visualization of particle loaded vortices yields, furthermore, 
an interesting stage for the validation (or not) of the vortex line 
structural approach to quantum vortex dynamics pioneered by 
Schwarz [25], which stands at a central place in the literature. 
A careful experiment showed, in this context, that the application 
of the structural modeling framework to the decay of a quantum 
vortex ring decorated by attached solid microscopic particles is 
plagued with difficulties [16]. In that study, an estimate of the vor-
tex ring decay time scale was attempted, under the assumptions 
that

(i) the vortex ring core size should be modified by the presence of 
the attached particles,

(ii) the vortex filament should experience an additional drag force 
due to the presence of normal flow around the attached particles, 
and that
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(iii) the existing background counterflow should not affect the vor-
tex ring evolution.

While assumption (i) is perfectly reasonable, (ii) and (iii) are ad 
hoc hypotheses of difficult justification. Also, it turns out that even 
along these lines the predicted time evolution of the vortex ring 
radius does not accurately match observations.

A main point of criticism to the usual vortex line structural 
description is that it completely neglects backreaction effects of 
quantum vortex filaments on the surrounding normal component 
of the condensate. They are particularly relevant in situations 
where vortex reconnection events are assumed to play a signifi-
cant dynamical role [26,27]. One expects, actually, normal flow to 
be always induced by quantum vortex filaments. As a surprising il-
lustration of this fact, it has been suggested that superfluid vortex 
rings exhibit an interesting triple comoving flow structure com-
posed of two vortex rings of normal fluid coupled to the much 
thinner quantum vortex ring [28,29]. Our aim in this work is to 
show that similar backreaction effects offer a phenomenologically 
consistent and accurate solution of the vortex ring decay puzzle. 
Our discussion is based on a general energy-budget perspective, 
which bypasses specific modeling details and places emphasis on 
the role of normal viscous dissipation and normal/superfluid mu-
tual interaction effects.

This paper is organized as follows. In Sec. 2, we briefly review 
the basic ideas of the vortex line structural approach and point 
out modeling difficulties related to the phenomenon of particle-
decorated vortex ring decay. In sec. 3, we address a general phe-
nomenological discussion of the vortex ring evolution along energy 
budget lines, which takes into account the coupling between the 
superfluid and the normal components of the flow. We devise, 
in this way, a time evolution equation for the vortex ring radius 
which leads to a fine agreement with experimental data. Finally, 
we summarize, in Sec. 4, our results and indicate directions of fur-
ther research.

2. Structural modeling issues

The motion of a quantum vortex filament in a superfluid con-
densate which has assigned velocity fields vn(r, t) and vs(r, t) for 
its normal and superfluid components, respectively, is subject to 
Magnus and drag forces [3,25]. Thus, if a point P of the vortex fil-
ament where the local unit tangent vector is ω̂s (oriented along 
the vorticity field) moves with velocity vL , the Magnus and drag 
forces per unit length at P are, respectively,

FM = ρsκω̂s × (vL − vs) , (1)

FD = D Lω̂s × (vn − vL) + Dω̂s × [
ω̂s × (vL − vn)

]
, (2)

where ρs is the superfluid density, κ � 10−7 m2/s is the quantum 
of circulation, and D L and D are phenomenological drag coeffi-
cients that model the interaction between the normal and super-
fluid components of the condensate. Assuming that a quantum 
vortex filament has negligible inertia, we obtain

FM + FD = 0 , (3)

which in view of Eqs. (1) and (2) gives, for the vortex filament 
velocity [25],

vL = vs + αω̂s × (vn − vs) − α′ω̂s × [
ω̂s × (vn − vs)

]
, (4)

where

α ≡ ρsκ D

D2 + D2
0

and α′ ≡ 1 − ρsκ D0

D2 + D2
0

(5)

are the so-called mutual friction coefficients, with
2

D0 ≡ ρsκ − D L . (6)

Eq. (3) is a fundamental postulate in the structural description 
of the vortex line, to be regarded more as a working hypothe-
sis, rather than a well-established truth. The conjecture that vortex 
filaments are massless objects has been in fact the subject of rele-
vant questioning [30,31].

The decay of a decorated, fully-visualized, quantum vortex ring 
with initial radius R = 400 μm and lifetime of about 6 s, subject 
to an approximately uniform background counterflow of velocity 
�500 μm/s, was meticulously observed by Bewley and Sreenivasan 
[16]. The Bewley-Sreenivasan (BS) experiment was performed at 
the temperature T = 2.06 K, where the He-II mutual friction coef-
ficients are α � 0.37 and α′ � 3 × 10−3 [32].

Once Eqs. ((4)-(6)) are supposed to describe the evolution of 
vortex filaments, it is natural to presume, as a first modeling at-
tempt, that the decay of decorated vortex rings could be ruled by 
similar equations, with appropriate redefinitions of the drag co-
efficient parameters and a reasonable choice of the counterflow 
velocity field (which may be difficult to measure in practice). This 
is the point of view taken in Ref. [16], which we momentarily 
adopt for the sake of critical analysis.

In the particular situation of the BS experiment, the decaying 
vortex ring was not seen to rotate or to have its circular shape 
deformed during its evolution. It follows, then, as a consequence 
of Eq. (4), that vns = vn − vs should be a vector field normal to the 
vortex ring plane. Denoting by n̂ a unit vector which is parallel to 
the self-induced vortex ring translation velocity, we may write

vns ≡ vnsn̂ = (Uns − v◦
s )n̂ , (7)

where Uns is the approximately uniform background counterflow 
velocity and v◦

s > 0, with v◦
s � |Uns|, is the self-induced vortex 

ring velocity. Taking into account that α′ � 1 and that vs is also 
approximately uniform on the vortex ring filament, it is not diffi-
cult to get, from Eq. (4), the evolution equation for the vortex ring 
radius R ,

dR

dt
= α(Uns − v◦

s ) . (8)

Quantum vortex rings have hollow cores, where the superfluid 
condensate vanishes. For a core of radius rc � R , the self-induced 
vortex ring translation velocity is given by [33]

v◦
s = κ

4π R

[
ln

(
8R

rc

)
− 1

2

]
. (9)

The vortex ring core radius rc depends on the temperature. For 
temperatures close to 2 K, as reported in the BS experiment, we 
estimate rc � 10 Å [34].

Before proceeding with the application of (8) and (9) to the 
problem of decorated vortex ring decay, it is important to empha-
size a couple of related phenomenological points:

(i) Particles that are trapped to quantum vortices are constrained 
to passively follow their host vortex filaments. In fact, bouyant/pres-
sure forces or even forces associated to the normal component of 
the condensate, like the viscous drag, are negligible if compared 
to the strong restoring superfluid pressure forces that act on the 
particles near vortex cores.

(ii) Vortex filaments can be populated by a largely variable number 
of attached particles. We can distinguish two limiting cases in our 
analysis, related to sparse or dense vortex ring decorations, as it is 
illustrated in Fig. 1. These decoration regimes can be parametrized 
by the packing parameter

p ≡ Nrp
, (10)
π R
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Fig. 1. Sparse (a) and dense (b) particle decorations of quantum vortex rings. In 
the packed case (b) (only a vortex ring arc is depicted), the effective vortex core 
radius rc can be much larger than the vortex filament core radius. Note that these 
pictures are merely illustrative, since particles’ linear sizes are typically 103 − 104

times larger than the ones of vortex filament cores.

Fig. 2. Vortex ring radius as a function of time. Circles represent experimental data 
taken from Ref. [16]. Solid lines are the decaying profiles predicted from Eq. (11) for 
a set of counterflow velocities Uns: in μm/s, from the left to the right in the picture, 
Uns = 0, 150, 200, 230, 250.

where N is the number of attached particles and rp is their mean 
radius.

We examine, in the following, what the vortex line structural 
description would tell us about vortex ring decays for the p � 1
and p � 1 cases.

Sparsely decorated vortex rings (p � 1)

When the vortex ring filament is sparsely decorated, the back-
ground and self-induced superfluid flow velocity fields are only 
weakly perturbed by the attached particles, so that we just have 
to combine Eqs. (8) and (9) to define and numerically solve

dR

dt
= α

{
Uns − κ

4π R

[
ln

(
8R

rc

)
− 1

2

]}
. (11)

Results are shown in Fig. 2, for a number of counterflow velocities, 
together with a comparison to experimental data. As it gets clear, 
this modeling scenario is not satisfactory. Visual inspections sug-
gest, as a matter of fact, that the decaying vortex ring is densely 
decorated, the situation we examine now.

Densely decorated vortex rings (p � 1)

A densely packed group of particles provides some non-
negligible volume V◦ to the vortex ring core, which is conserved 
3

Fig. 3. Vortex ring radius as a function of time. Circles represent experimental data 
taken from Ref. [16]. Solid lines are the decaying profiles predicted from Eq. (14) for 
a set of counterflow velocities Uns: in μm/s, from the left to the right in the picture, 
Uns = −250, −120, −50, 0, 30.

along its decay. In this case, the vortex ring radius and its core 
radius are related through

r2
c = V◦

2π2 R
. (12)

This geometrical constraint implies that

R

rc
= cR

3
2 , (13)

where c = √
2π2/V◦ � π ×10−3 μm− 3

2 , as roughly estimated from 
snapshots of the decaying vortex ring [16].

It was hypothesized in Ref. [16] that the normal low Reynolds 
number flow around the observed densely decorated vortex ring 
could modify the drag coefficient parameter D in (5), rescaling the 
mutual friction coefficient α to the effective larger value α̃ = 1.3α. 
Replacing in Eq. (11) α by α̃ and R/rc by cR3/2, as prescribed in 
(13), we obtain

dR

dt
= α̃

{
Uns − κ

4π R

[
ln

(
8cR

3
2

)
− 1

2

]}
. (14)

Solutions of (14) for a set of background counterflow velocities 
are shown in Fig. 3. A reasonable approximation to the exper-
imental data seems to be achieved now up to the time instant 
where R � 150 μm. The agreement, however, is based on the as-
sumption of vanishing background counterflow, a condition of hard 
phenomenological support. We have also verified that solutions 
with alternative values of α̃/α, within acceptable ranges, do not 
improve results in a meaningful way.

The message we take from the above modeling attempts is that 
the usual structural vortex line approach – including slight formu-
lation variations – is not enough per se to reproduce the evolution 
of densely decorated quantum vortices. After all, this should not 
be a matter of great surprise. As it has been pointed out in the 
literature, the extension of Landau’s two-fluid model to cope with 
the existence of superfluid circulation, associated to correlated vor-
tex filament bundles [3] or even singular quantum vortices [28,29], 
implies that energy and momentum should be exchanged between 
the normal and superfluid components of the condensate, under-
lying the existence of yet unsuspected phenomena.

Given the complex (and dynamic) boundary conditions involved 
in the geometrical characterization of a densely packed vortex ring, 
direct numerical simulations of the coupled normal and superfluid 
flows would be extremely costly for this particular problem. We 
address in this work, instead, a heuristic strategy to devise the gen-
eral equation, in place of (11) or (14), that should rule the radius 



L. Moriconi Physics Letters A 404 (2021) 127409
evolution of densely decorated vortex rings. The argument, carried 
out in the next section, is essentially based on the energy balance 
equation derived from a two-fluid hydrodynamic model.

3. Energy-budget approach

Let ρn and μn be, respectively, the density and dynamic vis-
cosity of the normal component of the condensate. We take, as a 
model of Helium II hydrodynamics in the isothermal approxima-
tion, the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) coupled set of 
equations for the normal/superfluid mixture [26,29],

ρn (∂tvn + vn·∇vn) = −∇Pn + μn∇2vn + Fns , (15)

ρs (∂tvs + vs·∇vs) = −∇P s − Fns , (16)

supplemented by the double incompressibility condition,

∇·vs = ∇·vn = 0 . (17)

Above, Pn and P s are the partial pressures associated to the He-
lium II normal and superfluid components. In our specific problem, 
the force per unit volume, Fns , that the superfluid component ex-
erts on the normal one, is assumed to have singular support on the 
vortex filament pieces that hold the particles in the vortex ring 
(see again Fig. 1). Notice that the force density Fsn = −Fns can 
be readily computed from the substitution of (4) into (2), using 
(5) and the fact that the singular superfluid vorticity field ∇ × vs

can be represented in a small neighborhood of the vortex filament 
around its position rv as

ωs(rv + ξ) = κω̂sδ
2(ξ) , (18)

where ξ · ω̂s = 0. We obtain, thus,

Fns = αρsω̂s × [ωs × (vn − vs)] + α′ρsωs × (vn − vs) . (19)

It is important to remark that Eq. (19) holds for the vortex filament 
segments that bridge particles in the decorated vortex ring, as de-
picted in Fig. 1. These various vortex bridges are labeled henceforth 
by a given set of lines {Ci}. Furthermore, the vorticity field lines 
which are spread over the relatively large particle surfaces are not 
supposed to provide relevant contributions to the interaction force 
between the normal and superfluid flow components.

Direct numerical solutions of Eqs. (15) and (16) with the con-
straints (17) and the definition (19) are far from simple even for 
the case of bare vortex rings [28,29]. Considerable further compli-
cations are expected to arise in the case of decorated vortex fila-
ments, since one would have to worry about the implementation 
of dynamic boundary conditions and supplementary prescriptions 
related to vortex reconnection events.

It is interesting, therefore, to see how far we can proceed, hav-
ing focus on general properties of the dynamical equations (15)
and (16) and resorting as much as possible to a minimum num-
ber of phenomenological assumptions. To start, we write, inspired 
by the Reynolds decomposition procedure [35], the normal and su-
perfluid velocity fields as

vn = Un + un , vs = Us + us , (20)

where

∇ · us = ∇ · un = 0 . (21)

The velocity fields Un and Us , assumed to be time-independent 
and uniform, represent the background counterflow in the absence 
of quantum vortex filaments. The fields un and us are, on their 
turn, the velocity perturbations associated to the dynamic evolu-
tion of the decorated vortex ring. We, now,
4

(i) substitute (20) in Eqs. (15) and (16) and contract them with un
and us , respectively;

(ii) sum up the contracted equations and integrate the resulting 
scalar equation over all the space, taking (17) into account.

In this way, we find, up to second order in un and us , the 
energy-budget equation,

d

dt
(Es + En) =

= −μn

∫
d3rTr

[
(∇ ⊗ un)2

]
− αρsκ

∑
i

∫
Ci

ds(un − us)
2⊥ +

− αρsκ
∑

i

∫
Ci

ds(un − us)⊥ · (Un − Us)⊥ +

+ α′ρsκ
∑

i

∫
Ci

ds(un − us) · [ω̂s × (Un − Us)] , (22)

where the notation ⊥ indicates the vector component which is 
normal to ω̂s and

Es = 1

2
ρs

∫
d3r[us(r, t)]2 , (23)

En = 1

2
ρn

∫
d3r[un(r, t)]2 , (24)

are the superfluid and normal kinetic energy contributions related 
to the perturbation fields us and un .

Assuming that a quantum vortex ring of time-dependent radius 
R(t) is coupled to vortex ring-like normal flow structures at sim-
ilar length scales [28], it is not difficult to show, from the fluid 
dynamic Biot-Savart law [33], that at large distances (r � R) ve-
locity perturbations have the self-similar form

us(r, t) = κ

R(t)
u(0)

s (r/R(t)) , (25)

un(r, t) = κ

R(t)
u(0)

n (r/R(t)) , (26)

where u(0)
s (r/R(t)) and u(0)

s (r/R(t)) are dimensionless fields that 
depend on structural details of the normal and superfluid vortex 
rings (number of structures, relative positions, etc.). Eqs. (25) and 
(26) can be used to derive rough dimensional estimates of the sev-
eral contributions in (22). The superfluid kinetic energy (23), for 
instance, would be estimated as

Es = 1

2
ρsκ

2 R

∫
d3r[u(0)

s (r)]2 ∝ ρsκ
2 R . (27)

However, this estimate is found to lose accuracy for vortex rings 
which have their core radius rc much smaller than R . A better 
approximation is (hollow vortices) given as [33]

Es = 1

2
ρsκ

2 R

[
ln

(
8

e2

)
+ ln

(
R

rc

)]
. (28)

The above ln(R/rc) contribution comes essentially from the fast 
growth of the velocity field intensity and approximate axial sym-
metry near the cores of slender vortex ring filaments, the ones 
which have rc � R . An analogous log-correction term is observed 
for the vortex ring translation velocity, Eq. (9).

In order to cope with both the far and the near-core vortex ring 
field asymptotics, we put forward estimates for the various terms 
in (22) which contain, besides the predictions obtained from (25)
and (26), further log-correction contributions, having in mind that 
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the only relevant length scales in the system are R and rc . More 
concretely, we write

� En = ρsκ
2 R

[
a1 + a2 ln

(
R

rc

)]
, (29)

� μn

∫
d3rTr

[
(∇ ⊗ un)2

]
= ν

R
ρsκ

2
[

b1 + b2 ln

(
R

rc

)]
, (30)

� ρsκ
∑

i

∫
Ci

ds(un − us)
2⊥ = ν

R
ρsκ

2
[

c1 + c2 ln

(
R

rc

)]
, (31)

� ρsκ
∑

i

∫
Ci

ds {(un − us)⊥ · (Un − Us)⊥}

= Unsρsκ
2
[

d1 + d2 ln

(
R

rc

)]
, (32)

� ρsκ
∑

i

∫
Ci

ds(un − us) · [ω̂s × (Un − Us)]

= Unsρsκ
2
[

e1 + e2 ln

(
R

rc

)]
, (33)

where a1, a2, ..., e1, e2 are unknown dimensionless coefficients to 
be discussed in a moment and ν ≡ μn/ρn is the kinematic vis-
cosity of the normal fluid. The attentive reader will notice that 
in Eqs. (29) and (30), the estimates are expressed in terms of ρs

instead of ρn . Also, the apparently extraneous kinematic viscos-
ity prefactor ν comes into play in Eq. (31). We note, accordingly, 
that all of these definitions are actually just convenient ways to 
establish standardized estimates, which are in good terms with di-
mensional analysis principles.

The profusion of arbitrary coefficients in Eqs. ((29)-(33)) could 
induce one to think, in a first moment, that the energy-budget line 
of reasoning carried out so far has reached a hopeless dead end. 
However, there is an interesting phenomenological solution to this 
issue, based on the fact that as the superfluid vortex ring collapses 
and its energy (28) decays, all the terms in (22) concomitantly 
decay as well. It is reasonable to conjecture, thus, that all the un-
known coefficients in ((29)-(33)) have their ratios a1/a2, b1/b2, ..., 
e1/e2 approximately locked to the value prescribed by the known 
coefficients of (28). In more explicit terms, we postulate that

a1

a2
� b1

b2
� ... � e1

e2
� ln

(
8

e2

)
. (34)

Taking ((29)-(33)) and (34) into account (replacing approximations 
by equalities), it follows, from (22), that

dEs

dt
= −γ (R)Es , (35)

where, introducing a pair of dimensionless unknowns β1 and β2,

γ (R) ≡ β1
Uns

R
+ β2

ν

R2
. (36)

The coefficients β1 and β2, which are linear functions of a2, b2,..., 
e2, have now the status of the only two independent adjusting 
phenomenological parameters that are necessary to model the ra-
dius evolution of the decorated vortex ring decay.

The two terms in the RHS of the radius-dependent decay rate 
γ (R), Eq. (36), have appealing physical interpretations: energy can 
be removed from the coupled normal-superfluid vortex rings by 
background drag/Magnus forcing (decay rates ∝ Uns/R) combined 
with normal viscous dissipation and excitation of normal flow near 
the superfluid vortex ring (decay rates ∝ ν/R2).
5

Fig. 4. Vortex ring radius as a function of time. Circles represent experimental data 
taken from Ref. [16]. The solid line is obtained from the numerical solution of 
Eq. (38) with the optimal parameters β1 = 0.14 and β2 = 0.36 and initial condi-
tion R(0) = 400 μm.

As already discussed in Sec. 2, the vortex ring core radius is not 
constant, but it grows in time as the vortex ring decays, due to vol-
ume conservation. We revisit here the estimate of the parameter 
c, introduced in Eq. (13), under the light of the present discussion. 
For this sake, we assume that the asymptotic radius R∞ that char-
acterizes the complete collapse of the superfluid vortex ring is the 
one that leads to Es = 0 in (28), that is,

R∞
rc

= e2

8
. (37)

From the decay experiment data, one gets R∞ � 30 μm, which 
gives, from (13) and (37), c = 5.6 × 10−3 μm− 3

2 . For the kinematic 
viscosity of the normal component of Helium II we take, at the 
temperature of T = 2.06 K, ν = 1.08 × 10−8 m2/s [32]. The coun-
terflow velocity is estimated as Uns = 500 μm/s [16].

Using (13) and (28), the energy dissipation equation (35) can 
be reshuffled as

dR

dt
= −Rγ (R)

[
∂ ln(E)

∂ ln(R)

]−1

= −
(
β1Uns + β2

ν

R

)[
ln(8kR

3
2 ) − 2

ln(8kR
3
2 ) − 1

2

]
. (38)

An excellent fitting to the data (set by least squares regression) is 
shown in Fig. 4, produced from the numerical solution of (38) with 
β1 = 0.14 and β2 = 0.36.

It is worth mentioning that direct HVBK numerical simulations 
of bare vortex rings [29] were found to lead to similar linear time-
dependent decaying profiles for R(t). It is possible that the phe-
nomenological discussion addressed in this paper can be extended 
to the case of decaying vortex rings which are free of attached par-
ticles or sparsely decorated.

4. Conclusions

We have investigated, within an essentially phenomenological 
framework, the decay of densely decorated quantum vortex rings. 
Relying upon energy balance arguments, we have been able to ac-
curately reproduce the vortex ring radius measurements taken in 
the BS experiment [16]. It turns out that backreaction effects, mod-
eled through the HVBK coupled hydrodynamical equations [26,29], 
are a fundamental ingredient to quantify the exchange of kinetic 
energy between the superfluid vortex ring and its surrounding nor-
mal (viscous) fluid.
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The assumption that quantum vortices are massless is by no 
means obvious even at zero temperature, since quantum excita-
tions may play a role in processes associated to superfluid linear 
momentum variations. As a consequence, vortex filaments may 
interact and evolve in completely different ways as the ones pre-
dicted from the Schwarz’s structural approach [25].

It would be interesting to investigate, under the light of the 
present findings, the modifications that should be implemented in 
the standard structural description of vortex dynamics, as encoded 
in Eq. (3), so as to establish alternative ways to model quantum 
vortex motion. One gets back, in this connection, to the long-time 
debated topic of quantum vortex inertia [30,31].

In order to derive the radius evolution equation (38), we had 
to resort to simple and reasonable hypotheses, like (34), that could 
be validated through further numerical simulations of the HVBK 
equations. We do not mean necessarily the numerical study of 
particle-laden superflows, which may be too heavy for the anal-
ysis of realistic cases, but simplified numerical solutions where, as 
an effective boundary condition, the vortex ring core is prescribed 
to have a fixed volume as the vortex ring decays.
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