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Abstract This work deals with the mathematical modeling of the transient freezing process of a supercooled water
droplet in a cold air stream. The aim is to develop a simple yet accurate lumped-differential model for the energy
balance for a freely suspended water droplet undergoing solidification, that allows for cost effective computations
of the temperatures and freezing front evolution along the whole process. The complete freezing process was
described by four distinct stages, namely, supercooling, recalescence, solidification, and cooling. At each stage, the
Coupled Integral Equations Approach (CIEA) is employed, which reduces the partial differential equation for the
temperature distribution within the spherical droplet into coupled ordinary differential equations for dimensionless
boundary temperatures and the moving interface position. The resulting lumped-differential model is expected
to offer improved accuracy with respect to the classical lumped system analysis, since boundary conditions are
accounted for in the averaging process through Hermite approximations for integrals. The results of the CIEA
were verified using a recently advanced accurate hybrid numerical-analytical solution through the Generalized
Integral Transform Technique (GITT), for the full partial differential formulation, and comparisons with numerical
and experimental results from the literature. After verification and validation of the proposed model, a parametric
analysis is implemented, for different conditions of airflow velocity and droplet radius, which lead to variations
in the Biot numbers that allow to inspect for their influence on the accuracy of the improved lumped-differential
formulation.
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1 Introduction

Problems involving droplets solidification find application in diverse fields such as aerospace and aeronautics, elec-
tric power transmission, meteorology, refrigeration, and cryopreservation. Besides, the freezing time of supercooled
water droplets is an especially important parameter in the study of surface coatings to prevent ice and frost for-
mation on cold solid surfaces. The aeronautical industry is particularly affected due to the extreme environmental
conditions in which aircraft operate nowadays. In this sense, the mathematical modeling of the freezing mechanism
is particularly useful for proper design and satisfactory performance of “icephobic” surface modifications for aero-
nautical sensors and components [1–3]. Freezing of supercooled droplets, either suspended (or flowing) in a gaseous
environment or brought in contact with a cold substrate, has been studied before, and some of these previous works
are here reviewed [4–13]. The freezing process of a supercooled droplet can be described in four distinct stages.
Hindmarsh et al. [4] defined these stages as: (1) A supercooling stage, during which the liquid droplet is cooled from
an initial temperature to below the equilibrium freezing temperature until ice nucleation occurs; (2) A recalescence
stage, during which supercooling drives rapid kinetic crystal growth from the crystal nuclei. This stage results in
some heat release due to partial freezing of the droplet and its return to the equilibrium freezing temperature; (3)
The solidification stage, when freezing growth is governed by the heat transfer rate from the droplet to the point
where the droplet liquid is completely frozen; (4) cooling or tempering stage, when the solid droplet temperature
is reduced to the ambient air temperature.

A number of recent research efforts dealt with experimental investigations for supercooled droplet freezing,
and concentrated on developing theoretical models for this phenomenon and applying semi-analytical or numerical
techniques. For instance, Ruberto et al. [5] experimentally investigated freely suspended supercooled water droplets
by using a levitation technique, when a single droplet was trapped in a test chamber. The authors investigated droplet
sizes around 50 μm so as to approach the magnitude of droplet diameters appearing in clouds. The influence of the
relative humidity on the evaporation of supercooled water droplets was systematically investigated. The authors
observed in their experiment a linear relation between the evaporation rate and the relative humidity. Ruberto et
al. [6] extended their previous work and carried out a similar experimental study, but now comparing it to the
numerical solution of a proposed theoretical model. The numerical computations were performed with the in-house
Free Surface Code (FS3D), which is a DNS simulator based on the volume of fluid (VOF) method to solve the
incompressible Navier–Stokes equations. The simulation results for the influence of the relative humidity on the
evaporation of supercooled water droplets were in good agreement with the experiments for all three temperatures
considered. In Hindmarsh et al. [4], the solidification step was solved by considering it as Stefan’s two-phase problem.
Two different models were considered in relation to the internal temperature distribution within the droplets, one
considering the transient one-dimensional heat conduction, with moving boundary in the solidification stage, and
the other considering a lumped formulation in which the temperature of the droplets was assumed to be spatially
uniform, the authors also carried out an experimental study, considering a thermocouple inside the droplet, analyzing
this temperature variation and comparing the results with the numerical model. Among purely numerical works,
Feuillebois et al. [7] analyzed the freezing of liquid droplets exposed to cold air and subjected to supercooling,
based on Stefan’s one-phase problem formulation. The perturbation method was used to obtain the evolution of
the freezing front as a function of time, keeping the droplet surface temperature constant and equal to the external
environment temperature. The solution obtained through the perturbation method was compared to the solution
through a numerical method, showing good agreement between them except in the region close to the center of
the droplet, where the perturbation method deviated from the numerical approach. Tabakova et al. [8] extended
the work in [7] by considering heat convection at the droplet surface during the solidification stage of supercooled
water droplets also as a one-dimensional one-phase Stefan problem and employing a perturbation method. The
authors then suggested explicit correlations to estimate the freezing time based on their numerical results. Zhang et
al. [9] experimentally and numerically analyzed the freezing process of supercooled water droplets on cold plates.
Through image recognition techniques, the authors were able to inspect the behavior of the solidification front
and estimate the freezing time of the droplet on both hydrophilic and hydrophobic surfaces. In their simulation,
a VOF multiphase model coupled with the solidification/melting model in Fluent 14.0 was used to investigate
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the heat and mass transfer process during the droplet freezing. The evolution of the freezing front calculated by
the proposed model agreed reasonably well with the experimental observation. In addition, through the average
values of the freezing times obtained by the simulation, the authors developed a correlation to predict the freezing
time of supercooled droplets, which agreed with 90% of the simulation data and all the experiments within a
deviation margin of 25%. Chaudhary and Li [10] numerically and experimentally analyzed the four stages present
in the freezing process of a water droplet (supercooling, recalescence, freezing, cooling) on surfaces with different
wettability. The temperature evolution of the droplets was recorded using both intrusive and non-intrusive methods
to identify the processes involved in the cooling and phase change within the droplets. The proposed model was
written in terms of the enthalpy formulation. The numerical results of the freezing droplets temperature evolution
are compared to the experimental data, showing close agreement with the experimental freezing times. Sultana
et al. [11] numerically examined phase change of free-falling droplets in a sub-zero environment for droplets of
fresh and salt water. The model was based on the solution of the Navier–Stokes equations coupled with the VOF
methodology for tracking the droplet-air interface. They also analyzed the nucleation temperature for droplets of
different sizes, concluding that large-sized droplets had higher nucleation temperature than the smaller one and the
temperatures for the salty water droplet were always lower than the fresh water ones. In [12], the integral balance
method (IBM) was employed in combination with a VOF multiphase model for tracking the interface position, and
employed in the simulation of both freezing liquid films and droplets.

The employment of purely numerical approaches has allowed for the more computationally involved simulation
of such moving boundary problems governed by an increased number of parameters, but has also confirmed the
higher computational costs required for an error-controlled solution. In this context, a robust and cost-effective
hybrid numerical-analytical approach known as the Generalized Integral Transform Technique – GITT [14–16] has
been advanced in the analysis of supercooled water droplets freezing [13], based on previous hybrid implementations
for such class of moving boundary heat transfer problems [17–19]. Specifically, Carvalho et al. [13] employed the
GITT to accurately solve for the full freezing process, in all stages above described, following a more recent solution
alternative through the adoption of a nonlinear eigenvalue problem for the expansion base [20], due to the associated
nonlinear boundary conditions, leading to faster and more uniform convergence of the temperature distributions in
the freezing droplet. This solution provides a set of reference results for this nonlinear partial differential system,
with moderate computational costs.

Nevertheless, simplified reduced models are expected to be particularly useful in reducing computational costs and
analytical involvement, especially in connection with very computationally intensive tasks, such as in optimization
and inverse problem analysis, when the direct problem must be solved many times, or when populational dynamics
analysis and stochastic simulations are undertaken, requiring a large number of samples to be simulated. Therefore,
an improved lumping procedure, based on the so-called Coupled Integral Equations Approach (CIEA) [16,21–
25] is here employed as a formulation simplification technique for the present heat conduction problem with
moving boundaries. The resulting improved lumped-differential formulation offers substantial enhancement over
classical lumping schemes in terms of accuracy, without introducing additional complexity in the corresponding final
simplified differential equations to be handled. The CIEA formalism approximates integrals of the temperature and
heat flux profiles by a linear combination of the integrand and its derivatives at the integration limits, an idea originally
developed by Hermite [26] and employed by Cotta et al. [27] in approximately solving moving boundary problems.
This problem reformulation strategy has been applied to various thermal sciences and engineering problems such as
in fin analysis, conjugated problems, drying, channel flow, aerospace thermal protection system, membrane metals
extraction, nuclear fuel rods, heat exchangers, micro-reactors for biodiesel synthesis, nanocomposites, among
others, as recently reviewed in [25]. The GITT is a hybrid numerical-analytical methodology for solving the full
partial differential system for a distributed parameters formulation. As mentioned before, it has been advanced for
the present problem in [13] and is particularly suitable for benchmarking purposes, due to the automatic global
accuracy control that is inherent to its hybrid nature. On the other hand, the CIEA is not a solution methodology,
but rather a problem reformulation tool, which allows for partial lumping in one or more spatial coordinates, thus
providing model reduction alternatives to the classical lumped system analysis. It is a straightforward methodology
for model reduction and these two approaches can even be employed in combination, as illustrated in [24].
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The present work aims at advancing a lumped-differential reduced model for freezing of a supercooled droplet
suspended in a cold air stream and subject to the three main transport phenomena at the interface between the
droplet and the surroundings: convective heat transfer, convective mass transfer, and thermal radiation. The CIEA is
employed to transform the partial differential equations (PDE) formulation of the energy balance, into an ordinary
differential equations (ODEs) system for the boundary temperatures at each stage of the freezing process, and for
finding the position of the moving freezing interface during the solidification stage. The improved reduced model
is expected to extend the range of applicability of the lumping approach, in comparison to the classical lumped
system analysis, in terms of the main governing parameters. The resulting nonlinear ODEs model is solved using
the Mathematica® platform, Wolfram [28]. The transient boundary temperature distributions for each stage of
the process are obtained and analyzed in different scenarios. In addition, a critical analysis of the accuracy of the
results achieved via CIEA is undertaken through a comparison with the reference results obtained via GITT [13]
and against numerical/experimental results from the literature.

2 Problem formulation

In formulating the energy balance for the freezing of a suspended water droplet, the following assumptions are
made: (i) The droplet is suspended in air, subject to forced convection; (ii) The droplet keeps the same volume and
spherical shape all along the process; (iii) Heat transfer is assumed to be one-dimensional in the radial direction;
(iv) Ice and water are isotropic and homogeneous, with constant properties; (v) Density changes at the liquid/ice
interface are disregarded; (vi) In the recalescence stage, the droplet temperature will be considered uniform and
equal to the equilibrium temperature for freezing (Tf); (vii) In the solidification stage, the liquid phase temperature
is considered constant and equal to Tf , thus leading to a one-phase Stefan problem. Then, the mathematical models
for each of the four stages are written as summarized below and described in further details in the supplementary
information of [13].

2.1 Supercooling (1st) and cooling (4th) stages

The supercooling stage model involves the transient one-dimensional heat conduction equation in spherical coor-
dinates for a fixed domain, 0 < r < R, with nonlinear boundary condition that accounts for convective heat
transfer, convective mass transfer, and radiative heat transfer, as in [13]. This dimensional formulation is rewritten
in dimensionless form and transformed to Cartesian coordinates through a variable transformation [29], employing
the following dimensionless parameters:

θl,1 = Tl

T∞
, (1a)

θ∗
1 = xθl,1, (1b)

x = r

R
, (1c)

τ = klt

clρlR2 , (1d)

Bic,1 = hR

kl
, (1e)

Bim,1 = hmLeR ρv,o

klT∞
, (1f)

Bir,1 = εσT 3∞R

kl
, (1g)

θl,0 = T0

T∞
(1h)
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where, in Eqs, (1) above, Tl [K] is the tempurature of the liquid phase in the supercooling stage, kl [W/mK] is
the therml conductivity of the liquid phase, q[J/kgK] is the specific heat of the liquid phase, T0 [K] is the initial
air temperature, T∞[K] is the surrounding air tempurature, h [W/m2K] is the convection heat transfer coefficient,
hm [m/s] is the mass transfer coefficient, ρv,0 [kg/m3] is the vapor density at the droplet at the droplet surface,
ρv,∞ [kg/m3] is the vapor density in the air, ρ [kg/m3] is the water density in the liquid phase, ε is the emissivity
of the droplet surface, σ [W/m2K4] is the Stefan-Boltmann constant,Le [J/kg] is the latent heat of evaporation,
R[m] is the droplet radius, r [m] is the droplet radial coordinate, and t[s] is the time. The resulting dimensionless
formulation is then written as:

∂2θ∗
1 (x, τ )

∂x2 = ∂θ∗
1 (x, τ )

∂τ
; 0 < x < 1, 0 < τ < τ1; (2)

θ∗
1 (x, 0) = xθ1,0; (3)

θ∗
1 (0, τ ) = 0; (4)

∂θ∗
1 (x, τ )

∂x

∣
∣
∣
∣
x=1

+ B1
(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ) = H1; (5)

where

B1
(

θ∗
l (1, τ )

) = Bic,1 + Bir,1θ
∗3
l (1, τ ) + ρv,l

(

θ∗
l (1, τ )

)

ρv,0
Bim,1 − 1; (6)

H1 = Bic,1 + Bir,1 + ρv,∞
ρv,0

Bim,1. (7)

where x is the dimensionless spacae variable, T is the dimensionless time variable, and θ∗(x, t) is the dimensionless
temperature in cartesian coordinates. Eq. (2), τ1 is the dimensionless time when the droplet reaches the nucleation
temperature, and in Eqs. (6)–(7), Bic,1, Bim,1, Bir,1, are, respectively, the characteristic Biot numbers for convective
heat transfer, for mass transfer and for radiative heat transfer. Bic,1 in particular represents a measure of the ratio of
the convective and conductive heat fluxes at the droplet surface and it is an important governing parameter for this
application; furthermore, its analysis is important for the application of CIEA, and this aspect is discussed in Sect.
4. The other Biot numbers similarly compare other transport mechanisms with respect to conductive (diffusive)
transport.

The cooling stage model is similar to the model presented above, but in this case the thermophysical properties of
the liquid must be replaced by the solid phase properties. Furthermore, the initial temperature needs to be changed
to the spatially varying temperature obtained at the end of the third stage and the latent heat of evaporation should
be replaced by the latent heat of sublimation. The correlations for water vapor density for liquid and solid droplets,
used in modelling supercooling and cooling stages, respectively, are presented in Sect. 2.4.

2.2 Recalescence (2nd) stage

For the recalescence 2nd stage, differential equations are not required in the present model. Once nucleation occurs,
it is necessary to locate the ice crystals initially formed. Two hypotheses were formulated by Hindmarsh et al. [4], the
first is that the nucleation initially occurs at the outer surface of the droplet, which is normally colder than the inside
of the droplet and thus first reaches the nucleation temperature. This leads to the formation of a spherical shell of ice
which propagates inward over time. The second hypothesis, considers that nucleation occurs homogeneously, with
crystals uniformly dispersed throughout the droplet, forming a liquid–solid mixture with an opaque appearance.
The recalescence model is based on the premise that the heat required to raise the droplet temperature from Tn

(nucleation temperature) to Tf , must be equal to the latent heat released to form the volume of ice formed. This can
be expressed as [4]

Vice = Vdpclρl(Tf − Tn)

L ρice
, (8)
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where L[J/kg] is the latent heat of solidification, Tn[K] is the nucleation temperature, Vice [m3] is the volume of ice,
and Vdp [m3] is the volume of the droplet.

For the hypothesis of a spherical shell at the surface, the final position of the interface (Rini), which is the initial
position of the moving boundary in the next stage (solidification), is obtained by considering the shell volume, to
yield

Rini = 3

√

R3 − 3Vice

4π
. (9)

For the second hypothesis, a water–ice mixture can be considered as a uniform phase, homogeneously distributed
throughout the droplet; however, the latent heat should be substituted by a new value corresponding to the water–ice
mixture:

Lx = L [1 − clρl(Tf − Tn)/L ρice] . (10)

2.3 Solidification (3rd) stage

The solidification stage model involves the transient one-dimensional heat conduction equation in spherical coor-
dinates for a time-varying domain, s(t) < r < R where s(t) [m] is the freezing front position, again with nonlinear
boundary condition at the fixed boundary that accounts for convective heat transfer, convective mass transfer, and
radiative heat transfer, and prescribed temperature, Tf , at the moving boundary position, as in [13]. Once more,
the equations are rewritten in dimensionless form and transformed to Cartesian coordinates through a variable
transformation [29].

For this 3rd stage, the following dimensionless parameters are used:

θice,3 = Tice − Tf

T∞ − Tf
, (11a)

θ∗
3 = (1 − x)θice,3, (11b)

x = 1 − r

R
, (11c)

τ = kicet

ciceρiceR2 , (11d)

Bic,3 = hR

kice
, (11e)

Bim,3 = hmLsbR ρv,0

kice(T∞ − Tf)
, (11f)

Bi r,3 = εσT 3
f R

kice
, (11g)

β = T∞ − Tf

Tf
, (11h)

v(τ) = s(τ )/R, (11i)

η(τ) = 1 − v(τ), (11j)

St = cice
Tf − T∞

L
, (11k)

where St is the Stefan number, Tice [K] is the temperature of the ice phase in the supercooling stage, kice[W/mK] is
the thermal conductivity of the ice phase, cice[J/kgK] is the specific heat of the ice phase, ρice[kg/m3] is the water
density of the ice phase, and Ls[J/kg] is the latent heat of sublimation,. The resulting dimensionless mathematical
formulation for the solidification stage becomes:

∂2θ∗
3 (x, τ )

∂x2 = ∂θ∗
3 (x, τ )

∂τ
; 0 < x < η(τ), τ2 < τ < τ3; (12)
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θ∗
3 (x, τ2) = 0; (13)

θ∗
3 (η(τ ), τ ) = 0; (14)

−∂θ∗
3 (x, τ )

∂x

∣
∣
∣
∣
x=0

+ B3
(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ ) = H3. (15)

In Eq. (12), τ1 ∼= τ2, and τ2 is the dimensionless time value after completion of the recalescence phase, and τ3 is
the dimensionless time value when the solidification stage ends.

The dimensionless moving boundary differential equations, for each hypothesis of ice formation during recales-
cence, are given by

∂θ∗
3 (x, τ )

∂x

∣
∣
∣
∣
x=η(τ)

= − 1

St
(1 − η(τ))

dη (τ)

dτ
, (16a)

η(τ2) = 1 − Rini

R
, (16b)

∂θ∗
3 (x, τ )

∂x

∣
∣
∣
∣
x=η(τ)

= − Lx

L

1

St
(1 − η(τ))

dη (τ)

dτ
, (17a)

η(τ2) = 0, (17b)

and

B3
(

θ∗
3 (0, τ )

) = Bic,3 + 4Bir,3

[

1 + βθ∗
3 (0, τ ) + β2θ∗2

3 (0, τ )

2

] [

1 + βθ∗
3 (0, τ )

2

]

+ρv,ice (θice (0, τ ))

ρv,0
Bim,3 − 1, (18)

H3 = Bic,3 − Bir,3

(

1 − T 4∞
T 4

f

)

1

β
+ ρv,∞

ρv,0
Bim,3. (19)

where ρv,ice [kg/m3] is the water vapour density at the solid droplet surface.

2.4 Correlations

Murphy and Kopp [30] present a literature review of correlations for saturated water vapor pressure as a function
of temperature. Among these, the correlation of Bohren and Albrechet [31] was chosen in the present work. Thus,
the equations for ρv,l, ρv,ice, ρv,∞ in terms of the dimensionless temperature for water in liquid and solid states are
shown below, where RH is the relative humidity in the air:

ρv,l
(

θ∗
1

) = 1.323

T∞θ∗2
1 (1, τ )

exp

(

19.83 − 5417

T∞θ∗
1 (1, τ )

)

, (20)

ρv,ice
(

θ∗
3

) = 1.323

((T∞ − Tf)θ
∗
3 (x, T ) + Tf)θ

∗
3 (x, T )

exp

(

22.49 − 6141

(T∞ − Tf)θ
∗
3 (x, T ) + Tf

)

, (21)

ρv,∞ = RH

[
1.323

T∞
exp

(

19.83 − 5417

T∞

)]

for droplet in liquid phase, (22)

ρv,∞ = RH

[
1.323

T∞
exp

(

22.49 − 6141

T∞

)]

for droplet in solid phase. (23)

For the calculation of the convective heat (h) and mass (hm) transfer coefficients, correlations for the Nusselt
and Sherwood numbers were taken from Beard [32]:

Nu = 1.56 + 0.616(Re1/2)(Pr1/3), (24)
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Sh = 1.56 + 0.616(Re1/2)(Sc1/3), (25)

where Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, Sh is the Sherwood number,
and Sc is the Schmidt number, defined as

Nu = 2h R

k∞
, (26a)

Re = 2Rρ∞v

μ∞
, (26b)

Pr = μ∞
ρ∞α∞

, (26c)

Sh = 2hmR

Dab
, (26d)

Sc = μ∞
ρ∞Dab

, (26e)

where Dab [m2 s−1] is the vapour-air diffusivity, k∞ [W/(m K)] is the air thermal conductivity, v [m s−1] is the air
velocity, ρ∞ [kg m−3] is the density of air, μ∞ [N s m−2] is the dynamic viscosity of air, and α∞ [m2 s−1] is the
thermal diffusivity of air.

3 Model reduction: coupled integral equations approach

The CIEA reformulation methodology [20–25] is now applied to the above dimensionless equations. Different levels
of approximation in such mixed lumped-differential formulations can be used, starting from the plain and classical
lumped system analysis to improved formulations, which are obtained through Hermite-type approximations for
integrals [25–27] that are based on the values of the integrand and its derivatives at the integration limits. In the
present work, we consider just the two more usual approximations, H0,0 and H1,1, which correspond to the classical
trapezoidal and corrected trapezoidal rules, given by

H0,0 →
∫ h

0
y(x)dx ∼=h

2
[y(0) + y(h)] ; (27)

H1,1 →
∫ h

0
y(x)dx ∼=h

2
[y(0) + y(h)] + h2

12

[

y′(0) − y′(h)
]

. (28)

These two approximations for integrals can be employed in either the average dimensionless temperature or average
heat flux (temperature derivative) definitions, and lead to different final expressions with improved accuracy com-
pared to the classical lumped system approach. The final expressions for the reduced model obtained from the CIEA
implementation are consolidated in the next sections for each stage of the freezing process and for each proposed
approximation, H0,0/H0,0 or H1,1/H0,0, where the first symbol represents the formula employed to approximate
the auxiliary average temperature, while the second one corresponds to the formula that approximates the average
temperature derivative. The aim here is to reach a reduced model of similar simplicity as the classical lumped system
analysis, but with an improved accuracy, thus extending the range of parameters for which the simplified analysis
is still applicable. The classical lumped system would essentially be reproduced by adopting a rectangle integration
rule, since the average potential would just be made equal to the boundary value in this case. Through CIEA, using
either the H0,0/H0,0 or the H1,1/H0,0 approximations, a reduced model as simple as that for the classical lumping is
achieved, but already with considerable accuracy improvement, in particular when the corrected trapezoidal rule is
employed since further information on the temperature derivatives at the boundary are incorporated into the reduced
model. In previous papers [20–25,27], it has been clarified that the Biot number values are essential in defining the
precision of the approximations, within specified ranges of these parameters, with the H1,1/H0,0 approximation
offering improved results compared to the lower order H0,0/H0,0 approximation. The Hermite integration formulae
[26] are much more general, and provide integration rules of higher orders, which can offer further improvement
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in terms of accuracy to the reduced models. However, a price needs to be paid in terms of adding more dependent
variables to the lumped formulation, such as additional boundary temperatures and derivatives.

3.1 1st stage: CIEA H0,0/H0,0

Firstly, the spatially averaged dimensionless temperature is recalled as

θav,1 (τ ) =
∫ 1

0
θ∗

1 (x, τ ) dx . (29)

It should be noted that the above definition corresponds to an averaging of the temperature transformed to the
Cartesian coordinates system, and thus does not correspond to the actual physical average temperature within the
droplet. The same averaging process is applied to Eq. (2) through the operator

∫ 1
0 dx , and after recalling the above

definition of the average dimensionless temperature, we obtain

∂θ∗
1

∂x

∣
∣
∣
∣
x=1

− ∂θ∗
1

∂x

∣
∣
∣
∣
x=0

= dθav,1 (τ )

dτ
. (30)

Equation (27) is now employed to approximate both the average temperature and the average temperature derivative
based on the Hermite-type approximation for integrals [20,25], here named the H0,0/H0,0 approximation, in the
form
∫ 1

0
θ∗

1 (x, τ )dx ≡ θav,1(τ ) ∼= 1

2

[

θ∗
1 (1, τ ) + θ∗

1 (0, τ )
]

, (31)

∫ 1

0

∂θ∗
1 (x, τ )

∂x
dx ≡ θ∗

1 (1, τ ) − θ∗
1 (0, τ ) ∼= 1

2

[
∂θ∗

1

∂x

∣
∣
∣
∣
x=1

+ ∂θ∗
1

∂x

∣
∣
∣
∣
x=0

]

. (32)

The boundary conditions, Eqs. (4)–(5), are substituted into Eqs. (31), (32), to yield

θ∗
1 (1, τ ) = 2θav,1 (τ ). (33)

∂θ∗
1

∂x

∣
∣
∣
∣
x=0

= 2θ∗
1 (1, τ ) − H1 + B1

(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ) . (34)

Substituting Eqs. (33), (34) into Eq. (30) leads to the improved lumped-differential formulation for the average
dimensionless temperature within the droplet along the 1st stage:

dθav,1 (τ )

dτ
= −4θav,1 (τ ) + 2H1 − 4B1

(

θ∗
1 (1, τ )

)

θav,1 (τ ) . (35)

In order to avoid working with the averaged dimensionless temperature differential formulation above, which is
essentially an auxiliary dependent variable, one may alternatively obtain the differential equation for the dimension-
less temperature at the boundary surface θ∗

1 (1, τ ), followed by the expression for the dimensionless temperature at
the droplet center θ∗

1 (0, τ ). Thus, substituting Eq. (33) into Eq. (35), and invoking Eq. (1a), we obtain

dθ∗
1 (1, τ )

dτ
= −4θ∗

1 (1, τ ) + 4H1 − 4B1
(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ) , 0 < τ < τ1, (36a)

θ∗
1 (1, 0) = θ1,0, (36b)

where

B1
(

θ∗
1 (1, τ )

) = Bic,1 + Bir,1
[

θ∗
1 (1, τ )

]3 + ρv,l
(

θ∗
1 (1, τ )

)

ρv,0
Bim,1 − 1, (36c)

while the dimensionless temperature at the droplet center is obtained from

θl,1(0, τ ) = 2θ∗
1 (1, τ ) − H1 + B1

(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ) , (36d)

with

θl,1(1, τ ) = θ∗
1 (1, τ ). (36e)
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3.2 3rd stage: CIEA H0,0/H0,0

For the solidification stage, the spatially averaged dimensionless temperature is defined as

θav,3 (τ ) = 1

η(τ)

∫ η(τ)

0
θ∗

3 (x, τ ) dx . (37)

To simplify the manipulations that follow, the average dimensionless temperature is written in terms of the auxiliary
dependent variable, θ̂av,3 (τ ):

θav,3 (τ ) = θ̂av,3 (τ )

η(τ )
, (38a)

θ̂av,3 (τ ) =
∫ η(τ)

0
θ∗

3 (x, τ ) dx . (38b)

Following the same averaging procedure, the operator
∫ η(τ)

0 dx , is applied over Eq. (12), and Leibniz rule for
differentiation of integrals is recalled in the form

dθ̂av,3 (τ )

dτ
= d

dτ

[
∫ η(τ)

0
θ∗

3 (x, τ ) dx

]

=
∫ η(τ)

0

∂θ∗
3 (x, τ )

∂τ
dx − dη (τ)

dτ
θ∗

3 (η (τ ) , τ ) , (39)

which can be simplified since θice (η (τ ) , τ ) ≡ 0, to yield

∂θ∗
3

∂x

∣
∣
∣
∣
x=η(τ)

− ∂θ∗
3

∂x

∣
∣
∣
∣
x=0

= dθ̂av,3 (τ )

dτ
. (40)

The H0,0/H0,0 approximation for the solidification stage is proposed as
∫ η(τ)

0
θ∗

3 (x, τ )dx ≡ θ̂av,3(τ ) ∼= η(τ)

2

[

θ∗
3 (η(τ ), τ ) + θ∗

3 (0, τ )
]

, (41)

∫ η(τ)

0

∂θ∗
3 (x, τ )

∂x
dx ≡ θ∗

3 (η(τ ), τ ) − θ∗
3 (0, τ ) ∼= η(τ)

2

[

∂θ∗
3

∂x

∣
∣
∣
∣
x=0

+ ∂θ∗
3

∂x

∣
∣
∣
∣
x=η(τ)

]

. (42)

Applying Eq. (14) into Eq. (41), the following relation between θ∗
3 (0, τ ) and θ̂av,3 (τ ) is obtained:

θ∗
3 (0, τ ) ∼= 2θ̂av,3(τ )

η(τ )
= 2θav,3(τ ). (43)

Substituting the boundary conditions, Eqs. (14), (15) into Eq. (42), one finds

∂θ∗
3

∂x

∣
∣
∣
∣
x=η(τ)

= −2θ∗
3 (0, τ )

η(τ )
+ H3 − B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ ). (44)

So, combining the equations above, the following equation is obtained:

dθ̂av,3 (τ )

dτ
= −2θ∗

3 (0, τ )

η (τ )
+ 2H3 − 2B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ ), τ > τ2. (45)

Again, to avoid working with the auxiliary variable, the same procedure as in Sect. 3.1 is applied, substituting Eq.
(43) into Eq. (45), and thus obtain the differential formulation for the dimensionless temperature, θ∗

3 (0, τ ), in the
form:

η(τ)
dθ∗

3 (0, τ )

dτ
+ θ∗

3 (0, τ )
dη(τ)

dτ
= −4

[
θ∗

3 (0, τ )

η(τ )
+ B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ ) − H3

]

, τ2 < τ < τ3, (46a)

θ∗
3 (0, τ2) = 0, (46b)

where

B3
(

θ∗
3 (0, τ )

) = Bic,3 + 4Bir,3

[

1 + βθ∗
3 (0, τ ) + β2

(

θ∗
3 (0, τ )

)2

2

] [

1 + βθ∗
3 (0, τ )

2

]
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+ρv,ice
(

θ∗
3 (0, τ )

)

ρv,0
Bim,3 − 1. (46c)

θ∗
3 (0, τ ) is given in terms of the auxiliary potential by Eq. (43), while θice,3(0, τ ) is the actual dimensionless

temperature, as given by Eq. (11a).
The improved lumped-differential formulation is then completed with the dimensionless moving boundary

position differential equations, for each hypothesis of ice formation during recalescence, Eqs. (16a, 16b) or (17a,

17b), after substitution of Eq. (44) for the temperature derivative at the moving interface, ∂θice
∂x

∣
∣
∣
x=η(τ)

:

dη (τ)

dτ
= St

(1 − η(τ))

[
2θ∗

3 (0, τ )

η(τ )
− H3 + B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ )

]

, (47a)

η(τ2) = 1 − Rini

R
, (47b)

dη (τ)

dτ
= L

Lx

St

(1 − η(τ))

[
2 θ∗

3 (0, τ )

η(τ )
− H3 + B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ )

]

, (48a)

η(τ2) = 0. (48b)

3.3 4th stage: CIEA H0,0/H0,0

In the fourth stage, the procedure is similar to that presented in the first stage, taking into account the changes in
the mathematical model described at the end of Sect. 2.1.

3.4 1st stage: CIEA H1,1/H0,0

Again for the first stage, but now a higher order approximation is proposed, thus the H1,1/H0,0 approximation of
the average dimensionless temperature and temperature derivative is written as

∫ 1

0
θ∗

1 (x, τ )dx ≡ θav,1(τ )
∼= 1

2

[

θ∗
1 (1, τ ) + θ∗

1 (0, τ )
] + 1

12

[
∂θ∗

1

∂x

∣
∣
∣
∣
x=0

− ∂θ∗
1

∂x

∣
∣
∣
∣
x=1

]

, (49)

∫ 1

0

∂θ∗
1 (x, τ )

∂x
dx ≡ θ∗

1 (1, τ ) − θ∗
1 (0, τ ) ∼= 1

2

[
∂θ∗

1

∂x

∣
∣
∣
∣
x=1

+ ∂θ∗
1

∂x

∣
∣
∣
∣
x=0

]

, (50)

where the corrected trapezoidal rule is adopted in approximating the average dimensionless temperature, while
the plain trapezoidal rule is again used for the average dimensionless temperature derivative. The procedure is
essentially the same as for the previous approximation, except for the relation between the boundary and average
temperatures, θl(1, τ ) and θav,1(τ ), now obtained from Eqs. (49), (50) and the boundary conditions, Eqs. (4)–(5),
as

4θ∗
1 (1, τ ) + B1

(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ) − H1 − 6θav,1(τ ) = 0. (51)

Thus, the improved formulation obtained through the H1,1/H0,0 approximation is given by

dθav,1 (τ )

dτ
= −2θ∗

1 (1, τ ) + 2H1 − 2B1
(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ). (52)

As before, avoiding the auxiliary averaged temperature and rewritting the formulation for the boundary temperatures
at the surface and at the center of the droplet, we obtain

∂θ∗
1 (1, τ )

∂τ
+ B1(θ

∗
1 (1, τ ))

4

∂θ∗
1 (1, τ )

∂τ
+ θ∗

1 (1, τ )

4

∂B1(θ
∗
1 (1, τ ))

∂τ

= −3
[

θ∗
1 (1, τ ) − H1 + B1(θ

∗
1 (1, τ ))θ∗

1 (1, τ )
]

, 0 < τ < τ1, (53a)
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θ∗
1 (1, 0) = θ1,0, (53b)

where

B1
(

θ∗
1 (1, τ )

) = Bic,1 + Bir,1
[

θ∗
1 (1, τ )

]3 + ρv,l
(

θ∗
1 (1, τ )

)

ρv,0
Bim,1 − 1, (53c)

while the dimensionless temperature at the droplet center θl,1(0, τ ) is obtained similarly as presented in Eq. (36d),
but now with the corrected expression for θ∗

1 (1, τ ) provided by Eq. (53a), as

θl,1(0, τ ) = 2θ∗
1 (1, τ ) − H1 + B1

(

θ∗
1 (1, τ )

)

θ∗
1 (1, τ ) , (53d)

θl,1(1, τ ) = θ∗
1 (1, τ ). (53e)

3.5 3rd Stage: CIEA H1,1/H0,0

The trapezoidal and corrected trapezoidal integration rules for the H1,1/H0,0 formulation in the 3rd stage are applied
to the integrated dimensionless temperature and its derivative, as before, in the form
∫ η(τ)

0
θ∗

3 (x, τ )dx ≡ θ̂av,3 (τ ) ∼= η(τ)

2

[

θ∗
3 (η(τ ), τ ) + θ∗

3 (0, τ )
] + η(τ)2

12

[

∂θ∗
3

∂x

∣
∣
∣
∣
x=0

− ∂θ∗
3

∂x

∣
∣
∣
∣
x=η(τ)

]

, (54)

∫ η(τ)

0

∂θ∗
3 (x, τ )

∂x
dx ≡ θ∗

3 (η(τ ), τ ) − θ∗
3 (0, τ ) ∼= η(τ)

2

[

∂θ∗
3

∂x

∣
∣
∣
∣
x=η(τ)

+ ∂θ∗
3

∂x

∣
∣
∣
∣
x=0

]

, (55)

The same basic steps are followed as for the model reduction through the previously adopted H0,0/H0,0 approxima-
tion. However, the new relation between θ∗

3 (0, τ ) and θ̂av,3 (τ ) is obtained here employing the boundary conditions,
Eqs. (14), (15), substituted into Eqs. (54), (55), to yield

4η(τ)θ∗
3 (0, τ ) + B3

(

θ∗
3 (0, τ )

)

η(τ)2θ∗
3 (0, τ ) − 6θ̂av,3(τ ) − η(τ)2H3 = 0. (56)

Then, the following equation is obtained:

dθ̂av,3 (τ )

dτ
= −2θ∗

3 (0, τ )

η(τ )
+ 2H3 − 2B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ ), (57)

and rewritting the reduced model in terms of the droplet boundary temperature, as before, the model is redefined
as
[

4η(τ) + B3(θ
∗
3 (0, τ ))η(τ )2

] ∂θ∗
3 (0, τ )

∂τ
+ θ∗

3 (0, τ )
∂

∂τ

[

4η(τ) + B3(θ
∗
3 (0, τ ))η(τ )2

]

−2η(τ)H3
dη(τ)

dτ
= −12

[
θ∗

3 (0, τ )

η(τ )
+ B3(θ

∗
3 (0, τ ))θ∗

3 (0, τ ) − H1

]

, τ2 < τ < τ3, (58a)

θ∗
3 (0, τ2) = 0, (58b)

where

B3
(

θ∗
3 (0, τ )

) = Bic,3 + 4Bir,3

[

1 + βθ∗
3 (0, τ ) + β2

(

θ∗
3 (0, τ )

)2

2

] [

1 + βθ∗
3 (0, τ )

2

]

+ρv,ice
(

θ∗
3 (0, τ )

)

ρv,0
Bim,3 − 1. (58c)

The improved lumped-differential formulation is then completed with the differential equations for the dimensionless
moving boundary position, for each hypothesis of ice formation during recalescence, Eqs. (16a, 16b) or (17a, 17b),

after substitution of the temperature derivative at the moving interface, ∂θice
∂x

∣
∣
∣
x=η(τ)

. These equations are similar to
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Eqs. (47) and (48), where the main difference is that the information about θ∗
3 (0, τ ) is now provided by Eq. (58a),

in the form

dη (τ)

dτ
= St

(1 − η(τ))

[
2θ∗

3 (0, τ )

η(τ )
− H3 + B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ )

]

, (59a)

η(τ2) = 1 − Rini

R
, (59b)

dη (τ)

dτ
= L

Lx

St

(1 − η(τ))

[
2 θ∗

3 (0, τ )

η(τ )
− H3 + B3

(

θ∗
3 (0, τ )

)

θ∗
3 (0, τ )

]

, (60a)

η(τ2) = 0. (60b)

3.6 4th stage: CIEA H1,1/H0,0

As discussed in Sect. 3.3, in the fourth stage, the procedure is similar to that presented in the first stage.

4 Results and discussion

The derivation of the reduced models and the numerical solution of the resulting ODEs as obtained by the CIEA, for
both the H0,0/H0,0 and the H1,1/H0,0 approximations, are solved through a symbolic-numerical code built on the
Wolfram Mathematica® platform [28]. Before presenting results of a parametric analysis for the freezing process, it
is essential to verify and validate the present model reduction approach. First, comparisons for different values of the
Biot number (Bi) for heat transfer and of the Stefan number (St) are presented showing the solutions via GITT (full
PDEs model), CIEA with H1,1/H0,0, and CIEA with H0,0/H0,0 approximations. For the GITT, the eigenfunction
expansion truncation order was taken as M = 40 for all the presented results, following the convergence analysis
provided in [13]. More information on the GITT formalism can be found in [14,15]. Second, the reduced model
results were critically compared against experimental results for freezing water droplets. For suspended particles,
the experiments of Hindmarsh et al. [4] provide the most relevant set of results, which has been the preferred one
in validations of distributed or lumped models. As mentioned before, the experiments of Hindmarsh et al. [4] will
be shown to lead to Biot number values around 0.1 or less, and the improved lumped formulations are expected to
have good accuracy at such values. Nevertheless, the reduced model was also challenged to reproduce the GITT
benchmark results for much higher values of Biot number, even up to 10 (two orders of magnitude larger than
the experimental value). Such higher values of Biot would require larger droplet diameters and higher velocities
(thus higher heat transfer coefficients) to occur, more typical of in-flight icing applications. To our knowledge,
experimental values on a single droplet freezing behavior are not readily available in the open literature for such
cases. The present reduced model is then subjected to a parametric analysis, for a typical droplet freezing process,
by varying the radius of the droplet and the airflow velocity, which essentially affect the Biot number values.

4.1 Biot number variation

The Biot number for heat transfer represents a measure of the ratio of the convective and conductive heat fluxes at the
droplet surface and it is an important governing parameter for this application. As the Biot number is defined in terms
of the ratio “hR/k” the size of the droplet and the stage/phase may cause variations in its value, markedly influencing
the freezing time of the droplet. A few values of Bic,1 were chosen, covering a fairly wide range for the application,
to explore the limits of applicability and to demonstrate the accuracy of the CIEA. To achieve this objective, results
obtained by CIEA are compared against those for the full partial differential model, Eqs. (2)–(5), obtained by the
GITT hybrid approach in [13]. Figure 1a–d presents as comparison of the dimensionless boundary temperature
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evolution for the first stage, θl,1(1, τ), for increasing values of the Biot number at the surface of the water droplet,
namely Bic,1 = 0.1, 1.0, 5.0, 10.0, as computed from the improved lumped-differential formulations (H0,0/H0,0

and H1,1/H0,0) and from the full model by GITT (M = 40), with τ ranging from 0 to τ1 for the supercooling (1st)

stage. It should be noted that the end of the 1st stage (i.e. when the droplet reaches the nucleation temperature) will
be different for each value of Bic,1 and is also different for each approximation. As will be seen in Sect. 4.3, the
Biot numbers for the experiment of Hindmarsh et al. [4] are around 0.1. On the other hand, from previous works
on the CIEA, it is known that the classical lumped system analysis loses accuracy considerably for Biot numbers
greater than about 0.1, while the improved lumping here proposed can still offer good accuracy for higher values of
this parameter. Therefore, the above Biot number values of 0.1, 1, 5 and 10, up to two orders of magnitude larger
than the ones typical of the considered experiment, were chosen to analyze the results and challenge the model
reduction methodology. These values were defined arbitrarily, knowing that lower Biot number values lead to more
uniform temperature profiles, thus favoring the lumping approach accuracy. For the lower Biot number, represented
by Fig. 1a, Bic,1 = 0.1, the two lumped formulations do not show a marked difference between them, and both
are fairly accurate approximations to the partial differential formulation results (GITT). For low Biot numbers
(e.g., Bic,1 = 0.1) the water droplet has approximately uniform temperature fields along its radius, favoring the
application of such lumping schemes. The classical lumped system analysis essentially equates the boundary and
average temperature values and would still provide reasonable results for such lower values of Bic,1. On the other
hand, the CIEA seeks to obtain an improved relation between the boundary and average temperatures, through the
application of Eqs. (27)–(28) into the lumped form of Eqs. (2)–(5), and the greater the order of the formulation
(H1,1/H0,0 is of higher order than H0,0/H0,0), the more accurate the results are expected to be, as can be confirmed
from Fig. 1. As the Biot number increases, the deviations between the H1,1/H0,0 and H0,0/H0,0 formulations
become more evident, and their respective deviations to the GITT, become more noticeable. For the case with
Bic,1 = 1.0 (Fig. 1b), the H0,0/H0,0 is still reasonable, while better accuracy of the H1,1/H0,0 formulation begins
to be apparent, when compared to the benchmark GITT results. In the last cases of higher Biot number values,
when Bic,1 = 5.0 and 10.0, Fig. 1c, d, the fact that the H0,0/H0,0 approximation is indeed less accurate is clearly
noticeable, including the marked deviations in the prediction of the recalescence stage onset. On the other hand, the
H1,1/H0,0 model remains reasonably accurate in relation to the GITT solution and can be used as a reliable reduced
model for this problem, even within this fairly wide range of Biot number. It is clear from Eqs. (36a) and (53a) that
the formulation H1,1/H0,0 carries more information about the problem than the H0,0/H0,0 approximation, and the
correction of the average temperature approximation with the aid of the temperature derivatives at the boundaries
is essential to this improved behavior. As will be seen in Sect. 4.3, the higher values of Biot adopted in these
comparisons are not actually typical of this application, but allowed us to establish the applicability range in terms
of this important parameter, for the enhanced lumping procedure here proposed.

4.2 Biot number and Stefan number variations

The Stefan number (St) is the characteristic dimensionless parameter encountered in phase change problems. It is
defined as the ratio of the magnitudes of sensible and latent heats exchanged by the system. Figure 2a–f illustrates
the effect of varying Bic,3 and St on the third stage (solidification), based on the hypothesis 2 (Eqs. (17a), (17b)),
through the evolution of the dimensionless position of the freezing front v(τ) = s(τ )/R (Eq. (11) i), Fig. 2a, c,
e), and the dimensionless temperature, θice,3(0, τ ), Fig. 2b, d, f. Furthermore, it should be noted that the different
starting time values of the initial conditions observed in Fig. 2 are caused by the differences in prediction of the end
of the first stage between the approximate and full formulations. The parameters considered are Bic,3 = 0.1, 1.0,
and 5, and St = 0.11, 0.15, 0.20. For each Biot number, results from the H1,1/H0,0 and H0,0/H0,0 approximations
are again compared against the GITT results (M = 40). The value of St = 0.11 was chosen as a base case since
it corresponds to the value employed in Hindmarsh et al. [4], while larger values, St = 0.15 and 0.20, were also
considered to analyze the Stefan number influence on the freezing time. The higher values of St, for fixed values of
the other parameters, should lead to faster freezing front advancement. For the lower Biot number (Bic,3 = 0.1),
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(a)

(c)

(b)

(d)

Fig. 1 Transient behavior of the dimensionless droplet surface temperature for the supercooling (1st) stage at four different values
of Biot number: a Bic,1 = 0.1, b Bic,1 = 1.0, c Bic,1 = 5.0, d Bic,1 = 10.0, Bim,1 = Bir,1 = 0, T0 = 2T∞, T∞ = 254.13 K,
Tn = 254.75 K, computed by GITT (truncation order M = 40), CIEA H0,0/H0,0, and CIEA H1,1/H0,0

Fig. 2a, b, both the dimensionless position of the freezing front and the dimensionless central temperature in the third
stage, as obtained from either the H1,1/H0,0 or the H0,0/H0,0 approximations, are in good agreement with the GITT
solution, throughout the solidification process. With respect to the Stefan number variation, the results from the
improved lumped models remain fairly adherent to the GITT solution for the three different chosen St values. The
increase in St (from 0.11 to 0.20) represents a relative increase in sensible heat transfer in comparison to latent heat
exchange, therefore one may expect a more significant variation of temperatures during the phase change process
and, as expected and confirmed by the graphical results, droplets under higher St freeze more quickly. This analysis
is essential in processes in which the temperature gradients need to be monitored, because the constitution of the
formed solid is affected by the magnitude of the temperature gradient [4]. This effect is quite relevant in different
applications in the pharmaceutical, food and metallurgical industries. Figure 2c, d and e, f captures the evolution of
the freezing front position and the droplet central temperature at higher Biot numbers (Bic,3 = 1.0 and Bic,3 = 5.0,
respectively), i.e. when we should expect temperature spatial variations inside the droplet to be more significant.
As expected, with increase in Bic,3, one can observe an increasing deviation of the CIEA predicted freezing front
positions from the GITT solution, especially as the end of the solidification process is approached. This deviation is
present regardless of the Stefan number value in the analyzed range. It can be noticed that the freezing front velocity,
represented by the time derivative of the front position in Fig. 2 increases markedly as the end of the solidification
is approached. On the other hand, according to Eq. (17a, 17b), this velocity is directly proportional to the spatial
derivative of the temperature at the interface, which is in fact approximated by the lumped-differential formulations.
Therefore, even a relatively small error in this quantity may induce a significant variation on the prediction of the
final solidification time, as can be observed in Fig. 2c, e, though less noticeably in the dimensionless temperature
predictions. The droplet central temperatures from the improved lumped formulation remains fairly accurate, but
reach their final values at the slightly different values of final solidification time, as discussed above. As expected,
the freezing process duration is noticeably linked to the Biot number and Stefan number values and it is much more
rapid for both larger Bic,3 and St .
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 2 Comparison of GITT solution and CIEA lumped-differential formulations for the dimensionless position of the freezing front
and for the dimensionless droplet center temperature in the solidification stage: a and b Bic,3 = 0.1, c and d Bic,3 = 1.0, and e and f
Bic,3 = 5.0, Bim,3 = Bir,3 = 0

4.3 Application in supercooled droplet freezing

The present methodology is now employed in a typical situation of supercooled droplet freezing. For comparison
purposes, the same parameters as reported in the experimental-theoretical work in [4] are here adopted. Table 1
summarizes the input data. Figure 3 shows a comparison of the experimental results from Hindmarsh et al. [4]
with the present study for the evolution of the dimensionless droplet center temperature in the super-cooling (1st)
(Fig. 3a) and cooling (4th) (Fig. 3b) stages, as measured from a thermocouple that also holds the droplet. The results
via both the CIEA H1,1/H0,0 formulation and the GITT benchmark agree quite well with those experimentally
obtained in Hindmarsh et al. [4], to within 1% relative deviation along the transient, offering an important validation
of the present model.

4.3.1 Recalescence stage

As explained above, it was assumed that the recalescence stage occurs instantly, and therefore the application of
either CIEA or GITT is not necessary. However, Rini and φ are parameters that need to be calculated to provide
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Table 1 Properties and input data from Hindmarsh et al. [4] (Properties of water and ice were evaluated at 273.13 K, and of air were
evaluated at 254.13 K)

Variable Values Variable Values Variable Values

Dab[m2 s−1] 2.060 × 10−5 ρl [kg m−3] 1000 L [J kg−1] 3.33 × 105

cl [J/kg K] 4217 ρice [kg m−3] 920 Le [J kg−1] 2.502 × 106

cice [J/kg K] 2040 ρv,0 [kg m−3] 4.8473 × 10−3 Lsb [J kg−1] 2.838 × 106

k∞ [J/ms K] 0.0234 ρ∞ [kg m−3 ] 1.3317 ε 0.96

kl [J/ms K] 0.569 σ [W/m2K4] 5.670 ×10−8 μ∞ [Ns m−2] 1.663 ×10−5

kice [J/ms K] 1.88 v [m/s] 0.42

Dimensionless groups

Phase Bic Bim Bir

Liquid 0.114 0.0046 0.0012

Ice 0.035 0.019 0.00046

(a) (b)

Fig. 3 Comparison of the dimensionless central temperature within a water droplet during a the super-cooling (1st) and b the cooling
(4th) stages, for the proposed approaches (GITT and CIEA) and experimental data from Hindmarsh et al. [4] (T∞ = 254.13 K,
Tn = 254.75 K)

the initial data for the simulation of the solidification stage. Applying the values of physical properties presented
in Table 1 and other input data from [4], it is then obtained φ = 0.7385, Rini = 0.758 mm, for hypothesis 1, and
Vice = 0.16 mm3, Lx = 2.6 × 106 J kg−1, for hypothesis 2.

4.3.2 Solidification stage and parametric analysis

The dimensionless position of the freezing front was computed considering the two hypotheses in Sect. 2.3, through
both the full and reduced models (PDE/GITT and ODE/CIEA H1,1/H0,0). For the two hypotheses, the dimensionless
positions of the freezing front (CIEA solution) are in good agreement with the GITT solution for the solidification
process (3rd stage), as can be seen in Fig. 4. Besides, the results obtained for both recalescence models were fairly
close, with the freezing time for hypothesis 1 being shorter than the freezing time for hypothesis 2.

Variations on the airflow velocity (“v”) and on the water droplet radius (“R”), for the same case represented
by the input data in Table 1, are now analyzed. These variations directly affect important dimensionless numbers,
being accounted for within the correlations for Nusselt and Sherwood numbers, and thus directly influencing the
Biot numbers for heat and mass transfer. The chosen cases to describe the variations in the airflow velocity and in
the water droplet radius are shown in Table 2, together with the corresponding values of the dimensionless numbers.
Figure 5a–d shows the results of the proposed parametric study for the solidification (3rd) stage, through the time
behaviors of the dimensionless central temperature and the dimensionless position of the freezing front, v(τ). As
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Fig. 4 Comparison of
GITT solution for full
partial differential model
and CIEA
lumped-differential
formulation (H1,1/H0,0) for
the dimensionless position
of the freezing front along
solidification stage, via the
two hypotheses for the
recalescence period,
St = 0.11

Table 2 Chosen cases for parametric study and resulting values of the model dimensionless parameters

Parameters Dimensionless parameters
R (mm) v (m/s) Re Nu Sh Bic,1 Bir,1

0.49 0.42 32.95 4.729 4.55 0.097 0.00077

Bim,1 Bic,3 Bir,3 Bim,3

0.00393 0.0294 0.000289 0.0159

R (mm) v (m s−1) Re Nu Sh Bic,1 Bir,1

0.78 0.42 52.45 5.558 5.33 0.1142 0.00122

Bim,1 Bic,3 Bir,3 Bim,3

0.0046 0.0346 0.00046 0.0186

R (mm) v (m s−1) Re Nu Sh Bic,1 Bir,1

0.78 0.70 87.42 6.722 6.434 0.138 0.00122

Bim,1 Bic,3 Bir,3 Bim,3

0.0056 0.0418 0.00046 0.0225

R (mm) v (m s−1) Re Nu Sh Bic,1 Bir,1

0.78 0.97 121.14 7.636 7.298 0.157 0.0012

Bim,1 Bic,3 Bir,3 Bim,3

0.0063 0.047 0.00046 0.0225

can be seen from Table 2, an increase on the airflow velocity from 0.42 to 0.97 m/s corresponds to a significant
variation in the main dimensionless parameters for the freezing model, since such an increase on the Sherwood and
Nusselt numbers represents a marked effect on mass and heat transfer by convection in the system, respectively.
Moreover, it can be observed that the Biot numbers remain with low values, clearly within the range previously
analyzed that warrant a fairly accurate CIEA reduced model. The results show, as expected, that droplets under
higher airflow velocities and of smaller radius, freeze more quickly, while the present reduced model methodology
provides a fairly accurate and quite unexpensive way of estimating the total freezing time and the evolution of the
moving boundary. In the typical range of parameters for this application, the CIEA results for the solidification stage
also provide excellent predictions of the dimensionless central temperatures when compared to the GITT reference
results.

5 Conclusion

A theoretical analysis was performed on the freezing of a supercooled water droplet, including all the stages
of the process (supercooling, recalescence, solidification, and cooling). The energy balance for each stage was
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(a)

(c) (d)

(b)

Fig. 5 Influence of airflow velocity and droplet radius on the dimensionless position of the freezing front and on the dimensionless
central droplet temperature: GITT (M = 40) and CIEA (H1,1/H0,0), St = 0.11

reformulated by the Coupled Integral Equations Approach (CIEA), which is a tool for generating improved lumped-
differential formulations in diffusion and convection-diffusion problems. Thus, the original partial differential model
for heat transfer with phase change was reduced to ordinary differential models at each stage of the process, in
terms of the dimensionless droplet temperatures at the boundaries and, when applicable, also the dimensionless
position of the freezing front. The numerical solution of the two proposed CIEA formulations (H0,0/H0,0 and
H1,1/H0,0 approximations) of improved accuracy orders with respect to the classical lumped system analysis, were
critically compared with a precision-controlled hybrid numerical-analytical solution of the full partial differential
model, based on the Generalized Integral Transform Technique (GITT). Results for the dimensionless boundary
temperatures and freezing front position along the transient freezing process were then analyzed in terms of the Biot
numbers, exploring the limiting range for the enhanced lumping procedure here proposed. It can be concluded that
at low values of the Biot number for heat transfer (Bic < 1) both CIEA approximations, H0,0/H0,0 and H1,1/H0,0,
work well for the present application, but when the Biot number value increases much further, especially the
lower order approximation shows noticeable deviations. In parallel, such approximations were validated against
experimental results in the literature for an actual application of water droplet freezing, with excellent agreement.
A comparison was provided involving two different hypotheses for modelling the recalescence stage, which define
the initial conditions for the solidification stage. Finally, a parametric analysis was performed for the freezing stage,
varying the values of airflow velocity and droplet radius, within typical ranges of the related application, showing
that for larger droplets, the freezing time is longer and, that the greater the air flow velocity, faster will be the
droplet freezing process. This analysis provides confidence in employing the advanced Coupled Integral Equations
Approach as an effective model reduction tool to simulate the transient behavior along the entire freezing process
of a supercooled spherical droplet. The CIEA is a fairly general problem reformulation approach and, in principle,
more involved mathematical models could still be considered incorporating further physical effects. Nevertheless,
the comparisons with experimental results have demonstrated that the present model is sufficiently complete to
recover the actual physical behavior for the present situation and in the range of parameters considered. It is also
expected to provide affordable and reasonably accurate simulations for more complex situations, such as in the
analysis of droplet sizes distributions or droplets in contact with a substrate.
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