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We discuss the role of particular velocity field configurations – instantons, for short – which are supposed 
to dominate the flow during the occurrence of extreme turbulent circulation events. Instanton equations, 
devised for the stochastic hydrodynamic setup of homogeneous and isotropic turbulence, are applied to 
the interpretation of direct numerical simulation results. We are able in this way to model the time 
evolution of extreme circulation events for a broad range of scales, through the combined use of eddy 
viscosity phenomenology and exact creeping instantons. While this approach works well for the core of 
circulation instantons, it fails to describe their tails. In order to overcome this difficulty, we put forward 
a numerical treatment of the axisymmetric instanton equations. Circulation instantons are then found to 
have a surprising topological structure, which consists of a system of paired counter-rotating vortex rings 
centered around the symmetry axis of a background axisymmetric vortical flow.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Predicting extreme events is a fundamental problem in completely distinct domains of science and technology, as in astrophysics 
[1,2], climatology [3,4], wind power generation [5], and a further broad list of other important contemporary fields such as finance [6], 
meteorology [7,8] and seismology [9]. Extreme events often take place in relatively very short time scales, but their consequences can be 
perennially disastrous as in the case of earthquakes, hurricanes and financial market crashes.

Navier-Stokes dynamics, our specific focus in this work, is a particularly interesting instance for the study of extreme events. The 
formation of intense energy-carrying localized structures in turbulent flows is a fingerprint of the non-local and nonlinear aspects of the 
underlying equations of motion. Fast spatial variations of the dissipation field or of the entangled system of vortex tubes which confine 
strong vorticity [10,11] are, however, difficult to observe, and decades went by until it was realized that the self-similar cascade picture 
of turbulence, originally proposed by Kolmogorov (K41) [12], should be revised to include the existence of such extreme events. As it 
is well known, the predicted K41 scaling exponents for the statistical moments of velocity differences fail to reproduce the respective 
numerically and experimentally measured values [13–15] at high moment orders. Commonly understood as an important feature of 
the intermittency phenomenon [11,12], these deviations of the K41 scaling exponents have been accurately obtained through multifractal 
formulations [16–21], but more fundamental derivations are still in order.

A systematic analytical strategy to address the problem of intermittent velocity fluctuations was initially introduced in the framework 
of Burgers turbulence [22]. Asymptotic results were found for the right tail of the velocity gradient probability distribution functions [23], 
based on the steepest-descent approximation as implemented in the Martin-Siggia-Rose-Janssen-de-Dominicis [24–26] (MSRJD) functional 
formalism. Subsequent theoretical and numerical efforts have been made to describe the left tail of Burgers velocity gradient and velocity 
difference PDFs [27–31]. Despite the relevant progress achieved for the Burgers and effective Lagragian turbulent models [32–35], the 
description of intermittency in three-dimensional turbulence is still very open to investigation along the lines of the MSRJD approach.

In this work, we use the MSRJD functional formalism to study the scaling properties of velocity circulation in three-dimensional 
homogeneous and isotropic turbulence, motivated by the fact that velocity circulation fluctuations are known to provide clear signatures 
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of turbulence intermittency [36–39]. Velocity circulation is a natural tool to probe localized vortex structures, which contain most of the 
turbulent kinetic energy in high Reynolds number flows [11,12]. The first formally structured attempt to explore velocity circulation as 
the main actor of turbulent fluctuations dates back to 1994 [37]. Promising results about the circulation probability distribution functions 
(cPDFs) were then advanced, but further developments and validation studies faced serious obstacles in the following years, due to 
computational limitations. More recently, once hardware shortcomings were overcome, the subject of circulation statistics was vigorously 
revisited under the light of much improved high-resolution simulations, not only in classical [40,41] but also in quantum turbulence 
[42,43]. Interesting perspectives on the multifractal and structural views of classical turbulence cascades have been put forward since then 
[20,21,44,45].

Throughout our considerations, the circulation variable is defined as

�R =
˛

CR

vidxi =
¨

DR

ωidAi , (1.1)

where DR is a circular domain of radius R and CR is the circular contour that encloses DR . The fields vi and ωi are, respectively, 
the velocity and vorticity fields related through ωi = εi jk∂ j vk (we use Einstein notation for the summation over repeated indices, unless 
explicitly stated). We are interested in discussing velocity field configurations – instantons, for short – which are associated to extreme 
circulation events, that is, large deviations of �R . On one front of analysis, we model them as exact creeping flow structures [46] related 
to turbulent eddy-viscosity [47] time scales. The approach proves to be phenomenologically meaningful, once we validate it by means of 
extensive turbulence databases. On another front, we numerically solve the axisymmetric nonlinear instanton equations, to find that the 
circulation instantons have a remarkable topological structure described by the superposition of two counter-rotating vortex rings that 
share the same symmetry axis and carry opposite helicity in the presence of a background axial vorticity field.

This paper is organized as follows. Sec. 2 briefly reviews the main technical aspects of the MSRJD functional formalism. We, then, obtain 
closed analytical solutions for the circulation instantons in the viscous limit of the Navier-Stokes equations and show their somewhat 
unexpected usefulness to model the time evolution of extreme circulation events, from the analysis of direct numerical simulation (DNS) 
data. The nonlinear instanton equations are introduced in Sec. 3, and their numerical solutions are carefully discussed, with emphasis 
placed on the qualitative differences between them and the creeping solutions derived in Sec. 2. Finally, in Sec. 4, we summarize our 
findings and indicate directions of further research.

2. The functional approach and creeping instantons

2.1. MSRJD formalism

Many physical systems which exhibit extreme events among their dynamical states are suitable for the application of large deviation 
techniques [48–50]. It is often possible to address in these cases the MSRJD methodology [24–26], where one typically deals with dif-
ferential equations that lead to solutions – the so-called instantons – which dominate the probability distribution tails that describe the 
occurrence of extreme events.

We are interested in applying these ideas to three-dimensional turbulence in its stochastic hydrodynamics formulation [51]. The 
stochastic incompressible Navier-Stokes equations are written as

∂t vi + v j∂ j vi − ν∂2 vi = −∂i P + f i , (2.1)

∂i vi = 0 , (2.2)

where vi = vi(�x, t) is the velocity field, P = P (�x, t) is the pressure field ensuring the incompressibility constraint (Eq. (2.2)), ν is the 
kinematic viscosity, and f i = f i(�x, t) is a zero-average Gaussian random field used to model large-scale forcing, correlated as

〈 f i(�x, t) f j(�x′, t′)〉 = δi jχ(�x − �x′)δ(t − t′) . (2.3)

The exact form of χ(�x − �x′) is not phenomenologically relevant insofar as its correlation length L is much larger than the investigated 
length scales. Assuming homogeneity and isotropy, the correlation kernel χ(�x − �x′) depends only on |�x − �x′| and is parametrized by its 
amplitude D0 = χ(�0) and its correlation length L, which can be conveniently defined as L2 = χ(0)/χ ′′(0).

In our particular application of the MSRJD formalism, we deal with a functional measure which is path-integrated over vi(�x, t) and an 
auxiliary field pi(�x, t) [52,53]. Lagrange multipliers Q (�x, t) and λ are also introduced, to ensure incompressibility and to fix the circulation 
�R at a given time instant, respectively. More concretely, the cPDF is evaluated in the MSRJD formalism as

ρ(�R) =
〈
δ

⎛
⎝�R −

˛

C

vi(�x,0)dxi

⎞
⎠〉

=

= N−1
ˆ

D[�v]D[P ]D[�p]D[Q ]
∞̂

−∞
dλ exp

{
− S[�v, P , �p, Q , λ]

g2

}
, (2.4)

where the pseudo-statistical weight (it is a complex number) contributions for ρ(�R ) are given as the exponential of the MSRJD action, 
S[�v, P , �p, Q , λ], specified below, and N is an unimportant normalization constant (to be suppressed hereafter). A single dimensionless 
parameter g2 = χ(�0)L4ν−3 can be factored out from the action and its role is to control the noise strength and to set what should be 
considered an extreme event: these are the ones associated to MSRJD actions which are much larger than g2.
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The above functional integration represents the probability density functional to find velocity circulation �R as defined in Eq. (1.1), at 
a particular time instant, namely t = 0, due to the cumulative effect of forcing since the remote past, say t → −∞. All fields are assumed 
to vanish in the remote past. Moreover, instantons are restricted to t < 0, such that auxiliary fields are imposed to vanish at t → 0+ as a 
boundary condition [28]. Measuring length in units of L and time in units of the viscous time scale

τν = L2

ν
, (2.5)

a dimensionless form of the MSRJD action can be written as

S̃[�v, P , �p, Q , λ] = −1

2

ˆ
d3xd3x′dt pi(�x, t)χ̃ (�x − �x′)pi(�x′, t) +

ˆ
d3xdt Q ∂i vi+

+
ˆ

d3xdt pi(∂t vi + v j∂ j vi + ∂i P − ∂2 vi) − λ

⎛
⎜⎝�R/L −

˛

CR/L

dxi vi(�x, t = 0)

⎞
⎟⎠ , (2.6)

where, now, χ̃ (�x − �x′) is the force-force correlator with unit correlation length. The connection between g and the Reynolds number Re is 
made by the assumption that a well defined inertial range develops when the dissipation length ηK = (ν3/χ(�0))1/4 is much smaller than 
the correlation length L. Since the characteristic velocity scale is U = (χ(�0)L)1/3, we obtain, as a consequence, that Re = U L/ν = g2/3.

Instantons correspond to the extrema of the MSRJD action and are assumed to provide, from Eq. (2.4), the dominant saddle-point 
contributions in the path-integral evaluation of extreme event probabilities. They are found as solutions of the variational principle δ S̃ = 0, 
which amounts here to the instanton equations,

(∂t − ∂2)vi + v j∂ j vi + ∂i P =
ˆ

d3x′ pi(�x′, t)χ̃ (�x − �x′) , (2.7)

(∂t + ∂2)pi + v j∂ j pi + v j∂i p j + ∂i Q = λδ(t)

˛

CR/L

dx′
iδ

3(�x − �x′) , (2.8)

subject to the constraints,

∂i vi = 0 , ∂i pi = 0 , (2.9)

�R/L =
˛

CR/L

dx′
i vi(x′, t = 0) . (2.10)

By solving the above equations, one gets asymptotic expressions for the cPDF tails, from the mapping of the values of the Lagrange 
multiplier λ to the final velocity circulation �R/L[�v(λ)]. The instanton calculus yields, in this way,

ρ(�R/L) 	 C exp

[
− 1

g2
S̃c(λ)

]
(2.11)

as an asymptotic approximation that holds for g 
 S̃c(λ), where λ = λ(�R/L) and C is a normalization constant. A more mathematically 
rigorous discussion of the arguments leading to results which are analogous to (2.11) is the essential subject of large deviation theory 
[54]. As a direct consequence of the Gärtner-Ellis theorem, a probability density function necessarily follows the Large Deviation Principe
(Eq. (2.11), in our case) if the associated action is strictly convex and the map between λ and the observable of interest is differentiable 
for an arbitrary λ. Non-convex actions or ill-defined λ-maps can be nevertheless adapted to large deviation evaluations through the use 
of alternative integration measures [55].

2.2. Creeping instantons and Eddy viscous modeling

Instanton equations are rarely amenable to analytical treatment without the help of phenomenological or empirical inputs about the 
underlying dynamics. Approximate solutions of (2.7)-(2.10) and of analogous magnetohydrodynamic equations were formerly carried out 
under restrictive assumptions about the roles of symmetries and the strain rate field [56,57]. Somewhat surprisingly, as we will discuss in 
the following, interesting information on extreme events can be obtained from the exact form of viscous (creeping) instantons.

To work out the creeping instantons, we introduce the diffusion Green’s function with vanishing boundary condition in R3,

G(�x, t) = 1

(4π |t|)− 3
2

exp

(
−|�x|2

4|t|
)

. (2.12)

Neglecting the nonlinear terms in Eqs. (2.7)-(2.10), the velocity and the conjugate solutions read

v(1)
i (�x, t) =

tˆ

−∞
dt′

ˆ
d3x′d3x′′G(�x − �x′, t − t′)χ̃ (�x′ − �x′′)p(1)

i (�x′′, t′) , (2.13)

p(1)
i (�x, t) = λ

˛

C

dx′′
i

0ˆ

t

dt′
ˆ

d3x′G(�x − �x′, t − t′)δ(t′)δ3(�x′ − �x′′) . (2.14)
R/L

3
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The MSRJD action, Eq. (2.6), additionally reduces to

S(1)
0 [vi, pi] = λ

2g2

ˆ

CR/L

dxi v(1)
i (�x,0) = λ�

(1)
R/L(λ)

2g2
. (2.15)

Defining, at this point, the explicit form of the force-force correlator as

χ̃ (�x − �x′) = 1

(2π)3/2
exp

(
−|�x − �x′|2

2

)
, (2.16)

we obtain from (2.13) and (2.14) the creeping instanton solution by setting x3 to be perpendicular to the contour CR/L

v(1)
i (�x, t) = λπ

√
R/L

x⊥
ε3 ji

x j

x⊥

√
x⊥ R/L
1−2tˆ

0

du e
−

(
(R/L)2+x2⊥+x2

3
2x⊥(R/L)

)
u2

I1(u2) , (2.17)

where I1(·) is the modified Bessel function of the first kind and x2⊥ = x2
1 + x2

2. We remark that part of the spatio-temporal dependence of 
the velocity field is encoded in the upper limit of the above integration. It is interesting to note that this integral can be exactly computed 
only at points that belong to the contour CR/L , defined by x3 = 0 and |x⊥| = R/L. We find, in cylindrical coordinates,

�v(1)(CR/L, t) = λ
π

6

R3/L3

(1 − 2t)3/2 2 F2

(
3

2
,

3

2
,

5

2
,3;−2

R2/L2

1 − 2t

)
θ̂ , (2.18)

where 2 F2 is the hypergeometric function of 2 + 2 entries. The time-dependent instanton circulation is readily obtained as

�visc
R (t) ≡

˛

CR/L

�v(1)(�x, t) · d�x = λ
π2

3

R4/L4

(1 − 2t)3/2 2 F2

(
3

2
,

3

2
,

5

2
,3;−2

R2/L2

1 − 2t

)
. (2.19)

Since the circulation is a linear function of λ, the resulting cPDF is Gaussian. Recovering the original circulation units, its variance σ 2
R is 

found to satisfy

σ 2
R

ν2Re3
= π2

3

R4

L4 2 F2

(
3

2
,

3

2
,

5

2
,3;−2

R2

L2

)
. (2.20)

We have, for R 
 L,

2 F2

(
3

2
,

3

2
,

5

2
,3;−2

R2

L2

)
= 1 − 3

5

(
R

L

)2

+O((R/L)4) , (2.21)

such that, in this asymptotic limit,

σ̃ 2
R ≡ 3σ 2

R L4

(π R2)2ν2Re3
	 1 . (2.22)

Although (2.22) is expected to hold only for creeping flows, it may be possibly relevant even for higher Reynolds number solutions, once 
scales are probed and the MSRJD path-integration (2.4) is dominated by smooth velocity field configurations. The educated guess that 
generalizes (2.22) to turbulent flows sustained by alternative forcing mechanisms, where L and Re are not necessarily defined in terms of 
Gaussian force-force correlators, reads

3σ 2
R L4

(π R2)2ν2Re3
	 O(1) . (2.23)

To investigate the correctness of (2.23), we have worked with four DNS datasets of homogeneous and isotropic turbulent flows, publicly 
available from the Johns Hopkins Turbulence Database (JHTDB) platform1 [58–61]. The simulations were developed in periodic cubic 
lattices with dimensions 10243 (dataset I), 40963 (datasets II), and 81923 (datasets III and IV), corresponding to Taylor-based Reynolds 
numbers 418, 610, 613 and 1280 for datasets from I to IV. We have produced from these datasets ensembles which contain respectively 
1 × 107, 8 × 106, 9 × 106, and 4.5 × 107 circulation samples, computed by employing the first equality of Eq. (1.1). Denoting by ηK the 
Kolmogorov dissipation length [12], the results reported in Fig. 1 fully corroborate our expectations: relation (2.23) is in fact verified for 
R < ηK (it should be noted that small scale evaluations of σR are subject to relatively larger error bars, due to the inaccuracy associated 
to the representation of a circular contour in a square lattice, as closed polygonal line).

Fig. 1 also shows that the LHS of (2.23) leads, incidentally, to an excellent collapse of data across the inertial range scales 30 < R/ηK <

300. Furthermore, the circulation variance has, in this range, a scaling dependence with R which is very well approximated by the K41 
scaling exponent 8/3 [40], as indicated by a dashed line. Note that at fixed integral scale and fixed energy injection rate per unit mass, 

1 For more information about the public datasets see http://turbulence .pha .jhu .edu/.
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Fig. 1. The dimensionless variance σ̃ 2
R , defined in (2.22), as a function of the contour radius R for various Reynolds numbers (symbols). Dashed lines represent σ̃ 2

R = 1 and 
σ̃ 2

R ∝ R−4/3.

ε = U 3/L, relation (2.23) implies that σ 2
R ∝ ν−1 R4. Insisting that an analogous result should hold in the inertial range, we replace ν in 

this last relation by the scale-dependent eddy viscosity [62],

νR = ν0

(
R

R0

) 4
3

, (2.24)

where ν0 and R0 are some reference viscosity and length scale parameters, to obtain the observed scaling σ 2
R ∝ ν−1

R R4 ∝ R8/3.
As a brief historical digression, we point out that the concept of eddy viscosity, long ago conceived by Boussinesq [47] and much 

later revived through the distant interaction approximation (DIA) formalism [63] and dynamical renormalization group techniques [64,65], 
is essentially an effective transport parameter that allows for a coarse-grained description of the turbulent cascade. This is the main 
physical motivation for a number of numerically tractable models of turbulence, as the celebrated Smagorinsky sub-grid formulation of 
the Navier-Stokes equations [66,67], which underlies the whole field of large eddy simulations [68–71].

The replacement of the molecular viscosity ν by the eddy viscosity νR in (2.23) sounds at this point like a purely rhetoric remark. It is 
possible, however, that creeping instantons, when combined with eddy viscosity ideas, can in fact be used to model the time evolution of 
high Reynolds number circulation instantons. The argument goes as follows. Consider the set of all flow realizations which have evolved 
from the remote past and ended with extreme circulation

�R ∈ [�̄R(0) − δ�, �̄R(0) + δ�] (2.25)

at time t = 0, where �̄R(0) � δ� > 0 (δ� is just a measurement bin). Let now �̄R(t) represent the time averaged circulation taken over 
the ensemble of all of these flow realizations, which we refer to as the filtered instanton circulation. Resorting to dynamic similarity and to 
the fact that ηK /L 
 1 (i.e., Reynolds number is high), we write down the dimensionless circulation ratio (time units are restored to the 
original ones, from now on),

�̂R(t) ≡ �̄R(t)

�̄R(0)
= f (t/τν, R/L, ηK /L) 	 f (t/τν, R/L,0) ≡ f̃ (t/τν, R/L) . (2.26)

It follows from Eq. (2.26) that

�̂R(νRt/ν) 	 f̃ (t/τνR , R/L) . (2.27)

In consonance with eddy viscosity phenomenology, we assume that Eq. (2.27) is scale invariant, viz.,

d

dR
f̃ (t/τνR , R/L) = 0 . (2.28)

We note that Eq. (2.28) is just a renormalization group equation [62], which has, as general solution, the functional relationship

f̃ (t/τνR , R/L) ≡ h(t/τν) . (2.29)

This leads us, from (2.26), to

�̂R(t) 	 f̃ (t/τν, R/L) = h(t′/τν) , (2.30)

with

t′ = t
ν

νR
= t

ν

ν0
R− 4

3 , (2.31)

where we have used (2.24) to make the R-dependence explicit in the definition of t′ .
5
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In an analogous fashion, one has for the exact viscous solution (2.19)

�̂visc
R (t) ≡ �visc

R (t)

�visc
R (0)

= g(t/τν, R/L) ≡ 1

(1 − 2t/τν)3/2

2 F2

(
3
2 , 3

2 , 5
2 ,3;−2 R2/L2

1−2t/τν

)
2 F2

(
3
2 , 3

2 , 5
2 ,3;−2 R2

L2

) . (2.32)

It is natural to conjecture, furthermore, that in the limit R → ηK , the filtered and the viscous instanton circulations match, that is,

�̂ηK (t) = f̃ (t/τν,ηk/L) = �̂visc
ηK

(t) = g(t/τν,ηK /L)

	 g(t/τν,0) ≡ g̃(t/τν) = 1

(1 − 2t/τν)3/2

2 F2

(
3
2 , 3

2 , 5
2 ,3;0

)
2 F2

(
3
2 , 3

2 , 5
2 ,3;0

) . (2.33)

Pushing the validity of Eq. (2.29) down to dissipative scales, we get

f̃ (t/τνR , R/L) = f̃ (t/τν,ηk/L) , (2.34)

which, in view of (2.33), leads to

f̃ (t/τνR , R/L) 	 g̃(t/τν) . (2.35)

Comparing (2.35) with (2.29), it follows that

h(t/τν) 	 g̃(t/τν) , (2.36)

so that �̂R(t) can be modeled, from (2.30), as the viscous instanton solution g̃(t′/τν), that is,

�̂R(t) = �̂visc
0 (t′) = 1

(1 − 2t′/τν)3/2

2 F2

(
3
2 , 3

2 , 5
2 ,3;0

)
2 F2

(
3
2 , 3

2 , 5
2 ,3;0

) . (2.37)

In order to perform validation tests of Eqs. (2.30) and (2.37), we have implemented a numerical filtering procedure to extract, from the 
raw data of the JHTDB, the past time evolutions of extreme circulation events, which we detail below.

2.3. Numerically filtered circulation instantons

We have taken Dataset I for statistical analyses, since this is the dataset which allows us to work with the largest ensemble of 
circulation time series, defined for circular contours centered at equally spaced grid points. Letting � be the lattice parameter (� ≈ 2.1ηK ), 
we have studied circulation fluctuations for four different radii, namely, R = 8�, 16�, 32�, and 64�. For each given radius, we considered 
323 circular contours oriented normally to each Cartesian direction, for a total of 3 × 323 contours per radius.

We conventionally define the set �n of extreme events as the ensemble of circulations events whose absolute values |�R | reach some 
multiple n of the circulation standard deviation, σR =

√
〈�2

R〉, within a small tolerance window. In the language of Eq. (2.25), we consider 
the interval defined by �̄R(0) = nσR with a 0,5% tolerance, that is, δ� = 5 × 10−3�̄R(0).

Once an extreme circulation event belonging to a given set �n is identified, we assign it the observation time instant t = 0 and save its 
earlier time evolution. Then, a time dependent average �̄R (t) over all saved series for each set �n is computed. Similar filtering procedures 
have been applied in instanton studies of Burgers turbulence [72], Lagrangian turbulence models [33,34] and rogue wave formation [73,74].

Our results for �̂R(t) are shown in Fig. 2. Taking R0 = 16� as an arbitrary reference length scale, we find that plots of �̂R (t) as a 
function t(R/16�)−4/3 collapse reasonably well for all the investigated radii and sets �n , as predicted by (2.30). Following now Eq. (2.37), 
we carry out an L2-norm minimization of∑

R

||�̂R(νRt/ν) − �̂visc
0 (t)|| , (2.38)

to adjust ν0 = 4.5 × 10−5ν as the reference viscosity in (2.24). Meaningful comparisons are then also reported in the same Fig. 2 for the 
eddy viscous modeling of �̂R (t), as suggested by (2.31) and (2.37).

In addition to the eddy viscous modeling of the filtered circulations �̂R (t) discussed above, one may wonder whether the functional 
forms of filtered instanton velocity fields could be effectively modeled by viscous instantons as well. With this aim, we take the symmetry 
axis of each prescribed circular contour as the z-axis of a local Cartesian reference system, and orient it in such a way that velocity 
circulations are rendered positive at the event occurrence time. Then, we perform a similar time-dependent averaging procedure over all 
events in �n , as we did for �̂R(t), but now for velocity field configurations in cylindrical coordinates, �v = vrr̂ + vθ θ̂ + vz ẑ. Due to isotropy, 
the mean velocity components are functions of r, z, and t only, i.e., 〈vr〉 ≡ v̄r(r, z, t), 〈vθ 〉 ≡ v̄θ (r, z, t), and 〈vz〉 ≡ v̄ z(r, z, t).

Unfortunately, the radial and axial components v̄r(r, z, t) and v̄ z(r, z, t) turn out to develop relatively small intensities, which prevents 
us from extracting a clear behavior out of the noise. The mean azimuthal component v̄θ (r, 0, t), on the other hand, was found to be 
well-resolved in all studied cases. Fig. 3 shows comparisons between the numerically filtered v̄θ (r, t) (normalized by v̄θ (R, 0)) and the 
analogous normalized azimuthal velocity obtained from the viscous solution (2.17), where the dimensionless time t/τν is substituted by 
t′/τν , as defined in Eq. (2.31). It is seen that the eddy viscous modeling only provides an adequate description of v̄θ (r, t) for r ≤ R , which 
is just the core region of the filtered instantons. Notwithstanding such a limitation, extreme circulations events are in fact well accounted 
by eddy viscous modeling, since, as the filtering results indicate, v̄θ (r, 0) gets its maximum value at r = R .

To further investigate the detailed structure of the circulation instantons moving beyond the viscous solutions, one must deal with the 
full nonlinear Euler-Lagrange equations (2.8)-(2.10), an issue we address in the next section.
6
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Fig. 2. Filtered circulation instanton �̂R (t) ≡ �̄R (t)/�̄R (0) as a function of the rescaled time t′ = t(R/16�)−4/3 for a number of radii and circulation sets �n at Rλ = 433 (solid 
lines). The eddy viscous modeling of the collapsed data is attained with the help of Eq. (2.37) (dash-dotted line). Inset: the corresponding non-collapsed plots, as functions 
of the original time variable t .

Fig. 3. Normalized filtered azimuthal velocity v̄θ (r, 0, t) obtained from DNS data for different radii R (vertically shifted for clarity). Time evolution is color-coded (in units of 
the simulation time step) and vertical lines indicate r = R in each simulation. For comparison purposes, part of a viscous instanton solution (dashed curve) is displayed for 
R = 64�. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3. Nonlinear instantons

A numerical scheme to solve the hydrodynamic instanton equations, similar to Eqs. (2.7)-(2.8), was introduced by Chernykh and 
Stepanov [28] in the context of Burgers turbulence, being later extended to a variety of models [73,74]. In our case, the solution al-
gorithm inserts, at “iteration step n”, a given velocity field in Eq. (2.8) to solve it backward in time. Its solution is defined as the auxiliary 
field �p(�r, t) at iteration step n. This, in turn, is used in Eq. (2.7) to provide the velocity field at iteration step n + 1. An iteration cycle 
proceeds recursively, until a prescribed convergence for the instanton fields is attained. The numerical procedure may start off with a 
vanishing velocity field or one may alternatively use some improved guess, as we do by using the creeping instanton described by (2.17).

We have worked out solutions for the circulation instantons in cylindrical coordinates with Chebyshev collocation points (see the 
appendix for details) for a broad range of λ values and contour radii. The numerical solutions were obtained through the Chernykh-
Stepanov method outlined above, enhanced, at larger values of λ, by the convexification procedure discussed in [55], in order to avoid 
possible spoiling inflection effects in the derivation of the cPDF tails. This amounts, in practical terms, to perform the replacement of � by 
the nonlinear tilted measure sign(�) ln |�| in the MSRJD action (2.6).

Instability issues are known to affect the convergence of the Chernykh-Stepanov solutions at large values of the Lagrange multiplier λ
[55]. Although a number of technical improvements have been implemented to solve instanton equations in more efficient ways [75–77], 
three-dimensional instanton equations are far more computationally expensive than their dimensionally reduced counterparts [78].

Fig. 4 yields the typical velocity profile of a circulation instanton. A threefold vortex structure emerges, with interesting topological 
properties. It consists of two paired counter-rotating vortex rings, as they can be clearly identified from the streamline portrait there 
7
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Fig. 4. Vector streamlines of a circulation instanton at its final evolution time on the (r, z) plane. Values of 
√

v2
r (r, z) + v2

z (r, z) are qualitatively represented by the gray level 
of the streamlines, while the intensity of the azimuthal velocity vθ (r, z) by a (red-colored) density plot. Values vary from 0 (white) to approximately 11.9 (black) and 79.3
(red), in units of ν/L. This flow configuration is obtained as a solution of Eqs. (2.7)-(2.10) for λ = 3 × 106 and R/L ≈ 0.32. The vertical dashed lines give the radial positions 
r = R and r = L.

Fig. 5. The instanton profiles of vθ (r, z = 0) at the final evolution time for several values of λ, and R/L ≈ 0.32. The vertical dashed lines give the radial positions r = R and 
r = L, while the inverted triangles locate the peak positions of vθ (r, z = 0).

depicted in the (r, z) plane. These rings define regions of opposite helicities, a fact associated to the background axisymmetric velocity 
field that circulates around the symmetry axis of the flow.

It is not difficult to see, from Fig. 4, that the azimuthal component of the velocity field is not peaked at r = R as we have found in 
our analysis of the filtered DNS instantons (extreme circulation events), previously summarized in Fig. 3. This is not a completely casual 
remark. In fact, it turns out that the coupled instanton equations (2.7)-(2.10) become very stiff at large values of λ, precisely where we 
expect to model asymptotically large circulation fluctuations.

In Fig. 5 we show that, as λ grows, the peak position of vθ (r, z = 0) slowly drifts to the left (smaller values of r). A rough estimate 
indicates that a peak at r = R would be reached for λ ∼ 1010, which is several orders of magnitude beyond the domain of convergence 
achieved in our applications of the Chernykh-Stepanov method.

We find, thus, that direct numerical schemes to solve the instanton equations (2.7)-(2.10), like the ones we have applied, are able to 
address the parabolic cores of cPDFs, while the description of their tails remains challenging. In order to circumvent the stiffness of the 
instanton equations, and to model the far cPDF tails, space-time reparametrizations [28,75,77] and further large deviation techniques are 
likely to be necessary, as illustrated by the use of hybrid Monte Carlo algorithms, so far only applied to Burgers turbulence [79].

4. Conclusions

We have investigated the occurrence of extreme circulation events in three-dimensional homogeneous and isotropic turbulence. We 
show that the time evolution of circulation, conditionally averaged to the observation of prescribed large deviation events can be effec-
tively modeled with the help of eddy-viscosity phenomenology combined with instanton functional techniques. Our modeling analysis is 
corroborated from a careful treatment of large DNS databases, at various Reynolds numbers.

Proceeding with the same set of extreme circulation events, we have furthermore inspected time-dependent conditionally averaged ve-
locity field configurations. Resulting axisymmetric vortex structures clearly arise from these filtering procedures. The comparison with the 
eddy-viscous (creeping) instantons is only reasonable at the core of the flow configurations (circulation instantons), which, nevertheless, 
is all one needs to get accurate averages of the time-dependent instanton circulations ending in extreme events.
8
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An extensive numerical effort to solve the instanton equations suggests that extreme circulation events have an interesting underlying 
topological structure. Axisymmetric circulation instantons are composed of a main vortex, which is at the center of a surrounding pair 
of counter-rotating vortex rings. The existence of this triple vortex structure drives our attention to possible formal connections with 
superfluidity. It is known that the motion of a superfluid vortex ring is followed by a companion pair of normal vortex rings [80]. We 
note, then, that the instanton Eqs. (2.7) and (2.8) are actually analogous to the HVBK hydrodynamic equations describing the self-induced 
propagation of a quantum vortex ring.

Although the employed numerical databases allowed us to validate a viscous-eddy modeling of extreme circulation events, they are 
not large enough to disclose the topological features of the circulation instantons. Larger databases are required, in order to accomplish 
this challenging task. Another related important issue, deserved for further studies, has to do with the implementation of algorithmic 
improvements in the numerical solution of the instanton equations, in order to model the far cPDF tails [40,41] and the off-core azimuthal 
velocity component of the circulation instantons. It is worth emphasizing that some alternatives have been already applied with success 
to the paradigmatic example of Burgers turbulence [30,75].

Intense vortex structures are known to have an important role in turbulence at high Reynolds numbers. Such structures can be modeled 
by an interacting molecular gas when statistical properties of circulation in 2D slices of turbulent flows are analyzed [20,21,44,45]. A 
possible source of future investigation is to explore a single or a bunch of modeled structures in order to compare its spatial distribution 
to the instanton solutions.
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Appendix A. Spectral approach to the instanton equations in cylindrical coordinates

In order to numerically solve the set of Eqs. (2.7)-(2.10) we rewrite them in cylindrical coordinates. In light of the nonlinear nature of 
hydrodynamic interactions, there would be no a priori reason to consider axisymmetric solutions in detriment of any other. Nevertheless, 
we expect axisymmetric solutions to dominate extreme events since the forcing term is invariant under rotations around the z-axis. Taking 
this symmetry into account, Eqs. (2.7)-(2.10) read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂−vr + vr/r2 − v2
θ /r + ∂r P = (χ̃ � pr) ,

L̂−vθ + vθ /r2 + vθ vr/r = (χ̃ � pθ ) ,

L̂−vz + ∂z P = (χ̃ � pz) ,

∂r(rvr)/r + ∂z vz = 0 ,

L̂+pr − pr/r2 − vθ pθ /r + vr∂r pr + vθ ∂r pθ + vz∂r pz + ∂r Q = 0 ,

L̂+pθ − pθ /r2 + (2vθ pr − vr pθ )/r = λδ(t)δ(r − R)δ(z) ,

L̂+pz + vr∂z pr + vθ ∂z pθ + vz∂z pz + ∂z Q = 0 ,

∂r(rpr)/r + ∂z pz = 0 ,

(A.1)

where L̂±ψ = ∂tψ + vz∂zψ + vr∂rψ ± (∂2
z ψ + ∂r(r∂rψ)/r) and (φ � ψ) is the spatial convolution between φ and ψ . We implement a 

pseudo-spectral approach where the fields are expanded in a truncated Fourier-Chebyshev series of orders N and M , respectively. The 
collocation points are defined as

z j = 2π j

N
, (A.2)

and

rm = cos

(
πm

)
, (A.3)
M − 1

9
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where, j and m are integers in the ranges j ∈ [−N/2, N/2 − 1] and m ∈ [0, M − 1]. Along the longitudinal direction, usual collocation 
points for Fourier series are used, while for the radial direction we employ Gauss-Lobatto collocation points, corresponding to the extrema 
of the Mth order Chebyshev polynomials [81]. This choice of a non-homogeneous grid hinders a direct comparison among simulations 
with different resolutions. However, it allows one to adopt a Fast Fourier Transform (FFT) algorithm to compute nonlinear terms, which 
are otherwise computationally expensive [82]. Moreover, for even M the coordinate singularity at r = 0 is explicitly avoided on the 
collocation, with the drawback of requiring the radial interval to be duplicated, as r ∈ [0, 1] → r ∈ [−1, 1], as a requirement of the 
Chebyshev polynomial expansion.

All fields in Eq. (A.1) are given by a truncated polynomial series of order N in the Fourier basis and M in the Chebyshev basis,

φ(rm, z j) ≡ φmj =
M−1∑
l=0

N/2−1∑
k=−N/2

φ̂lk Tl(rm)eikz j , (A.4)

where Tl(x) is the lth Chebyshev polynomial. Exceptions are the pressure fields Q (�x, t) and P (�x, t), which are of order M − 2 in the 
Chebyshev expansion. This guarantees the stability of the numerical method, an approach known as the PN −PN−2 approximation [82], 
further discussed ahead. Radial derivatives of these fields are readily computed using recursion relations of the Chebyshev polynomials, 
namely,

(∂rφ)mj =
M−1∑
l=0

Dmlφl j , (A.5)

where the M × M matrix D has, for all fields but the pressure related ones, the entries

Dmj =

⎧⎪⎨
⎪⎩

(−1)m+ jcm/(c j(rm − r j)) , m �= j

−rm/(2(1 − r2
m)) , m = j, m, j �= [0, (M − 1)]

±(2(N − 1)2 + 1)/6 , m = j = 0 or m = j = (M − 1),

(A.6)

with c0 = cM−1 = 2 and ci = 1 otherwise. As for the pressure fields, which are 2 degrees lower in the Chebyshev expansion, they must be 
interpolated from the M − 2 Gauss-Lobatto grid to the M grid where the other fields are defined. This can be done through a Lagrange 
interpolation (see Ref. [82] for details), giving

D P Q
mj =

{
(−1) j+m(1 − r2

j )/((rm − r j)(1 − r2
m)) , m �= j, m, j ∈ [1, M − 2]

3rm/(2(1 − r2
m)) , m = j, m ∈ [1, M − 2]. (A.7)

By virtue of the explicit form of these matrices, r-derivatives are evaluated in physical space while z-derivatives are better performed 
in Fourier space. Ultimately, in order to have consistently represent all fields in the mirrored radial domain, they must satisfy the following 
reflection properties:

⎧⎪⎨
⎪⎩

φmj = φ(−m) j for scalar fields,

φz,mj = φz,(−m) j for the z-component of vector fields

φβ,mj = −φβ,(−m) j for the radial and azimuthal components (β is either r or θ).

(A.8)

The time discretization follows a combined Adams-Bashforth/Implicit Backward Differentiation method of second order (AB/BDI2) [82], 
which consists on implicit evaluations of the linear terms and explicit evaluations of the nonlinear terms. As an illustration, consider the 
equation

∂tφ = L(φ) + N(φ) + J , (A.9)

where, L(φ) and N(φ) stand for the linear and nonlinear terms of the differential equation, respectively, and J accounts for a forcing term 
or pressure gradient. The above equation is discretized at regularly spaced time instants tn = ndt as

3φ(n+1) − 4φ(n) + φ(n−1)

2dt
= Lφ(n+1) + 2N(φ(n)) − N(φ(n−1)) + J (n+1) , (A.10)

where φ(n) = φ(tn). In the first time step, we set φ(−1) = φ(0) and change dt → 3dt/2, reducing this step to the usual Euler scheme. The 
choice of discretizing the pressure gradient terms as ∂i P (n+1) leads to a Stokes problem which is solvable by the Uzawa method [83]. 
We note that similar discretization setups were successfully applied to the Navier-Stokes equations in cylindrical coordinates with a few 
different boundary conditions [84–86]. We also remark that the nonlinear terms are properly de-aliased following a standard 3/2-rule.

Applying the above discretization procedure to the system of Eqs. (A.1) supplemented by Dirichlet boundary conditions, one finds a 
system of coupled equations for each independent Fourier mode k ∈ [N/2, N/2 − 1] for the forward and backward time integration of the 
velocity and conjugate field, respectively,
10
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), 
Fig. 6. Difference between normalized numerical and analytical solutions of the azimuthal velocity component at t = 0 as functions of r and z, for R ≈ 0.09 and L = 1/π . 
Inset: profiles for z = 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂r,k |vn
r,k〉 = −D̂ P Q |Pn

k 〉 + | f n
r,k〉 , j ∈ [1, M − 2] ,

L̂r,k |vn
θ,k〉 = | f n

θ,k〉 , j ∈ [1, M − 2] ,

L̂z,k |vn
z,k〉 = −ik |Pn

k 〉 + | f n
z,k〉 , j ∈ [1, M − 2] ,

R̂−1 D̂ R̂ |vn
r,k〉 + ik |vn

z,k〉 = 0 , j ∈ [0, M − 1] ,

(|vn
r,k〉 , |vn

θ,k〉 , |vn
z,k〉) = 0 , j = 0 and j = M − 1 ,

L̂r,k |pn
r,k〉 = D̂ P Q |Q n

k 〉 + |gn
r,k〉 , j ∈ [1, M − 2] ,

L̂r,k |pn
θ,k〉 = |gn

θ,k〉 , j ∈ [1, M − 2] ,

L̂z,k |pn
z,k〉 = ik |Q n

k 〉 + |gn
z,k〉 , j ∈ [1, M − 2] ,

R̂−1 D̂ R̂ |pn
r,k〉 + ik |pn

z,k〉 = 0 , j ∈ [0, M − 1] ,

(|pn
r,k〉 , |pn

θ,k〉 , |pn
z,k〉) = 0 , j = 0 and j = M − 1 ,

(A.11)

where the ket notation represents the N-dimensional vector |φn
i,k〉 = [φn

i, jk] with j ∈ [0, M −1]. The M ×M matrices R̂ = diag(r0, r1, · · · , rM−1

L̂r,k = (3/(2|dt|) + k2)Î − D̂2 − R̂−1 D̂ + R̂−2 and L̂z,k = L̂r,k − R̂−2 can be efficiently inverted and stored in a pre-processing stage. The M
vectors (| f n

r,k〉 , | f n
θ,k〉 , | f n

z,k〉) and (|gn
r,k〉 , |gn

θ,k〉 , |gn
z,k〉) are, respectively, the explicit part of the discretized Eqs. (2.7) and (2.8). For instance, 

in Eq. (A.10) one has | f n
k 〉 = (4φ(n−1) − φ(n−2) + 2N(φ(n−1)) − N(φ(n−2)))/3.

The algebraic system defined by Eq. (A.11) has a unique solution for every k �= 0. The PN −PN−2 approximation prevents zero eigen-
values of the Uzawa operator2 for k = 0 and avoids the requirement of prescribing boundary conditions to the pressure field. Indeed, 
non-uniqueness of the solution is related to the fact that pressure fields are defined up to a constant and a simple calculation shows that 
the unique solution consistent with the boundary conditions and the incompressibility constraint for k = 0 is |vn

r,0〉 = 0.
The convolutions in Eq. (A.1) and in the action integral (Eq. (2.6)) can be efficiently computed using the explicit form of the Fourier 

transformed correlation χ̃ and the inverted Chebyshev derivative matrix,

FFTz
[
(χ̃ � pβ)

](n)

jk = (2π)3/2Le
− r2

j
2L2 e− k2 L2

2
∑

l

(
D̂−1

M/2,l − D̂−1
0,l

)
U jl,β f (n)

l,β , (A.12)

S = (2π)7/2L
∑

n,k,l, j,β

e− k2 L2
2

(
D̂−1

M/2,l − D̂−1
0,l

)(
D̂−1

M/2, j − D̂−1
0, j

)
f (n)

lk,β
U jl,β

(
f (n)

jk,β

)�

, (A.13)

where β = (r, θ, z), f (n)

lk,β
= rl exp (−r2

l /2L2)F F T z[pβ ](n)

lk , U jk,β = I0(r jrk/L2) for β = z, and U jk,β = I1(r jrk/L2) for β = (r, θ), with I0, I1

being modified Bessel functions of the first kind.
In order to validate the numerical method, we performed several numerical experiments of the linear instanton. Fig. 6 compares the 

vθ component of the numerical solution with the analytical result from Eq. (2.17). We first note that the Dirichlet boundary condition 
has a relevant influence on the solution for r � 0.5. This is not a surprising though, since Eq. (2.17) holds for unbounded domains, thus 
a slower decay is expected. Variations of about ±5% in the peak position are also observed depending on how distant to the boundaries 
one sets L and R . We fixed L = 1/π to minimize such boundary effects.

2 The Uzawa operator is obtained by solving formally the pressure field by setting the momentum equations into the incompressibility constraint, in this case Ẑk =
R̂−1 D̂ R̂ L̂−1

r D̂ P Q − k2 L̂−1
z .
11



G.B. Apolinário, L. Moriconi, R.M. Pereira et al. Physics Letters A 449 (2022) 128360
The viscous action was calculated by means of Eq. (A.13), and it was found to be compatible with S = �α�/(2σ 2) with α� =
1.99999993(5) and σ = (βσ /N)R1.95(2) , with errors estimated by averaging results obtained with different grid resolutions, both in time 
and space. Small variations of βσ are seen when dt and/or M are changed, but one must keep in mind that the radial collocation is not 
regular, and hence direct comparisons among different resolutions in M are not perfect. As for the dt dependence, finite time effects are in 
play, since decreasing dt for a fixed number of timesteps Nt also causes the total simulation time to decrease, so the boundary conditions 
pi(�x, T ) = vi(�x, T ) = 0 are effectively imposed on different time instants T = −Ntdt . In out tests, we worked with all combinations of 
Nt = 100, 200, and 400, with dt = 0.0025, 0.005, and 0.01.

The conclusion drawn from this set of numerical experiments is that both spatial and statistical properties are accurately captured by 
the numerical algorithm used to solve the instanton equations, at least in the linear approximation.
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