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a b s t r a c t

This work extended the dual quadrature method of generalized moments (DuQMoGeM) to solve the pop-
ulation balance model for the hydrodynamics of liquid-liquid extraction columns using a multi-
compartment model that represents batch and continuous well-mixed extraction vessels as particular
cases. This model can either represent the actual sections of a column or its spatial discretization that
can use moment preserving schemes for the advection and dispersion of the generalized moment set.
The DuQMoGeM results were compared to analytical solutions for batch and continuous well-mixed ves-
sels and extraction columns, showing that it is accurate for predicting the evolution of the low order
moments and the drop number distribution along with the column height. We also modeled a Kühni col-
umn for which the simulation accurately predicted the steady-state experimental holdup, encouraging
the DuQMoGeM usage to solve the population balance equation for heterogeneous systems and different
columns.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In general, a liquid-liquid extraction system consists of two
almost immiscible phases, with one dispersed in the form of fine
droplets in the other continuous liquid phase. Several relevant
properties of the dispersed phase come from the number density
distribution that may change due to several mechanisms such as
coalescence, breakage, and growth. However, the number density
distribution evolution comes from solving a population balance
equation. Consequently, population balance modeling is a power-
ful tool for predicting the dispersed phase behavior in liquid-
liquid extraction equipment, such as columns and reactors
(Ramkrishna, 2000). In this sense, many scientific papers accom-
plished modeling and simulation of liquid-liquid extraction col-
umns by the population balance equation. It became essential for
modeling multiphase flow, mainly when a strong coupling exists
between the number density distribution and the phase velocity
fields (Bart et al., 2020).

Mathematically, the population balance equation (PBE) is an
integro-differential equation that is usually difficult enough to
solve analytically. Therefore, it has solutions just for a few simple
cases. Several researchers have developed numerical methods to
find approximated solutions. A possible classification groups these
methods into the following categories: methods of moments,
stochastic methods, and discretization (or class) methods.

The most common discretization methods are the finite differ-
ence, finite element, and finite volume methods. They all discretize
the domain of the internal coordinate (for instance, droplet diam-
eter) (Bart et al., 2020; Su et al., 2009). Although straightforward
and accurate for calculating the particle size distribution, they have
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Nomenclature

a inverse of the residence time s�1
� �

A column cross-section area m2
� �

Ajkli aggregation matrix for compartment j mkþiþl
� �

B daughter drop conditional probability distribution
m�1
� �

c coefficient in polynomial approximation of ~n m�k�3
� �

cv form factor [–]
C1 collision frequency model parameter [–]
C2 coalescence efficiency model parameter m�2

� �
d drop diameter as internal variable m½ �
d0 mother drop diameter on breakage m½ �
d1;d2 diameters of coalescing drops m½ �
D column diameter m½ �
DR rotor diameter m½ �
Def effective dispersion coefficient m2=s

� �
f collision frequency m3=s

� �
F advective-dispersive flux m�3 s�1

� �
g breakage frequency s�1

� �
g0 breakage frequency model parameter [–]
G generic function
G gravitational acceleration m=s2

� �
h column height m½ �
hj compartment height m½ �
H breakage and coalescence source terms m�4 s�1

� �
H Heaviside step function [–]
J number of compartments [–]
J Jacobian of the transformation of internal coordinates [–]
kv slowing factor [–]
Ljki breakage matrix for compartment j miþk=s

� �
m mean of the Gaussian distribution m½ �
M number of Gauss-Legendre quadrature points [–]
n drop number distribution in d variable m�4

� �
nin normalized drop number distribution of the feed m�1

� �
~n drop number distribution in x variable m�3

� �
Np power number [–]
Nq number of Gauss-Christoffel quadrature points [–]
NR rotor speed in revolutions per second s�1

� �
N0 total number density of drops in the feed m�3

� �
P dð Þ breakage probability [–]
P power input per compartment W½ �
Q phase volumetric flowrate m3=s

� �
rd dispersed phase fraction (hold-up) [–]
ReR Reynolds number of rotor/agitator [–]
s;u drop diameter values m½ �
S source term m�4 s�1

� �
t time s½ �
th hydrodynamic residence time s½ �
v phase velocity m=s½ �
vr relative velocity m=s½ �
v t terminal velocity m=s½ �
Vd compartment volume m3

� �
Vjki convection matrix for compartment j mkþiþ1=s

� �
w weight of the quadrature rule [–]
Wem modified Weber number [–]
WeR rotor Weber number [–]
x dimensionless diameter coordinate [–]
Y auxiliary variable

y; q dimensionless diameter values [–]
z height coordinate m½ �
zc continuous feed inlet m½ �
zd dispersed feed inlet m½ �

Greek letters
a standard deviation of the Gaussian distribution m½ �
b auxiliary function
d Xð Þ Dirac delta function ½X�1�
di;j Kronecker delta
Dq density difference between phases kg=m3

� �
Dz height above disperse phase inlet, z� zd m½ �
� mechanical power dissipation W=kg½ �
f dimensionless height variable, f ¼ z=h
g dynamic viscosity Pa s½ �
h plate free area fraction [–]
j exponent in the swarm effect factor [–]
k coalescence probability [–]
K auxiliary function
l /ð Þ
k generalized moment of order k using the / polynomial

family mk�3
� �

lk regular moment of order k mk�3
� �

m mean number of daughter droplets [–]
n abscissa of the quadrature rule [–]
- angular velocity - ¼ 2pNR s�1

� �
P /ð Þ

k moments of the daughter distribution function of order
k mk
� �

q density kg=m3
� �

r interfacial tension N=m½ �
t dð Þ drop volume corresponding to drop of diameter d m3

� �
t0 dð Þ derivative of drop volume function, dt=d dð Þ m2

� �
�tin mean drop volume of the feed distribution m3

� �
U;U auxiliary functions
/k dð Þ k-degree orthogonal polynomial in d variable mk

� �
uk xð Þ k-degree orthogonal polynomial in terms of the x vari-

able mk
� �

v auxiliary function
w generic function
x coalescence frequency m3=s

� �
x0 coalescence frequency model parameter [–]

Subscripts
a coalescence
b breakage
c continuous phase
crit critical
d dispersed phase
in inlet
max maximum
min minimum

Superscripts
að Þ analytical solution
/ð Þ relative to / polynomial family
uð Þ relative to u polynomial family
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high computational costs to guarantee mass conservation (Bart
et al., 2020). These methods can approximate the distribution func-
tion in each discretization interval by a unique value (zero-order
methods) or use high-order polynomials (higher-order methods)
(Bart et al., 2020).
2

Gelbard and Seinfeld (1978) applied the orthogonal collocation
on finite elements to the population balance equation. Nicmanis
and Hounslow (1996) solved a continuous crystallizer’s steady-
state population balance model using the Galerkin method and
the orthogonal collocation methods on finite elements. Mantzaris
et al. (2001a,b) used the finite difference and finite element meth-
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ods to solve multivariate cell population balance models. Kumar
and Ramkrishna (1996a,b, 1997) proposed three new approaches:
the fixed pivot, the moving pivot, and the Lagrangian-moving pivot
discretization methods. Campos and Lage (2003) simulated a bub-
ble extraction column using the Lagrangian-moving pivot tech-
nique. Attarakih et al. (2004) developed the extended fixed pivot
technique (EFPT) to solve the PBE describing the hydrodynamics
of interacting liquid-liquid phases.

Hulburt and Katz (1964) introduced the method of moments. It
has various advantages, such as efficiency, accuracy, and low com-
putational cost, making it widely used to solve the PBE. On the
other hand, it does not give an approximation for the particle num-
ber distribution (Bart et al., 2020). However, some mathematical
techniques for reconstructing the size distribution function from
its moments exist in the literature (John et al., 2007). One of the
most famous moments methods is the quadrature method of
moments. It was first introduced and applied by McGraw (1997)
to describe the growth of aerosols and then extended to models
with aggregation and breakage byMarchisio et al. (2003). The main
idea behind this method is the approximation of the integrals by
the Gaussian quadrature constructed from the number density dis-
tribution moments. Marchisio and Fox (2005) introduced the direct
quadrature method of moments, whose central idea is the solution
of transport equations for the quadrature weights and abscissas,
avoiding their computation along the solution. Attarakih et al.
(2006) introduced the sectional quadrature method of moments
(SQMOM), which is a hybrid method involving the methods of
classes and moments. The SQMOM discretizes the particle size
domain in sections. The so-called primary particle represents the
particle size in each one, being calculated from the secondary par-
ticles that are the abscissas of a local low-order quadrature. These
local quadratures compute the breakage and coalescence terms.

The method of moments lacks a representation of the particle
number distribution. Lage (2011) introduced the dual quadrature
method of generalized moments that gives a series approximation
for the number density distribution using an orthogonal polynomial
family whose coefficients are related to the generalized moments of
the distribution for this polynomial family. The usage of high-order
fixed-point Gaussian quadratures based on the same polynomial
family controls the accuracy of the integral terms. Santos et al.
(2013) introduced the direct version of DuQMoGeM that solves
transport equations for the weights and abscissas of the Gauss-
Christoffel quadrature. Another method that provides an approxi-
mation for the distribution is the extended quadrature method of
moments (EQMOM), introduced by Yuan et al. (2012). It represents
the number density distribution by a series of kernel density func-
tions (KDF) whose locations are the abscissas of the Gauss-
Christoffel quadrature. The EQMOM employs secondary Gaussian
quadratures based on the KDFs to control the solution accuracy.

This work applies the DuQMoGeM to solve the population bal-
ance equation for liquid-liquid columns using a multi-
compartment model that represents a well-mixed vessel as a par-
ticular case. The multi-compartment model can either represent a
discretization of a continuous contact column or a multiple-staged
column. The model must use appropriate correlations for calculat-
ing the inter-compartment drop fluxes for a specific kind of extrac-
tion column. The calculation of spatial moment fluxes using
DuQMoGeM has never been carried out before. Although several
other methods can solve this problem, we did not intend to com-
pare them to the DuQMoGeM in the present work. It must be
pointed out that the DuQMoGeM was developed and tested previ-
ously only using the particle volume as the internal variable (Lage,
2011). As it has never been applied to solve problems using the
particle diameter as the internal variable, we first applied it to
solve such population balance models for test cases with analytical
solutions. These include models for well-mixed reactors in both
3

continuous and closed systems and a liquid-liquid extraction col-
umn without diffusion and with constant phase velocities. Finally,
a realistic case of a Kühni column was modeled and solved, and the
results were compared to available experimental data.

2. Population balance models

2.1. Model for a liquid-liquid extraction column

The population balance equation for the areal-averaged drop
number distribution, n t; z; dð Þ, in a liquid-liquid extraction column
can be written as (Ramkrishna, 2000; Kronberger et al., 1995):

@n t; z; dð Þ
@t

þ @F t; z;dð Þ
@z

¼ S t; z;dð Þ þ H t; z; dð Þ ð1Þ

where z 2 0;h½ � is the vertical coordinate, being h the column height,
and d 2 dmin; dmax½ � � 0;1½ � is the drop equivalent diameter, where
dmin and dmax are physically imposed limits for the drop size distri-
bution, that is, n t; z;dð Þ ¼ 0;8d R dmin;dmax½ �. We proceed in this sec-
tion as if the extraction column is continuous, that is, without
internals, but the resulting equations for the multi-compartment
model are the same for a multiple-stage column.

The drops move along the z coordinate with velocity vd, and
their axial dispersion is modeled with an effective isotropic disper-
sion coefficient Dd;ef . The advective-diffusive flux F of drops of
diameter d at any height in the column is given by:

F t; z; dð Þ ¼ vd t; z;d; rdð Þn t; z; dð Þ �Dd;ef t; z; rdð Þ @n
@z

ð2Þ

where

rd t; zð Þ ¼ cv

Z dmax

dmin

d3n t; z;dð Þd dð Þ ð3Þ

is the dispersed phase fraction (holdup), being cv a form factor that

relates the drop diameter to its volume, t dð Þ ¼ cvd
3. For spherical

drops, cv ¼ p=6.
The two-phase flow and mechanical agitation originate from

the turbulent fluctuations in the continuous phase, which generate
random drops movements. A dispersive flux is one way of model-
ing these drop movements. For staged extraction columns,
mechanical agitation is the primary source of dispersion. In Eq.
(2), we assumed the hypothesis that Dd;ef is independent from d.

In Eq. (1), the H term can be written as:

H ¼ Ha þ Hb ð4Þ
where Ha and Hb are the net rate of drop production by coalescence
and breakage, respectively, that are assumed to be functions of the
dispersed phase fraction (see Ramkrishna, 2000, for their general
form). The breakage source terms are given by:

Hb ¼
Z dmax

d
m uð ÞB djuð Þg u; rdð Þn t; z;uð Þdu� g d; rdð Þn t; z;dð Þ ð5Þ

where g; m and B are, respectively, the breakage frequency, the mean
number of daughter drops and the daughter conditional probability
distribution. We assumed that the latter depends only on the diam-
eter ratio of daughter and mother drops. The coalescence source
terms are given by:

Ha ¼ 1
2

R d
dmin

x u; s; rdð Þn t; z;uð Þn t; z; sð ÞJdu

� n t; z; dð Þ R umax

dmin
x u; d; rdð Þn t; z;uð Þdu

ð6Þ

where umax ¼ d3
max � d3

� �1=3
andx is the coalescence frequency that

is assumed to be a function of the disperse phase fraction, and J is
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the Jacobian of the transformation of the internal variable differen-
tial, Jd dð Þ ¼ ds:

J ¼ d2

d3 � u3
h i 2=3ð Þ ð7Þ

The number rate of drops entering the column can be modeled
as a source at a given zd position that is given by:

S t; z; dð Þ ¼ Qd;in tð Þ
A

nin t;dð Þ
�tin tð Þ d z� zdð Þ ð8Þ

where Qd;in tð Þ is the volumetric flow rate of the liquid that forms the
drops fed to the column at point zd and time t;A is the cross-section
area of the column, and nin t;dð Þ is the normalized drop size distribu-
tion formed at the injection point, which satisfies:Z dmax

dmin

nin t;dð Þd dð Þ ¼ 1: ð9Þ

Thus, the mean drop volume at z ¼ zd is given by:

�tin tð Þ ¼
Z dmax

dmin

t dð Þnin t; dð Þd dð Þ ð10Þ
2.1.1. Boundary conditions
The Danckwerts boundary condition imposes the value of the

advective-dispersive flux at the domain’s boundaries. For the pre-
sent model, the disperse phase is fed to the column at zd, and the
large ascending drops can leave the column at z ¼ h, while the con-
tinuous phase carries the small descending drops that can leave
the column at its bottom. We assumed that the dispersion flux is
negligible at the top and bottom of the column, which is an ade-
quate approximation for multi-stage columns with bottom and
top sections with no mixing, which is the primary source of drop
dispersion. Therefore, the imposed boundary conditions are:

z ¼ 0; F t;0;dð Þ ¼ vd t;0; d; rdð Þn t;0; dð Þ �Dd;ef t; 0; rdð Þ @n
@z

¼ min vd t; 0;d; rdð Þ; 0½ �n t; 0;dð Þ ð11Þ

z ¼ h; F t;h;dð Þ ¼ vd t;h;d; rdð Þn t;h;dð Þ �Dd;ef t; h; rdð Þ @n
@z

¼ max vd t;h;d; rdð Þ; 0½ �n t;h;dð Þ ð12Þ

Considering the large (vd > 0) and small (vd < 0) drops, it is easy to
prove that Eqs. (11) and (12) are equivalent to:

z ¼ 0; max vd t;0; d; rdð Þ;0½ �n t;0; dð Þ �Dd;ef t; 0; rdð Þ @n
@z

¼ 0; ð13Þ

z ¼ h; min vd t; h; d; rdð Þ;0½ �n t;h;dð Þ �Dd;ef t;h; rdð Þ @n
@z

¼ 0; ð14Þ

which are the expressions given by Attarakih et al. (2004).

2.2. Drop and continuous phase velocities

The velocity of drops in a swarm significantly depends on the
drop diameter and the volume fraction of the dispersed phase.
The rising velocity vd of a droplet of diameter d, is expressed as
(Gayler et al., 1953):

vd d; rdð Þ ¼ v r d; rdð Þ þ vc rdð Þ ð15Þ
where vc is the continuous phase velocity. The relative velocity of
droplets with diameter d is often called the slip velocity. It is calcu-
lated from the single drop terminal velocity, v t , considering the
slowing factor and the swarm effect by the following expression:
4

v r d; rdð Þ ¼ kvv t 1� rdð Þj ð16Þ
where kv 2 0;1ð � is the slowing factor and 1� rdð Þj accounts for the
swarm effect. The drop terminal velocity depends on the physical
properties of both phases and droplet diameter (Garthe, 2006).

The steady-state solution of the mass balance equation for the
continuous phase for a column operated in counter-current opera-
tion provides:

vc t; zð Þ ¼ 1
1� rd t; zð Þ 1�H z� zcð Þð ÞQc

A
þDc;ef zð Þ @rd t; zð Þ

@z

� �
ð17Þ

where Dc;ef is the dispersion coefficient of the continuous phase
that can be used to model backmixing.

2.3. Multi-compartment model for the extraction column

The one-dimensional model of an extraction column can have
the external z coordinate domain partitioned to define compart-
ments. These can be actual column stages in a multi-stage column
or simply discretization subdomains in a continuous contact col-
umn. We consider a multi-compartment column with J sections
operated in counter-current mode, where each section has a height
hj, as it is schematically represented in Fig. 1.

Its governing equation is given by Eq. (1), which can be inte-
grated using the operator 1

hj

R zj
zj�1

�ð Þdzto give:

@
@t

1
hj

R zj
zj�1

ndz
h i

þ 1
hj

Fj � Fj�1
� 	 ¼ 1

hj

R zj
zj�1

Sdz

þ 1
hj

R zj
zj�1

Hdz; j ¼ 1; . . . ; J
ð18Þ

where

Fj t; dð Þ ¼ F t; zj;d
� 	 ¼ vd t; zj;d; rd t; zj

� 	� 	
n t; zj; d
� 	

�Dd;ef t; zj; rd t; zj
� 	� 	

@n t;z;dð Þ
@z

h i
z¼zj

ð19Þ

By defining the average of the generic w variable in the j compart-
ment by:

wj t;dð Þ ¼ 1
hj

Z zj

zj�1

w t; z;dð Þdz; ð20Þ

we can write Eq. (18) as:

@nj t;dð Þ
@t

þ 1
hj

Fj � Fj�1
� 	 ¼ Sj þ Hj; J ¼ 1; . . . ; J ð21Þ

Eq. (21) also represents the population balance model for each stage
of a J-staged extraction column. In this case, we have to reinterpret
the disperse-phase fluxes given by Eq. (19) as inter-stage fluxes.
Then, we must use appropriate correlations (Hasseine et al., 2005)
or CFD simulation data (Weber et al., 2020) for the specific type
of staged column to calculate the absolute drop velocity and the
drop dispersion coefficient.

The j control volume (compartment) is defined to be the column
section in the zj�1; zj

� �
interval. Therefore, all variables derived from

the number size distribution are represented by its volumetric
mean at this compartment, nj t; dð Þ. For instance, the mean dis-
persed phase fraction in the j compartment is given by:

rd;j tð Þ ¼ cv

Z dmax

dmin

d3nj t;dð Þd dð Þ ð22Þ

If any variable has a linear behavior within a compartment, then the
value at its center is equal to the average, that is,
w t; zj�1 þ hj=2;d
� 	 ¼ wj t;dð Þ.



Fig. 1. Multi-compartment extraction column.
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In Eq. (21), the source term Sj exists only for j ¼ jd, defined by
zjd�1 < zd < zjd , where the drops are formed, which is given by:

Sj ¼ Sjddj;jd ; Sjd ¼
1
hjd

Z zjd

zjd�1

Sdz ¼ 1
th;jd

nin t;dð Þ
�tin

ð23Þ

where

th;jd ¼
hjdA
Qd;in

¼
Vdjd

Qd;in
; Vdjd

¼ hjdA ð24Þ

It should be noted that Fj must be computed at the boundary zj
between the j and jþ 1 compartments. Therefore, some approxima-
tions have to be made as the distribution nj is a mean value for the j
compartment.

As small drops can descend along the column dragged by the
continuous phase, we must consider drop effluxes at z0 and zJ .
Moreover, every compartment boundary may have upward and
downward drop fluxes. Therefore, we split the advective fluxes
accordingly, and Eq. (19) becomes:

F t; zj; d
� 	 ¼ Fj t;dð Þ

¼ Fþ
j t; dð Þ þ F�

j t;dð Þ

�Dd;ef t; zj; rd t; zj
� 	� 	 @n t; z;dð Þ

@z


 �
z¼zj

ð25Þ

We use a fully upwind approximation for the advective fluxes, that
is,

F�
j t; dð Þ ¼ min vd;j; 0

� 	
njþ1 t; dð Þ; j ¼ 0; . . . ; J � 1; F�

J t;dð Þ ¼ 0

Fþ
j t; dð Þ ¼ max vd;j; 0

� 	
nj t; dð Þ; j ¼ 1; . . . ; J; Fþ

0 t; dð Þ ¼ 0
ð26Þ

where n t; zj;d
� 	 ¼ nj t;dð Þ; vd;j t; dð Þ ¼ vd t; zj;d; rd t; zj

� 	� 	
with

rd t; zj
� 	 ¼ rj tð Þ. Eq. (26) implies that there is no drop inlet at the col-

umn boundaries at z0 and zJ .
5

Substituting Eqs. (26) into Eq. (25) and applying the boundary
conditions given by Eqs. (11) and (12) under the assumption of
no dispersive flux at the boundaries, we have:

F0 t;dð Þ ¼ F�
0 t;dð Þ ¼ min vd;0;0

� 	
n1 t;dð Þ ð27Þ

FJ t;dð Þ ¼ Fþ
J t;dð Þ ¼ max vd;J;0

� 	
nJ t;dð Þ ð28Þ

Eqs. (27) and (28) are equivalent to the assumption of escape fre-
quencies equal to �vd;0=h0 and vd;J=hJ for, respectively, the descend-
ing drops at the lowest compartment and the ascending drops at
the highest compartment.

For the inter-compartment fluxes inside the column, we
approximate the dispersive term by central differences:

@n t; z;dð Þ
@z


 �
z¼zj

¼ njþ1 t; dð Þ � nj t; dð Þ
hjþ1þhj

2

; ð29Þ

The weighted harmonic mean is used to obtain the dispersion coef-
ficient at the compartment boundaries:

Dd;ef ;jþ1=2 tð Þ ¼ Dd;ef t; zj
� 	

¼ 1
hj þ hjþ1

hj

Dd;ef ;j tð Þ þ
hjþ1

Dd;ef ;jþ1 tð Þ
� 
 ��1

; ð30Þ

where Dd;ef ;j tð Þ is the volumetric mean dispersion coefficient in
compartment j. The harmonic mean used in Eq. (30) reduces to
the correct limiting dispersive fluxes when Dd;ef ;i ! 0 or
Dd;ef ;i ! 1 for i ¼ j; jþ 1 for transport processes in series. Using
these approximations, we have

Fj t;dð Þ ¼ Fþ
j t;dð Þ þ F�

j t; dð Þ �Dd;ef ;jþ1=2 tð Þ

� 2
hjþ1 þ hj

njþ1 t;dð Þ � nj t;dð Þ� �
: ð31Þ

Thus, the multi-compartment model consists of the following ODE
system for nj:

@nj

@t
þ 1
hj

Fj � Fj�1
� 	 ¼ Hj þ Sj; j ¼ 1; . . . ; J ð32Þ
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The breakage and coalescence source terms in compartment j can
be written as:

Hj ¼ Ha;j þ Hb;j ð33Þ
Some definitions and approximations must be made to write these
terms as functions of nj. Lets assume that n t; z;dð Þ ¼ nj t;dð Þfor
z 2 zj�1; zj

� �
. Then, these distributions can be taken out of the z inte-

gral, and mean breakage and aggregation functions can be defined
for each compartment. Assuming that m uð Þ and B djuð Þdo not depend
on z, the breakage source term is given by:

Hb;j ¼
Z dmax

d
m uð ÞB djuð Þgj u; rd;j

� 	
nj t; uð Þdudz

� gj d; rd;j
� 	

nj t;dð Þ ð34Þ

The coalescence source term is given by:

Ha;j ¼ 1
2

R d
dmin

xj u; s; rd;j
� 	

nj t; uð Þnj t; sð ÞJdu

� nj t;dð Þ R umax

dmin
xj u;d; rd;j
� 	

nj t; uð Þdu
ð35Þ

where

gj d; rd;j tð Þ� 	 ¼ 1
hj

Z zj

zj�1

g d; rd t; zð Þð Þdz ð36Þ

xj u; d; rd;j tð Þ� 	 ¼ 1
hj

Z zj

zj�1

x u;d; rd t; zð Þð Þdz ð37Þ
2.4. Model for the well-mixed vessel

The behavior of the dispersed phase in a continuous well-mixed
vessel is a particular case of Eq. (32), where J ¼ jd ¼ 1,
h1 ¼ h; th;1 ¼ th and, using Eq. (28), we have:

F1

h1
¼ vd;1

h1
n1 t; dð Þ ¼ Qd;in

hA
n1 t;dð Þ ¼ 1

th
n1 t;dð Þ ð38Þ

where in the last two expressions the drop escape frequency was
assumed to be independent from its diameter and equal to the
inverse of the mean residence time of the dispersed phase, th.
Therefore, for the well-mixed vessel, the population balance equa-
tion can be written as (Ramkrishna, 2000):

@n t;dð Þ
@t

¼ 1
th

nin t;dð Þ
�tin

� n t;dð Þ

 �

þ Ha t;dð Þ þ Hb t;dð Þ ð39Þ

where the subscript 1 was dropped.
For a batch well-mixed vessel Eq. (39) takes the simple form:

@n t;dð Þ
@t

¼ Ha t; dð Þ þ Hb t; dð Þ ð40Þ

3. Generalized moment equations

Consider the generalized moment operator:

/k; �ð Þh i ¼
Z dmax

dmin

�ð Þ/k dð Þd dð Þ; ð41Þ

where /k dð Þ is the Legendre polynomial of k degree defined into the
shifted interval dmin;dmax½ �, which have the following orthogonality
property:

/k;/j

� � ¼ Z dmax

dmin

/k dð Þ/j dð Þd dð Þ ¼ dkj /k;/kh i ¼ dkjk/kk2 ð42Þ
6

3.1. Moment equations for the multi-compartment model

The Legendre generalized moments of nj t; dð Þ can be computed
from its definition, Eq. (20), and from Eq. (41) and they can be writ-
ten as:

l /ð Þ
j;k ¼ /k;nj

� � ¼ 1
hj

Z zj

zj�1

/k;nh idz ð43Þ

Applying the moment operator, Eq. (41), to Eq. (32), we get:

@l /ð Þ
j;k

@t
þ 1
hj

/k; Fj
� �� /k; Fj�1

� �� 	 ¼ H /ð Þ
j;k þ 1

th;jd

l /ð Þ
ink
�tin

dj;jd ; j ¼ 1; . . . ; J

ð44Þ
where /k; Fj

� �
are calculated using Fj from Eqs. (27), (28) and (31):

/k; F0h i ¼ /k;min vd;0;0
� 	

n1
� �

/k; Fj
� � ¼ /k;max vd;j;0

� 	
nj

� �þ /k;min vd;j;0
� 	

njþ1
� �

� 2Dd;ef ;jþ1=2

hjþ1þhj
l /ð Þ

jþ1;k � l /ð Þ
j;k

h i
; j ¼ 1; . . . ; J � 1

/k; FJ
� � ¼ /k;max vd;J ;0

� 	
nJ

� � ð45Þ

and

l /ð Þ
in;k tð Þ ¼

Z dmax

dmin

nin t;dð Þ/k dð Þd dð Þ ð46Þ

The moments of the breakage and coalescence terms in the j com-
partment are written as:

H /ð Þ
j;k ¼ /k;Hj

� � ¼ /k;Ha;j
� �þ /k;Hb;j

� � ð47Þ
Using the hypotheses described in Section 2.3, we can write the
moments of the coalescence and breakage terms as:

/k;Ha;j
� � ¼ 1

2

R dmax

dmin

R dmax

dmin
/k s3 þ u3

� �1=3� �
� /k sð Þ � /k uð Þ

h i
xj u; sð Þnj t;uð Þnj t; sð Þdsdu

ð48Þ

/k;Hb;j
� � ¼ Z dmax

dmin

gj uð Þnj t;uð Þ m uð ÞP /ð Þ
k uð Þ � /k uð Þ

h i
du ð49Þ

where

P /ð Þ
k uð Þ ¼

Z u

dmin

/k dð ÞB djuð Þd dð Þ ð50Þ
3.2. Moment equations for the well-mixed vessel

This is a particular case of the model presented in the previous
section. Thus, considering the same hypotheses described in Sec-
tion 2.4, we can write the moments of the corresponding PBE by:

@l /ð Þ
k

@t
¼ 1

th

l /ð Þ
in;k

�tin
� l /ð Þ

k

" #
þ /k;Hah i þ /k;Hbh i ð51Þ

where

l /ð Þ
k tð Þ ¼

Z dmax

dmin

n t;dð Þ/k dð Þd dð Þ ð52Þ

and /k;Hah i and /k;Hbh i are those obtained from Eqs. 48,49 by
dropping the j subscript.

4. The usage of a dimensionless internal variable

The internal variable d can be used to defined the dimensionless
diameter x in the 0;1½ � interval:.
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x dð Þ ¼ d� dmin

dmax � dmin
) dx ¼ d dð Þ

dmax � dmin
ð53Þ

d xð Þ ¼dmin þ x dmax � dminð Þ ð54Þ
Considering the nj t; dð Þ distribution in the multi-compartment
model, the transformed distribution ~nj t; xð Þ is given by:

nj t;dð Þd dð Þ ¼ ~nj t; xð Þdx ) ~nj t; xð Þ ¼ nj t; dð Þ dmax � dminð Þ ð55Þ
Defining uk xð Þ ¼ /k d xð Þð Þ, the following relation between the
moment operators can be established:

uk; �ð Þh i ¼ R 1
0 �ð Þuk xð Þdx ¼ 1

dmax�dmin

R dmax

dmin
�ð Þ/k dð Þd dð Þ

¼ 1
dmax�dmin

/k; �ð Þh i
ð56Þ

where �ð Þ; �ð Þh i indicates the inner product between two functions
relatively to their internal variable, d or x. It should be pointed
out that uk xð Þ is just an expression for /k d xð Þð Þ and, therefore, both
have the same dimensions, even though x is dimensionless.

Therefore, Eqs. (55) and (56) shows that:

uk; ~nj
� � ¼ /k;nj

� � ð57Þ
Similarly
~nin t; xð Þ ¼ dmax � dminð Þnin t;dð Þ ) uk; ~ninh i ¼ /k;ninh i ð58Þ
If we define:eF j t; xð Þ ¼ dmax � dminð ÞFj t;dð Þ; ð59Þ

eHa;j t; xð Þ ¼ dmax � dminð ÞHa;j t; dð Þ ð60Þ

eHb;j t; xð Þ ¼ dmax � dminð ÞHb;j t; dð Þ ð61Þ
then

uk;
eF j

D E
¼ /k; Fj
� � ð62Þ

uk;
eHa;j

D E
¼ /k;Ha;j
� � ð63Þ

uk;
eHb;j

D E
¼ /k;Hb;j
� � ð64Þ
4.1. Moment equations of the multi-compartment model

Considering Eqs. (57), (58), (62), (63) and (64), the moment
equations of the multi-compartment model, given by Eq. (44),
can be written as:

@l uð Þ
j;k

@t
þ 1
hj

uk;
eF j

D E
� uk;

eF j�1

D E� �
¼ uk;

eHj

D E
þ 1
th;jd

l uð Þ
in;k

�tin
dj;jd ; j ¼ 1; . . . ; J ð65Þ

where

uk;
eF 0

D E
¼ uk;min vd;0; 0

� 	
~n1

� �
;

uk;
eF j

D E
¼ uk;max vd;j; 0

� 	
~nj

� �þ uk;min vd;j;0
� 	

~njþ1
� �

� 2Dd;ef ;jþ1=2

hjþ1 þ hj
l uð Þ

jþ1;k � l uð Þ
j;k

h i
; j ¼ 1; . . . ; J � 1;

ð66Þ

uk;
eF J

D E
¼ uk;max vd;J ;0

� 	
~nJ

� �
;

and

uk;
eHa;j

D E
¼ 1

2

R 1
0

R 1
0 uk q x; yð Þð Þ �uk yð Þ �uk xð Þ½ �

~xj x; yð Þ~nj t; xð Þ~nj t; yð Þdydx
ð67Þ
7

where q x; yð Þ is the value of the dimensionless diameter of the
daughter drop formed by the coalescence of drops with dimension-
less diameters x dð Þ and y uð Þ and ~xj x dð Þ; y uð Þð Þ ¼ xj d;uð Þ. The break-
age term becomes:

uk;
eHb;j

D E
¼
Z 1

0

~gj xð Þ~nj t; xð Þ ~m xð Þ ~P uð Þ
k xð Þ �uk xð Þ

h i
dx ð68Þ

where ~gj x dð Þð Þ ¼ gj dð Þ and

P /ð Þ
k u xð Þð Þ ¼ R u xð Þ

dmin
/k d yð Þð ÞB d yð Þju xð Þð Þd dð Þ

¼ R x
0 uk yð ÞeB yjxð Þdy ¼ ~P uð Þ

k xð Þ:
ð69Þ
4.2. Moment equations for the continuous well-mixed vessel

As before, this is a special case of the multicompartment model
with just one compartment. Therefore, the moment equations in
the dimensionless internal variable come from Eq. (65) with
J ¼ 1. Using the same approximations described in Section 2.4,
we have:

@l uð Þ
k

@t
¼ 1

th

l uð Þ
k;in

�tin
� l uð Þ

k

" #
þ uk;

eHa

D E
þ uk;

eHb

D E
ð70Þ

and wk;
eHa

D E
and wk;

eHb

D E
are those obtained from Eqs. (67)–(69)

by dropping the j subscript.

5. Application of the DuQMoGeM to the models

The DuQMoGeM employs two quadrature rules (Lage, 2011).
The first one is the Nq-point Gauss-Christoffel quadrature based
on the 2Nq moments of the particle number distribution function.
It is used to discretize the distribution. The second quadrature rule
is a M-point Gaussian quadrature based on an orthogonal polyno-
mial family that is used to calculate the integrals related to the
internal variable with controlled accuracy. It is strongly recom-
mended that M > 2Nq to guarantee the correct integration of the
expansion coefficients of Eq. (74) when it is substituted into Eq.
(75).

For continuous distributions, the 2Nq generalized moments of
the distribution are directly related to a 2Nq � 1

� 	
-order series

expansion using the orthogonal polynomial family employed to
generate the second quadrature. Here, all models were solved
using the dimensionless internal variable x, and, therefore, we
employed the Legendre polynomials shifted to the 0;1½ � interval,
uk xð Þ.

5.1. The Gauss-Legendre quadrature

The Gauss-Legendre quadrature in the 0;1½ � interval approxi-
mates the following integral of a generic function G:Z 1

0
G xð Þdx �

XM
i¼1

wiG nið Þ ð71Þ

where wi are the weights and ni are the abscissas of the quadrature
rule. As it gives the correct value of the integral when G is a polyno-
mial whose order is equal to or less than 2M � 1, the result for
G xð Þ ¼ 1 gives that:XM
i¼1

wi ¼ 1 ð72Þ
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If an integral in the incomplete interval 0; x½ � is necessary, one just
has to define Y ¼ y=x:Z x

0
G yð Þdy ¼ x

Z 1

0
G xYð ÞdY ¼ x

XM
i¼1

wiG nixð Þ ¼
XM
i¼1

wx;iG nx;i
� 	 ð73Þ

where wx;i ¼ xwi and nx;i ¼ xni.

5.2. DuQMoGeM solution for the multi-compartment extraction
column

For this case, the mean distribution function at each compart-
ment, ~nj t; xð Þ, is approximated by the polynomial series of
2Nq � 1 order:

~nj t; xð Þ ¼
X2Nq�1

i¼0

cj;i tð Þui xð Þ ð74Þ

where

cj;i tð Þ ¼ ~nj;ui

� �
ui;uih i ¼

1

kuik2
Z 1

0

~nj t; xð Þui xð Þdx ¼ l uð Þ
j;i tð Þ
kuik2

;

i ¼ 0;1; . . . ;2Nq � 1 ð75Þ
Although Eq. (74) provides an approximate representation of the
drop number distribution, it must be emphasized that the DuQMo-
GeM is a moment method, and its solution consists of the general-

ized moments, l uð Þ
j;i .

Substitution (74) and (75) in (65) gives:

kukk2 @cj;k tð Þ
@t ¼ 1

hj
uk;

eF j�1

D E
� uk;

eF j

D E� �
þ 1

th;jd

l uð Þ
in;k
�tin

dj;jd

þ
X2Nq�1

i¼0

X2Nq�1

l¼0

Ajklicj;lcj;i þ
X2Nq�1

i¼0

Ljkicji; j ¼ 1; . . . ; J

ð76Þ
where, from Eq. (66):

uk;
eF0

D E
¼ uk;min vd;0; 0

� 	
~n1

� �
uk;

eF j

D E
¼ uk;max vd;j;0

� 	
~nj

� �þ uk;min vd;j; 0
� 	

~njþ1
� �

� 2Dd;ef ;jþ1=2
hjþ1þhj

kukk2 cjþ1;k � cj;k
� �

; j ¼ 1; . . . ; J � 1

uk;
eF J

D E
¼ uk;min vd;J

� 	
~nJ

� �
ð77Þ

The advective terms in Eq. (77) can be approximated by:

uk;max vd;j;0
� 	

~nj
� � ¼X2Nq�1

i¼0

cj;iVþ
jki; ð78Þ

uk;min vd;j;0
� 	

~njþ1
� � ¼X2Nq�1

i¼0

cjþ1;iV
�
jki ð79Þ

where

Vþ
jki ¼ uk;max vd;j;0

� 	
ui

� � ¼ R 1
0 uk xð Þui xð Þmax vd;j t;d xð Þð Þ;0� �

dx;

ð80Þ
V�

jki ¼ uk;min vd;j;0
� 	

ui

� � ¼ R 1
0 uk xð Þui xð Þmin vd;j t;d xð Þð Þ;0� �

dx:

ð81Þ
Using Eqs. (67) and (68), the breakage and coalescence terms can be
written as:

Ljki ¼ ~gj ~m ~P uð Þ
k �uk

h i
;ui

D E
¼
Z 1

0
~gj xð Þui xð Þ ~m xð Þ ~P uð Þ

k xð Þ �uk xð Þ
h i

dx; ð82Þ
8

Ajkli ¼ uk q x; yð Þð Þ �uk yð Þ �uk xð Þ½ � ~xj x; yð Þ;ul yð Þ� �
;ui xð Þ� �

¼ 1
2

R 1
0

R 1
0 uk q x; yð Þð Þ �uk yð Þ �uk xð Þ½ � ~xj x; yð Þui xð Þul yð Þdydx

ð83Þ

Applying the Gauss-Legendre quadrature given by Eq. (71) to the
above integrals, we have:

Vþ
jki ¼

XM
r ¼ 1

vd;j t;d nrð Þð Þ P 0

wruk nrð Þui nrð Þvd;j t;d nrð Þð Þ; ð84Þ

V�
jki ¼

XM
r ¼ 1

vd;j t;d nrð Þð Þ < 0

wruk nrð Þui nrð Þvd;j t;d nrð Þð Þ; ð85Þ

Ljki ¼
XM
r¼1

wr~gj nrð Þui nrð Þ ~m nrð Þ ~P uð Þ
k nrð Þ �uk nrð Þ

h i
; ð86Þ

Ajkli ¼ 1
2

XM
r¼1

XM
p¼1

wrwp uk q np; nr
� 	� ��uk np

� 	�uk nrð Þ� �
~xj nr ; np
� 	

ui nrð Þul np
� 	

:

ð87Þ

For the moments of the daughter distribution function, defined in
eq. (69), the quadrature rule in the incomplete interval given by
Eq. (73) gives:

~P uð Þ
k nrð Þ ¼ nr

XM
m¼1

wmuk nrnmð ÞeB nrnmjnrð Þ: ð88Þ
5.3. DuQMoGeM solution for the well-mixed vessel

This solution can be obtained by applying the multi-
compartment model with J ¼ jd ¼ 1. Using Eq. (76) and the same
simplifications described in Section 2.4, we have:

kukk2
@ck tð Þ
@t

¼ l uð Þ
in;k

th�tin
� 1
th
kukk2ck tð Þ þ

X2Nq�1

i¼0

X2Nq�1

l¼0

Akliclci þ
X2Nq�1

i¼0

Lkici

ð89Þ
where

~n t; xð Þ ¼
X2Nq�1

i¼0

ci tð Þui xð Þ; ci tð Þ ¼ l uð Þ
i tð Þ
kuik2

ð90Þ

where Lki and Akli are calculated as given by Eqs. (86) and (87)
after dropping the j subscript.

6. Numerical procedure

The DuQMoGeM equations for the J-compartment model form a
system of 2NqJ

� 	
ordinary differential equations that were coded in

a FORTRAN program that used the DASSL package (Petzold, 1982)
for time integration with controlled local accuracy. This integration
was carried out in double precision with the cj;i coefficients as the
dependent variables. These are then used to compute the generalized
moments and the series approximation of the drop number distribu-
tions in all compartments. In all cases, the DASSL routine employed
values for the absolute and relative tolerances equal to 10�11.

The ORTHPOL package (Gautschi, 1994) routines were used to
compute the polynomial recursion coefficients and quadrature
rules. The routine drecur with ipoly = 2 gives the first M pairs of
recursion coefficients for the three-term recurrence relation for
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the Legendre polynomials shifted to the 0;1½ � interval that are fed
to the dgauss routine to compute the Gauss-Legendre quadrature
rule for this interval, that is, its abscissas, ni, and weights,
wi; i ¼ 1; . . . ;M.

If a discretization of the distribution is desired, the 2Nq first

Legendre-generalized moments of the distribution, l uð Þ
j;i ; i ¼ 0;

1; . . . ;2Nq � 1 can be fed to the dcheb routine to provide the first
Nq pairs of recursion coefficients for the three-term recurrence
relation for the polynomials that are orthogonal in respect to the
measure given by the distribution. Then, these recursion coeffi-
cients can be used as input to the dgauss routine to compute the
Nq-point Gauss-Christoffel quadrature rule.

7. Results

In order to present the results clearly, we divided this section
into four subsections, each one devoted to presenting results for
one of the following systems: batch extraction vessel, continuous
flow extraction vessel, extraction columns, all of them solved for
problems with known analytical solutions, and an extraction col-
umn with available experimental data.

Thebatchextractionvessel sectionshowsDuQMoGeMresults for
problems with pure breakage, pure coalescence, and simultaneous
breakage and coalescence. The continuous flow extraction vessel
section presents DuQMoGeM results for pure breakage and pure
coalescence problems. The convergence of the lowest order
moments regarding the number of points in the first quadrature,
Nq, was studied for these well-mixed vessel solutions. Analytical
solutions exist for extraction column problemswith no drop disper-
sion and constant drop ascension velocity assumptions. The extrac-
tion column section presents DuQMoGeM solutions for three such
cases: pure breakage, pure coalescence, and simultaneous breakage
and coalescence. The convergence of results regarding the number
of compartments was analyzed. In the final section, we compared
the DuQMoGeM prediction of the hold up of the dispersed phase
with available experimental data for a Kühni column operated with
the toluene-water system.Wemodeled theKühni column, including
drop advective and dispersive transport, breakage, and coalescence.

In fact, the verification problems were solved analytically in the
semi-finite range, 0;1½ Þ, while the DuQMoGeM solutions were
solved for the range dmin; dmax½ �. However, we guaranteed that the
supports of the number density distributions given by the analyt-
ical solutions were always within the dmin; dmax½ � range for the ana-
lyzed time interval. We also assumed spherical droplets.

7.1. Batch extraction vessel

For the batch extraction vessel, we applied the DuQMoGeM
solution to Eq. 40, for which three cases with available analytical
solutions were considered: a pure breakage, a pure coalescence,
and a simultaneous breakage and coalescence problems. In fact,
the last two cases were solved previously by Lage (2011) using
the DuQMoGeM, but employing the particle volume in the semi-
infinite domain as the internal variable. In this section, all variables
are considered dimensionless.

7.1.1. Pure coalescence in finite domain, d 2 0; 6:0½ �
When the drops undergo coalescence with a constant kernel

(x ¼ 1 for this case) and with an exponential initial distribution
given by

n 0;dð Þ ¼ t0 dð Þ exp �t dð Þ½ �; ð91Þ
the analytical solution was reported by Gelbard and Seinfeld (1978)
as:
9

n t;dð Þ ¼ 4t0 dð Þ
xt þ 2ð Þ2

exp � 2t dð Þ
xt þ 2

� 
; ð92Þ

where t dð Þ ¼ cvd
3 and t0 dð Þ ¼ dt=d dð Þ ¼ 3cvd

2.
Under these conditions, we investigated the effect of the num-

ber of the Gauss-Christoffel quadrature points on the absolute
errors of the first four moments. Fig. 2 shows that the absolute
error decreases by increasing the number of the Gauss-Christoffel
quadrature Nq, being the best results generated for Nq ¼ 6. This fig-
ure shows that the DuQMoGeM accuracy for the zeroth-order
moment is better than for the first and second-order moments.
The third-order moment has an error close to the machine’s accu-
racy because it is unchanged throughout the evolution of the dis-
tribution as the breakage phenomenon conserves the total
volume (mass) of the particles.

Fig. 3 presents the analytical solution and the numerical distri-
bution function computed with Nq ¼ 6 and M ¼ 12 for this case for
three instants, showing perfect agreement between the analytical
distributions and their DuQMoGeM approximations.

7.1.2. Pure breakage in finite domain, d 2 0; 2½ �
In this case, a normal Gaussian distribution with mean m ¼ 0:9

and standard deviation a ¼ 0:8 was used as the initial condition as
given by:

n 0;dð Þ ¼ t0 dð Þffiffiffiffiffiffiffi
2p

p
a
exp � t dð Þ �mð Þ2

K

" #
ð93Þ

where K ¼ 2a2. For a daughter drop distribution given by

B djuð Þ ¼ 6d2
=u3and a breakage frequency linear in drop volume,

g dð Þ ¼ t dð Þ, Hasseine et al. (2020) provided the exact solution that
can be writen as:

n t;dð Þ ¼ t0 dð Þ2vþKt2vþ ffiffiffiffi
K

p ffiffiffiffi
p

p
U 2t þmt2 � t2t dð Þ� 	

2
ffiffiffiffiffiffiffi
2p

p
a

� exp �tt dð Þ½ � ð94Þ
where

v ¼ exp � t dð Þ �mð Þ2
2a2

" #
and U ¼ 1þ erf

m� t dð Þffiffiffiffi
K

p

 �

ð95Þ

Fig. 4(a) shows a comparison between the analytical moments
of n t; dð Þ with those obtained from DuQMoGeM solution for
Nq ¼ 4 and M ¼ 8, which show excellent agreement. The results
show that the total volume of the droplets, l3, remains constant.
The moments of the order lower than three increase, whereas l4

and l5 decrease. Fig. 4(b) shows the good agreement between
the exact and the numerical distributions obtained from DuQMo-
GeM at different times using Nq ¼ 6 and M ¼ 12.

7.1.3. Simultaneous breakage and coalescence in finite domain,
d 2 0; 2:8½ �

We considered here the combined coalescence and breakage
problem with x v;uð Þ ¼ 1; g dð Þ ¼ g0t dð Þ; g0 ¼ 2, and

B d=uð Þ ¼ 6d2
=u3. For the initial condition described by Eq. (91),

McCoy and Madras (2003) gave the following analytical solution:

n t;dð Þ ¼ t0 dð Þ U tð Þ½ �2 exp �U tð Þt dð Þ½ � ð96Þ
where

U tð Þ ¼ U 1ð Þ1þU 1ð Þ tanh U 1ð Þt=2ð Þ
U 1ð Þ þ tanh U 1ð Þt=2ð Þ ; U 1ð Þ ¼

ffiffiffiffiffiffiffiffi
2g0

p
ð97Þ



Fig. 3. Pure coalescence problem in a batch extraction vessel: comparison of the
analytical and numerical distributions.

Fig. 2. Pure coalescence problem in a batch extraction vessel: absolute errors for the first four regular moments for the DuQMoGeM solutions with Nq ¼ 2;4 and 6 using the
same number of Gauss-Legendre quadrature points, M ¼ 12.
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Fig. 5 shows the series approximation of the number density
distribution for the numerical solution with Nq ¼ 6 and M ¼ 12
at different values of t, showing a good agreement with the analyt-
ical solution.
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7.2. Continuous flow extraction vessel

The performance of the DuQMoGeM to solve the PBE in the con-
tinuous flow well-mixed extraction vessel is tested for two different
cases: one with droplet coalescence and other with droplet breakage.
In this section, all variables are considered dimensionless.

7.2.1. Pure breakage in finite domain, d 2 0; 1:9½ �
This case is similar to first case of pure breakage but in a contin-

uous flow extraction vessel with th ¼ 103. The inlet drop number dis-
tribution, nin t; dð Þ, is the normal Gaussian distribution with mean
m ¼ 0:9 and standard deviation a ¼ 0:8 given by Eq. (93). Initially,
there is no drop in the reactor, and, thus, n 0; dð Þ ¼ 0. This problem
comes from Hasseine et al. (2020) and its analytical solution is:

n t;dð Þ ¼ t0 dð Þa
2
ffiffiffiffi
2p

p
ab t;dð Þ aþt dð Þ½ �3 2 �1þ b t;dð Þ½ � t dð Þ½ �2v

n
þK �2þ 2b t;dð Þ � 2tt dð Þ � t2 t dð Þ½ �2
h i

v

þ ffiffiffiffi
K

p ffiffiffiffi
p

p
t2 t dð Þ½ �3 þm �2þ 2b t;dð Þ � 2tt dð Þ � t2 t dð Þ½ �2

� �h i
U

þa2 �2þ 2b t; dð Þ �Kt2
� 	

vþ ffiffiffiffi
K

p ffiffiffiffi
p

p
t �2�mt þ tt dð Þð ÞU

h i
�2a �2 �1þ b t;dð Þð Þt dð ÞvþKt 1þ tt dð Þð Þv½

� ffiffiffiffi
K

p ffiffiffiffi
p

p �1þ b t;dð Þ � tt dð Þ þ t2 t dð Þð Þ2 �mt 1þ tt dð Þ½ �
n o

U
io

ð98Þ

where a ¼ t�1
h and b t;dð Þ ¼ exp t aþ t dð Þ½ �f g.



Fig. 4. Pure breakage problem in a batch extraction vessel: comparison of the
analytical and numerical results.

Fig. 5. Simultaneous breakage and coalescence problem in batch extraction vessel:
comparison of the analytical and numerical distributions.
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Fig. 6(a) shows the regular moments obtained from DuQMo-
GeM solution with Nq ¼ 6 and M ¼ 12 together with those com-
puted from the exact solution. The results demonstrate that all
moments increase with time. The numerical and analytical results
for all moments are in good agreement. Fig. 6(b) shows the exact
and the numerical distribution obtained from DuQMoGeM at dif-
ferent values of t. The agreement between the numerical and ana-
lytical distributions is excellent.

7.2.2. Pure coalescence in finite domain, d 2 0; 4:6½ �
The population balance equation in a continuous flow well-

mixed extraction vessel was solved dynamically using the DuQMo-
GeM for a pure coalescence problem with a constant aggregation
kernel (x ¼ 1). The initial condition is zero, n 0; dð Þ ¼ 0, while the
drop number distribution at the inlet, nin t; dð Þ, has the same distri-
bution given by Eq. (91). Hounslow (1990) solved this problem at
the steady state and found the following exact solution:

n 1; dð Þ ¼ t0 dð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2th

p exp � 1þ thð Þt dð Þ
1þ 2th


 �
I0

�tht dð Þ
1þ 2th

� 
þ I1

�tht dð Þ
1þ 2th

� 
 �
ð99Þ
Fig. 6. Pure breakage problem in a continuous flow extraction vessel: comparison
of the analytical and numerical results.



Fig. 7. Pure coalescence problem in a continuous flow extraction vessel: compar-
ison of the analytical and numerical results.

Table 1
Breakage and coalescence functions.

Case B d=uð Þ g dð Þ ¼ g0t dð Þ x d;uð Þ ¼ x0

1 6d2=u3 g0 ¼ 10�2 x0 ¼ 0

2 0 g0 ¼ 0 x0 ¼ 0:5
3 6d2=u3 g0 ¼ 1:92� 10�2, x0 ¼ 0:3
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where I0 and I1 are the modified Bessel functions of the first kind
and zeroth and first orders, respectively.

The simulation was implemented with Nq ¼ 3 and M ¼ 6 and
th ¼ 10. In order to verify the DuQMoGeM results, for different val-
ues of t, the distributions obtained by the DuQMoGeM are pre-
sented with the exact solution described by the above equation
in Fig. 7(a). The numerical distributions for t P 30 conform with
its steady-state analytical solution. The dynamically predicted
and the analytical steady-state moments are presented in Fig. 7
(b). As expected for a first-order system, the process reaches the
steady state for t=th � 4.

7.3. Hydrodynamics simulation of extraction columns

The DuQMoGeM solution of the multi-compartment model was
obtained for three test cases: pure breakage, pure coalescence and
breakage with coalescence. We assumed pure drop advection with
a constant velocity because the analytical solutions are known for
these three cases under this assumption, being provided by
Attarakih et al. (2004) and Hasseine et al. (2018). In this section,
all variables are considered dimensionless.

All simulations assumed no drops initially present in the column,
Qd=A ¼ 1;vd ¼ 1, and inlet drop number distribution given by:

N0nin t; dð Þ ¼ t0 dð ÞN0

�tin
exp � t dð Þ

�tin


 �
ð100Þ

where the drop number density, N0, and the mean volume, �tin, were
chosen to be 0.05 and 1, respectively. For each case, the employed
breakage and coalescence functions are reported in Table 1. Solu-
tions are presented along the dimensionless vertical coordinate,
f ¼ z=h and the injection point of the disperse phase is located at
f ¼ 0:1. For all cases, the simulation results were obtained assuming
an uniform compartment height.

7.3.1. Case 1: pure breakage, d 2 0; 2:5½ �
The analytical solution is described as follows:

n t; z;dð Þ ¼ t0 dð ÞN0

�tin

� exp � 1þ g0Dzð Þ t dð Þ
�tin


 �
1þ g0Dzð Þ2H t � Dz

vd


 �
ð101Þ

where Dz ¼ z� zd and H is the Heaviside step function.

7.3.2. Case 2: pure coalescence, d 2 0; 3:8½ �
The exact solution for this case is written as:

n t; z;dð Þ ¼ t0 dð ÞN0

�tin
4

2þ N0xDzð Þ2

� exp � 2
2þ N0xDzð Þ

t dð Þ
�tin


 �
H t � Dz

vd


 �
ð102Þ
7.3.3. Case 3: breakage and coalescence, d 2 0; 2:7½ �
Using the technique reported by Hasseine et al. (2018), we can

derive the analytical solution from that developed by McCoy and
Madras (2003) for the batch problem, leading to:

n t; z;dð Þ ¼ t0 dð ÞN0

�tin
U zð Þ½ �2 exp �U zð Þ t dð Þ

�tin


 �
H t � Dz

vd


 �
ð103Þ

where

U zð Þ ¼ U 1ð Þ1þU 1ð Þ tanh U 1ð ÞxDzN0=2ð Þ
U 1ð Þ þ tanh U 1ð ÞxDzN0=2ð Þ ; U 1ð Þ ¼ 2g0�tin

x0N0


 �1=2
ð104Þ

For this solution, N0 and �tin are constants for all t and z.
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7.3.4. Convergence regarding the number of compartments
For Nq ¼ 3 and M ¼ 6, the effect of the number of compart-

ments in the DuQMoGeM solution for Case 1 was studied for
J ¼ 50;100 and 200 compartments. The results for the first four
regular moments are presented in Fig. 8, which shows that the
DuQMoGeM accuracy improves by increasing the number of com-
partments. However, J ¼ 200 is still not enough to accurately cap-
ture the sharp moving front of the solution due to the numerical
diffusion of the upwind scheme used for the advective part of Fj.

7.3.5. Prediction of the steady-state solution
Using Nq ¼ 4;M ¼ 8 and J ¼ 100, the DuQMoGeM steady-state

results for the moments of order k ¼ 1;2;3 and 4 are compared
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with the analytical solution for the pure breakage, pure coalesence,
and simultaneous breakage and coalescence in Fig. 9. The accuracy
of the moments predicted by DuQMoGeM is very good. The third
moment, l3, is constant after the injection point (f ¼ 0:1) in all
cases due to the absence of mass transfer.

The numerical and analytical distributions are shown in Fig. 10
at steady state at several f points. The DuQMoGeM results were
obtained with Nq ¼ 6;M ¼ 12 and J ¼ 100. The agreement between
the simulated and analytical distributions is quite good, showing
the ability of the DuQMoGeM to predict the drop number distribu-
tions in an extraction column.

Table 2 shows the mean CPU times and their standard devia-
tions computed for 20 runs of case 3 simulation using each one
of five sets of values for Nq;M, and J, which were defined as varia-
tions of the base case (Nq ¼ 3;M ¼ 6 and J ¼ 100). When J doubled,
the computational cost increased about 2.4 times. A 10-fold
increase in M, added 38% in the CPU time. The simulation with
Nq ¼ 3 is about 67% more costly than that with Nq ¼ 2. Therefore,
the cost increase with M is mild, but it is superlinear with J or Nq

for this simple problem.

7.4. Experimental validation of an extraction column

As a final test, we compared the DuQMoGeM results with the
experimental data of Hasseine et al. (2005) for the hydrodynamic
behavior of a laboratory-scale Kühni column without mass trans-
fer. It was operated in countercurrent mode with water as the con-
tinuous phase and toluene forming the drops of the dispersed
Fig. 8. DuQMoGeM convergence regarding the number
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phase. Many researchers widely used this chemical system that
is recommended by the EFCE (European Federation of Chemical
Engineering) as a test system for liquid extraction studies. This col-
umn has 44 compartments. The dispersed-phase was fed at com-
partment five (jd ¼ 5 and zd=h ¼ 0:091), and the continuous
phase inlet is at the bottom of compartment 43 (zc ¼ 294 cm).
The active height of the column, where there is mechanical agita-
tion, consists of compartments 5 to 41. Table 3 shows the operating
conditions and column dimensions, while Table 4 presents the
physical properties of both phases. We reported the details of the
Kühni column modeling in Appendix A.

The numerical simulation of the Kühni column was carried out
with J ¼ 44, corresponding to the actual number of stages. We ver-
ified the convergence of the results by comparing those obtained
using Nq ¼ 3 and 4 and M ¼ 16 and 32. After some preliminary
simulations, we chose 0:01;0:4½ �cm as the diameter range. Sensi-
tivity of the results to these choices of dmin and dmax was performed,
and the results were essentially the same. Minor differences in the
drop Sauter mean diameter results occurred only below the
disperse-phase inlet, where the holdup is essentially zero. The sim-
ulation reaches the steady-state profiles for the hold up after about
1000 s, but the breakage and coalescence dynamics were much fas-
ter. Thus, the results at t ¼ 1200 can represent the steady-state.
Fig. 11 shows the simulated holdup profile and drop Sauter mean
diameter together with the available experimental data
(Hasseine et al., 2005). Considering that the Sauter mean diameter
data are scattered, the agreement between experimental and sim-
ulated data is fairly good. The simulation from t ¼ 0 to 1200s
of compartments for the pure breakage problem.



Fig. 9. Comparison of the analytical and numerical moments for steady-state solutions in an extraction column.
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whose results are shown in Fig. 11 took about 930 s on an Intel(R)
Core(TM) i7-2600 K@3.40 GHz (GNU FORTRAN compiler, version
9.3.0).

8. Conclusion

Population balance models, including breakage and coales-
cence, were solved using DuQMoGeM for describing the dispersed
phase behavior in liquid-liquid dispersed systems.

We analyzed DuQMoGeM solutions for batch and continuous
flow well-mixed vessels and liquid-liquid extraction columns.
We considered problems including breakage and coalescence for
which analytical solutions exist. The moments of the droplet size
distribution predicted by the DuQMoGeM were in excellent agree-
ment with the analytical solutions. Besides, the DuQMoGeM
approximation for the drop number distribution was also shown
to be in good agreement with the analytical solutions.

We modeled and simulated a Kuhni column for which some
experimental data exists. The DuQMoGeM results for the disperse
phase holdup agreed well with the experimental data at the
steady-state, and the simulated drop Sauter mean diameter com-
pared favorably with the scattered experimental data.

Therefore, we showed that the DuQMoGeM is a very efficient
technique for solving droplet population balance models, being
quite promising for modeling and simulating liquid-liquid extrac-
tion columns.
14
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Appendix A. Kühni column modeling

A.1. Drop velocity correlations

The drop terminal velocity, v t , was calculated according to the
value of Morton number using the correlations given by Godfrey
and Slater (1994), Klee and Treybal (1956), Grace et al. (1976),
and Vignes (1965).

The slowing factor values for the Kühni column are provided by
(Fang et al., 1995):



Fig. 10. Comparison of the analytical and numerical distributions in an extraction
column.

Table 2
CPU times for simulating Case 3.⁄

Conditions CPU time (s) Standard deviation (s)

Nq ¼ 3;M ¼ 6; J ¼ 50 0.85 0.02
Nq ¼ 3;M ¼ 6; J ¼ 100 2.15 0.20
Nq ¼ 3;M ¼ 6; J ¼ 200 5.06 0.11
Nq ¼ 3;M ¼ 60; J ¼ 100 2.97 0.10
Nq ¼ 2;M ¼ 6; J ¼ 100 1.28 0.03

	CodeBlocks 20.03 (Windows 10) on a Intel(R) Core(TM) i3-2348@2.30 GHz.

Table 3
Kühni column parameters.

Turbine diameter DR ¼ 0:085 m

Compartment height hj ¼ 0:07m;8j
Total height h ¼ 3:08 m
Active part 2:52m
Throughput continuous phase Qc ¼ 125 L=h
Throughput through the distributor Qd ¼ 130 L=h
Column diameter D ¼ 0:15 m
Energy dissipation � ¼ 0:0788 W=kg
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kv ¼ 1� 1� hð Þ 7:1810�5ReR=h

1þ 7:1810�5ReR=h

 !
ðA:1Þ

where h is the relative free cross-sectional stator area and ReR is
defined by:

ReR ¼ qcD
2
RNR

gc
ðA:2Þ

The exponent in the swarm effect term was calculated from Bailes
et al. (1986) correlation:

j ¼ 4:45Re�0:1
p � 1; Rep ¼ qcdv tkv

gc
ðA:3Þ
A.2. Initial and feed conditions

There are no drops in the column at t ¼ 0, and the inlet drop
distribution nin is the experimental piecewise constant distribution
employed by Hasseine et al. (2005), whose mean Sauter diameter
is 0.294 cm.

A.3. Dispersion coefficient correlations

We employed the dispersion coefficient correlations given by
Steiner et al. (1988). For the continuous phase, the correlation is
applied to each compartment:

Dc;j tð Þ ¼ �vc;jhj 0:188þ 0:0267h0:5
DRNR

�vc;j


 �
ðA:4Þ

where �vc;j ¼ Qc= A 1� rd;j tð Þ� 	� �
is the interstitial continuous-phase

velocity and hj is the actual height of the compartment j in the
Kühni column. For the disperse phase, Steiner et al. (1988) also pro-
vided a correlation, but they recommended its usage with caution:

Dd;cor ¼ �3:78� 10�4 þ 0:068
Qc

ANR


 �0:5
ðA:5Þ

Since Dd ! Dc from above as the mixing intensity increases
(Gourdon et al., 1994), and following Seikova et al. (1992), we used:

Dd;j tð Þ ¼ max Dd;cor;Dc;j tð Þ� 	 ðA:6Þ



Table 4
Chemical system properties.

gc mPað Þ gd mPað Þ qc kg=m3
� 	

qd kg=m3
� 	

r mNm�1
� �

0.92 0.6 997.2 862.2 33.7

Fig. 11. Simulated and experimental data for the Kühni column at steady-state: (a) dispersed phase holdup and (b) Sauter mean diameter.
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It should be noted that Dc;j and Dd;j are assumed null for the non-
active sections of the Kühni column.

A.4. Drop breakage

Different breakupmechanisms exist and strongly depend on the
column geometry. The drop breakage probability is supposed to be
homogeneous in each compartment (Hasseine et al., 2005), the
breakage frequency and the breakage probability were modeled
by Cauwenberg et al. (1997, 2002) and recommended by Modes
(2000):

P dð Þ
1� P dð Þ ¼ 0:2148We0:7796m ðA:7Þ

where

Wem ¼ q0:8
c g0:2

c dD1:6
R -1:8 �-1:8

crit

� 	
r

ðA:8Þ

where DR is the rotor diameter. The breakage frequency depends on
the residence time:

g z;dð Þ ¼ P dð Þvd z;dð Þ
hj

ðA:9Þ

-crit ¼ 2p0:65
qcD

3
R

r

 !�0:5
d
DR

� �0:72

ðA:10Þ

The daughter droplet size distribution is described by a b distri-
bution, based on the mother drop diameter d0 (Bahmanyar and
Slater, 1991):

B d0;dð Þ ¼ 3 m� 1ð Þ 1� d3

d3
0

 !m�2
d2

d3
0

ðA:11Þ

where the mean number of daughter drops is calculated by:

m ¼ 2þ 0:838
d0

dcrit

� 
� 1


 �1:309
ðA:12Þ

The critical diameter at which drops start to break is given by:
16
dcrit ¼ 0:65DRWe�0:72
R ðA:13Þ

where:

WeR ¼ qcD
3
RN

2
R

r
ðA:14Þ
A.5. Drop coalescence

For this process, the system properties at interfaces, the inten-
sity of the collision and the contacting time between the colliding
drops are key parameters. It is usual to define the coalescence rate
as:

x d1;d2; rdð Þ ¼ k d1;d2; rdð Þf d1;d2; rdð Þ ðA:15Þ
where k is the collision efficiency, and f is the collision frequency.
From the literature (Coulaloglou and Tavlarides, 1977), the expres-
sions for k and f can be modeled by:

k d1; d2; rdð Þ ¼ exp �
C2gcqc�

d1d2
d1þd2

� �4
1þ rdð Þ3r2

264
375 ðA:16Þ

and

f d1;d2; rdð Þ ¼
C1

ffiffiffi
�3

p
d1 þ d2ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=3
1 þ d2=3

2

q
1þ rd

ðA:17Þ

where � is the specific energy input, C1 ¼ 0:01 and
C2 ¼ 108m�2 ¼ 104 cm�2.

A.6. Mechanical power dissipation per unit mass

The power dissipation per unit mass is a parameter that affects
the drop behavior in agitated systems (Kumar and Hartland, 1995).
The effect of the rotor can be

� ¼ P

qcAhj
¼ 4P
pD2hjqc

ðA:18Þ

The power input per compartment can be calculated by:

P ¼ NpN
3
RD

5
Rq ðA:19Þ
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where Npis the power number of the column:

Np ¼ 1:08þ 10:94
Re0:5R

þ 257:37
Re1:5R

ðA:20Þ
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