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Integral Transform Solution
of Porous Medium Models
for Heat Sinks Subject
to Periodic Heat Loads
Analysis of the energy transport in thermal microdevices modeled as a porous medium
under periodic heat loads is conducted using integral transforms. Coupled eigenvalue
problems are employed and a single set of coupled ordinary differential equations con-
veying all information on the temperature fields in both the solid and fluid phases are
reached, allowing for a relatively straightforward treatment of the local thermal nonequi-
librium (LTNE) formulation. This characteristic proved instrumental in finding out that
the local thermal equilibrium (LTE) hypothesis is inadequate for unsteady problems. The
solid phase is shown to have a significant role on inducing thermal lag in the fluid, which
may be severe, depending on the dimensions and operational conditions. In general, devi-
ces comprised of larger fractions of solid material and with poorer heat transfer charac-
teristics are more prone to having larger thermal lag along them. These conclusions may
be relevant to a wide range of applications such as electronics cooling, battery thermal
management, solar energy harvesting, among others. [DOI: 10.1115/1.4056003]

Keywords: porous media, thermal lag, periodic heat loads, thermal microdevices, inte-
gral transforms, generalized integral transform technique

Introduction

Transport process intensification is one of the main strategies
for improving the energy efficiency of industrial equipment, and
advances in this area can certainly aid in the energy transition
efforts. Such processes are mostly surface-based, meaning that
greater area-to-volume ratios directly translate into better per-
formance of the devices involved. Notably, research and develop-
ment of thermal devices have been pursuing miniaturization as a
mean of boosting this ratio for a while [1], with remarkable results
in cooling of electronics [2,3] and high concentration photovoltaic
cells [4], waste heat recovery [5], heat pipes [6,7], among others.

Several challenges arise when numerically analyzing miniatur-
ized thermal devices due to their inherent multiscale nature,
requiring refined enough meshes around the smallest structures
and, thus, leading to very time-consuming computations. Profes-
sor Catton and his collaborators were among the firsts to recognize
the potential of employing the volume averaging technique to pro-
duce an upscaled model where small-scale information is incorpo-
rated into the equations through properly modeled effective
properties of a fluid saturated porous medium [8–11], allowing for
more effective simulation and optimization of these devices. This
strategy is often referred to as “designed porous medium” [12]
and it has recently been applied to the thermodynamic optimiza-
tion of several microscale geometries of heat sinks intended for
low-grade waste heat recovery applications [13].

Many studies have dealt with conjugate heat transfer in thermal
devices modeled as porous media by adopting the local thermal
equilibrium (LTE) hypothesis, i.e., assuming that, in each repre-
sentative elementary volume, the solid and fluid phases tempera-
tures are equal on average [14–16]. This approach is appealing,
since it leads to a single equation encompassing all heat transfer
information, simplifying the simulation process. However, pre-
scribed heat loads, significant differences in thermophysical prop-
erties, and unsteady conditions are known to induce significant
deviations from the LTE hypothesis, requiring a two-equation
alternative to be used instead, in what is called the local thermal
nonequilibrium (LTNE) formulation [17–22].

Analyses of heat transfer in microdevices are usually restricted
to steady-state. Nevertheless, most applications involve transient
periods that might affect the overall performance of the equip-
ment. For instance, computer processors can boost their frequency
for short periods of time to deal with highly demanding tasks, and
any cooling device attached to it must be capable of promptly
responding to this temporary additional heat load to avoid over-
heating of the integrated circuits. A relevant subset of time-
dependent behavior is the periodic one, occurring when a thermal
device is subjected to a periodic heat load for a time long enough
for the initial transient to die out and the temperature field within
the device to start oscillating with the same frequency of the heat
load [23,24]. This situation is representative of applications such
as thermal comfort [25,26], where thermal lag is leveraged to ease
out day-wise temperature variation, battery charge–discharge
cycles [27,28], and solar energy (either thermal or photovoltaic)
harvesting [29,30].

The generalized integral transform technique (GITT) [31,32]
was proposed in the 1980s as an extension of the classical
integral transform technique [33] to enable the hybrid
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numerical–analytical solution of partial differential equations
involving nontransformable terms. Since then, this approach has
evolved enough to deal with a plethora of problems within the
fluid flow and convection–diffusion realms such as heat transfer in
irregular geometries [34–37], nonlinear problems [31,38–41], and
the Navier–Stokes equations [42–45], combining the flexibility of
numerical schemes with the reliability and robustness of analytical
methods. In particular, heat and fluid flow in porous media were
tackled by the GITT in several efforts [46–48] and, recently, an
extension of the so-called class IV problems solution [33] was
shown to successfully handle LTNE formulations for roughly the
same computational cost of adopting the more limited LTE
hypothesis [13,49].

In this work, the unsteady thermal response of a fluid flow
through a porous channel subjected to a periodic heat flux at the
bottom is evaluated. Adopting the designed porous medium
framework, a microchannels-based thermal device is analyzed
with an upscaled LTNE model and chosen as a base case from
which relevant dimensionless parameters are varied to probe their
effect on the thermal lag of both the solid and liquid phases within
the porous channel. The GITT is chosen as the solution method
for its recently found capability of handling LTNE formulations
effectively in combination with symbolic computation provided
by the Wolfram Mathematica platform [50].

Model and Methods

Figure 1 illustrates a porous channel insulated at the top and
with a periodic heat flux imposed at the bottom. A fluid flows
through and saturates the porous medium with a velocity u,
assumed to be constant along the y-direction (Darcy flow hypothe-
sis). The porous medium height is d and its width is assumed to be
large enough so that the temperature fields are invariant along the
transversal z-direction. As already pointed out, this porous chan-
nel can effectively represent microdevices, provided models to
upscale the effects of the smallest structures are available [8–13].

In applications involving microdevices, the thermophysical
properties of the solid and fluid phases may differ considerably.
Furthermore, unsteady heat transfer problems are known to not be
amenable to the simpler LTE formulation [18], thus, the two-
equation LTNE model is adopted as follows [9–11]:

1� eð Þ qcpð Þs
@Ts
@t

¼ ks 1� eð Þ @2Ts
@x2

þ @2Ts
@y2

" #
� afshfs Ts � Tfð Þ

(1a)

e qcpð Þf
@Tf
@t

þ qcpð Þf u
@Tf
@x

¼ kf e
@2Tf
@x2

þ @2Tf
@y2

" #
� afshfs Tf � Tsð Þ

(1b)

with boundary conditions and heat flux given by

Ts 0; y; tð Þ ¼ Tf 0; y; tð Þ ¼ Tin (1c,d)

���� @Tf@x

����
x!1

< 1 (1e)

���� @Ts@x

����
x!1

< 1 (1f )

Tf x; 0; tð Þ ¼ Ts x; 0; tð Þ (1g)

qw tð Þ ¼ �ks 1� eð Þ@Ts
@y y¼0

� kf e
@Tf
@y

j
y¼0

(1h)

@Tf
@y

����
y¼d

¼ @Ts
@y

����
y¼d

¼ 0 (1i,j)

qw tð Þ ¼ qw;0cos xtð Þ (1k)

where x and y are the horizontal and vertical coordinates, t is the
time, Ts and Tf are the intrinsic average temperatures of the solid
and fluid phases, respectively, Tin is the inlet temperature, qcpð Þs
and qcpð Þf are the thermal capacities of the solid and fluid phases,
respectively, ks and kf are the thermal conductivities of the solid
and fluid phases, respectively, e is the porosity of the porous
medium, afs is the specific surface area of the porous medium, hfs
is the interstitial heat transfer coefficient, qw is the imposed heat
flux, and qw;0 and x are, respectively, the amplitude and angular
frequency of the prescribed wall heat flux.

A bounded gradient along the x-direction is imposed as x ! 1
in Eqs. (1e) and (1f) for reasons to be clarified further in the text
(see the Computational Procedure section). In addition, LTNE for-
mulations require specification as to how the heat flux at the bot-
tom is shared among the solid and fluid phases. Equations (1g)
and (1h) assume local thermal equilibrium at the wall and that the
heat flux is distributed according to the effective thermal conduc-
tivity of each phase [51].

Consider the following dimensionless parameters:

hf ¼ kf
Tf � Tin
qw;0d

(2a)

hs ¼ kf
Ts � Tin
qw;0d

(2b)

n ¼ x

dPed
(2c)

g ¼ y

d
(2d)

s ¼ af t
d2

(2e)

Ped ¼
ud

af
(2f )

Nufs ¼
hfs afsd

2
� �
kf

(2g)

Qw ¼ qw
qw;0

(2h)

X ¼ xd2

af
(2i)

Ws ¼
qcpð Þs
qcpð Þf

(2j)

Fig. 1 Schematic of the fluid saturated porous channel sub-
jected to a periodic heat flux at the bottom. A Cartesian coordi-
nate system and relevant quantities are included to ease the
understanding of the model.
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Ks ¼
ks
kf

(2k)

where n and g are the dimensionless horizontal and vertical coor-
dinates, respectively, s is the dimensionless time, hs and hf are the
dimensionless temperatures of the solid and fluid phases, respec-
tively, Ped is the P�eclet number, Nufs is the interstitial Nusselt
number, Qw is the dimensionless heat flux, X is the dimensionless
angular frequency of the heat flux, Ws is the ratio of the solid and
fluid phases heat capacities, and Ks is the ratio of the solid and
fluid phases thermal conductivities.

The dimensionless form of the model of Eqs. (1a) and (1k) then
becomes

Ws 1� eð Þ @hs
@s

¼ Ks 1� eð Þ 1

Pe2d

@2hs
@n2

þ @2hs
@g2

" #
� Nufs hs � hf

� �
(3a)

e
@hf
@s

þ @hf
@n

¼ e
1

Pe2d

@2hf
@n2

þ @2hf
@g2

" #
� Nufs hf � hs

� �
(3b)

with boundary conditions and dimensionless heat flux given by

hs 0; g; sð Þ ¼ hf 0; g; sð Þ ¼ 0 (3c,d)

���� @hf@n

����
n!1

< 1 (3e)

���� @hs@n

����
n!1

< 1 (3f )

hf n; 0; sð Þ ¼ hs n; 0; sð Þ (3g)

Qw sð Þ ¼ �Ks 1� eð Þ@hs
@g

����
g¼0

� e
@hf
@g

����
g¼0

(3h)

@hf
@g

����
g¼1

¼ @hs
@g

����
g¼1

¼ 0 (3i,j)

Qw sð Þ ¼ cos Xsð Þ (3k)

Filtering Procedure. Rather than analyzing an arbitrary
unsteady physical situation, the present work deals with the peri-
odic state characterized by the temperature fields in both the solid
and fluid phases oscillating with the same frequency as the applied
heat load [23,24]. In these circumstances, it is convenient to work
with complex numbers and extract the behavior along the time
variable into the exponential of iXs, where i ¼

ffiffiffiffiffiffiffi
�1

p
. To properly

recover a real number when evaluating hs and hf , the following
solution is proposed:

hs n; g; sð Þ ¼ R eiXs Fs n; gð Þ þHs n; gð Þ½ �
� �

(4a)

hf n; g; sð Þ ¼ R eiXs Ff n; gð Þ þHf n; gð Þ
� 	n o

(4b)

where R means the real part of, Fs and Ff are real filter solutions
for the solid and fluid phases, respectively, and Hs and Hf are,
respectively, complex filtered dimensionless temperatures of the
solid and fluid phases. Though not of interest in the present appli-
cation, the imaginary part of the solution in Eqs. (4a) and (4b)
leads to the periodic response of the dimensionless temperature to
the sine functional form of the heat flux excitation,
Qw sð Þ ¼ sin Xsð Þ.

Ideally, the filter functions Fs and Ff should contain as much
physical information as possible, enabling enhanced convergence
of the solution using the GITT [32,52]. For this purpose, the
steady-state thermally developed solutions of Eqs. (3a)–(3k) when
X ¼ 0 are proposed as filters. Mathematically, the following set
of equations are proposed for Fs and Ff :

0 ¼ Ks 1� eð Þ @
2Fs

@g2
� Nufs Fs � Ffð Þ (5a)

@Ff

@n
¼ e

@2Ff

@g2
� Nufs Ff � Fsð Þ (5b)

with boundary conditions given by

Ff n; 0ð Þ ¼ Fs n; 0ð Þ (5c)

1 ¼ �Ks 1� eð Þ@Fs

@g

����
g¼0

� e
@Ff

@g

����
g¼0

(5d)

@Fs

@g

����
g¼1

¼ @Ff

@g

����
g¼0

¼ 0 (5e,f )

where for a thermally developed solution, yields

dFm

dn
¼ dFw

dn
¼ @Ff

@n
(5g,h)

Fs � Fw

Fm � Fw
¼ /s gð Þ (5i)

Ff � Fw

Fm � Fw
¼ /f gð Þ (5j)

Equations (5a)–(5j) can be solved analytically. The expressions
obtained, however, are omitted for the sake of brevity. Substitut-
ing hs and hf by eiXs Fs þHs½ � and eiXs Ff þHf½ � into
Eqs. (3a)–(3k) and using Eqs. (5a)–(5j), yields

iXWs 1� eð Þ Fs þHsð Þ ¼ Ks 1� eð Þ 1

Pe2d

@2Hs

@n2
þ @2Hs

@g2

" #

� Nufs Hs �Hfð Þ (6a)

iXe Ff þHfð Þ þ
@Hf

@n
¼ e

1

Pe2d

@2Hf

@n2
þ @2Hf

@g2

" #
� Nufs Hf �Hsð Þ

(6b)

with boundary conditions given by

Hs 0; gð Þ ¼ �Fs 0; gð Þ (6c)

Hf 0; gð Þ ¼ �Ff 0; gð Þ (6d)

���� @Hf

@n

����
n!1

< 1 (6e)

���� @Hs

@n

����
n!1

< 1 (6f )

Hf n; 0ð Þ ¼ Hs n; 0ð Þ (6g)

Ks 1� eð Þ@Hs

@g

����
g¼0

þ e
@Hf

@g

����
g¼0

¼ 0 (6h)
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@Hf

@g

����
g¼1

¼ @Hs

@g

����
g¼1

¼ 0 (6i,j)

Eigenvalue Problem. To solve Eqs. (6a)–(6j) using the GITT,
an eigenvalue problem must be proposed, from which the basis
for the eigenfunction expansion derives. The model is comprised
of two partial differential equations and traditionally it would
require that two independent Sturm–Liouville-type eigenvalue
problems be proposed and solved, one for each of the unknown
potentials Hs and Hf . The integral transform procedure would
then provide two sets of coupled ordinary differential equations
for the transformed potentials to be solved. This is a more cumber-
some endeavor, and another path is taken in this work. Building
upon previous contributions [13,33,49], the following coupled
eigenvalue problem is proposed:

Ks 1� eð Þ d
2ws;m

dg2
� Nufs ws;m � wf ;m

� �
¼ 0 (7a)

e
d2wf ;m

dg2
þ k2mwf ;m � Nufs wf ;m � ws;m

� �
¼ 0 (7b)

with boundary conditions given by

wf ;m 0ð Þ ¼ ws;m 0ð Þ (7c)

Ks 1� eð Þdws;m

dg

����
g¼0

þ e
dwf ;m

dg

����
g¼0

¼ 0 (7d)

dwf ;m

dg

����
g¼1

¼
dws;m

dg

����
g¼1

¼ 0 (7e,f )

and normalization given by

~ws;m gð Þ ¼
ws;m gð Þffiffiffiffiffiffi

Nm

p (7g)

~wf ;m gð Þ ¼
wf ;m gð Þffiffiffiffiffiffi

Nm

p (7h)

Nm ¼
ð1
0

wf ;m gð Þ2dg (7i)

Equations (7a)–(7i) can be solved analytically, but, once more,
the expressions are omitted to be more concise. The eigenfunc-
tions in Eqs. (7g) and (7h) are orthonormal [33,49], i.e.,

ð1
0

~wf ;m gð Þ~wf ;n gð Þdg ¼ dmn (8)

where dmn is Kronecker’s delta.
In turn, the orthogonality property allows for transform and

inverse formulae to be proposed as,
Transform

Hm nð Þ ¼
ð1
0

~wf ;m gð ÞHf n; gð Þdg (9a)

Inverse formulae

Hs n; gð Þ ¼
X1
m¼1

Hm nð Þ~ws;m gð Þ (9b)

Hf n; gð Þ ¼
X1
m¼1

Hm nð Þ~wf ;m gð Þ (9c)

The solution proposal of Eqs. (9b) and (9c) segregates all the
information as to how the temperatures in the solid and fluid
phases differ and are coupled together, encoded into the eigen-
value problem of Eqs. (7a)–(7i), from the variation of the temper-
ature fields along the n coordinate, conveyed by the transformed
potential, Hm nð Þ. This feature allows for effective handling of the
coupled two-equation LTNE formulation that has favored the
adoption of the simplified one-equation LTE model by many
researchers [14–16]. More detailed information on why the solu-
tion of the coupled eigenvalue problem of Eqs. (7a)–(7i) forms a
basis for the space of possible solutions for the temperature fields
can be found elsewhere [33,49].

Alternatively, a more informative eigenvalue problem could
have been adopted, by incorporating the left-hand sides of Eqs.
(6a) and (6b), which carry the information on the periodic regi-
men, through the dimensionless oscillation frequency. However,
as will be seen in what follows, it was sufficient and less cumber-
some to consider this class IV problem defined in the real domain
only, even if larger truncation orders are needed with the increase
in the frequency.

Transformed Problem. Operating Eqs. (6a) and (6b), respec-

tively, with
Ð 1
0
~ws;m gð Þ �ð Þdg and

Ð 1
0
~wf ;m gð Þ �ð Þdg, summing the

resulting expressions, using the orthogonality property, substitut-
ing the inverse formulae of Eqs. (9b) and (9c), and rearranging,
yields

1

Pe2d

X1
n¼1

Bmn
d2Hn

dn2
¼ dHm

dn
þ
X1
n¼1

DmnHnþ iX gmþhmn
� �

;

m¼ 1;2;… (10a)

with boundary conditions, obtained by applying
Ð 1
0
~wf ;m gð Þ �ð Þdg to

Eqs. (6d) and (6e), given by

Hm 0ð Þ ¼ f m (10b)

���� dHm

dn

����
n!1

< 1 (10c)

and integral coefficients

Bmn ¼ Ks 1� eð Þ
ð1
0

~ws;m gð Þ~ws;n gð Þdgþ edmn (10d)

Cmn ¼ Ws 1� eð Þ
ð1
0

~ws;m gð Þ~ws;n gð Þdgþ edmn (10e)

Dmn ¼ k2mdmn þ iXCmn (10f )

f m ¼ �
ð1
0

~wf ;m gð ÞFf 0; gð Þdg (10g)

gm ¼ Ws 1� eð Þ
ð1
0

~ws;m gð ÞFs 0; gð Þdg� ef m (10h)

hm ¼ Ws 1� eð Þ
ð1
0

~ws;m gð Þdgþ e
ð1
0

~wf ;m gð Þdg (10i)

Computational Procedure. The system of ordinary differen-
tial equations (10a)–(10i) must be truncated to a finite order so it
can be handled computationally, which is accomplished by carry-
ing out the sums in the inverse formulae of Eqs. (9b) and (9c) up
to N terms. As a result, the truncated system is comprised of N
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ordinary differential equations and each summation within them
retains up to N terms.

The truncated system can be handled analytically. For this pur-
pose, it must be rewritten as a system of first-order differential
equations by defining

Xm nð Þ ¼ Hm nð Þ; m ¼ 1; 2;…;N (11a)

XNþm nð Þ ¼ dHm

dn
; m ¼ 1; 2;…;N (11b)

X nð Þ ¼ Xr nð Þ
� �

r¼1;2;…;2N (11c)

The definitions of Eqs. (11a)–(11c) allow for the truncated
transformed problem to be rewritten as

dX

dn
¼ MX nð Þ þ aþ bn (12a)

with coefficients matrix and source vector

M ¼
0 I

Pe2dB
�1D Pe2dB

�1

" #
(12b)

a ¼ Pe2dB
�1g (12c)

b ¼ Pe2dB
�1h (12d)

where B¼ Bmnf gm;n¼1;2;…;N , D¼ Dmnf gm;n¼1;2;…;N ,

I¼ dmnf gm;n¼1;2;…;N , g ¼ gmf gm¼1;2;…;N , and h ¼ hmf gm¼1;2;…;N .

Equations (12a)–(12c) can be diagonalized with the help of the
eigenvectors of the matrix M computed using the Eigensystem
function of the Wolfram Mathematica v13.0 platform [50,53]. Let
U be a matrix whose columns are the eigenvectors of M and
X ¼ Uu. Then, Eqs. (12a)–(12c) can be rewritten as

du
dn

¼ Kuþ â þ b̂n (13)

where K ¼ frdrsf gr¼1;2;…;2N is a matrix with the eigenvalues of

M, fr (also obtained with the eigensystem routine [50]), in
its diagonal and whose other elements are zero,

â ¼ U�1a ¼ ârf gr¼1;2;…;2N , b̂ ¼ U�1b ¼ b̂r
� �

r¼1;2;…;2N , and

u ¼ urf gr¼1;2;…;2N . Equation (13) can be solved analytically in

the form

ur nð Þ ¼ crexp frnð Þ � âr
fr

� b̂r
fr

nþ 1

fr


 �
(14)

To avoid an unrealistic exponential growth in both jHsj and
jHf j along n, cr is set to zero for all values of r where R frf g > 0,
which corresponds to half the values in frf gr¼1;2;…;2N . The practi-
cal consequence is the bounded temperature derivatives of the
boundary conditions (1e) and (1f) and (6e) and (6f).

The vector X is then recovered as follows:

X nð Þ ¼ Uu nð Þ (15)

Finally, the entry condition of Eq. (10b) is enforced upon the
first N elements of X, yielding a linear system to be solved for
the remaining coefficients cr . This linear system is solved with the
function LinearSolve of the Wolfram Mathematica v13.0 platform
[50], completing the solution of the transformed problem.

Once the transformed problem is solved, the inverse formulae
of Eqs. (9b) and (9c) are used to recover the potentials Hs and Hf .
Some relevant results can then be extracted from these potentials.

Their sum with the filters, Fs and Ff , are complex numbers, and
their absolute values and complex arguments are the amplitudes
and phase shifts of the dimensionless temperature fields, respec-
tively. These quantities can be calculated using the functions Abs
and Arg of the Wolfram Mathematica v13.0 platform [50]. The
thermal lags for the solid and fluid phases in a particular position
along the porous channel are then obtained by, respectively, divid-
ing the complex arguments of Hs and Hf by the angular fre-
quency, X.

Lastly, the dimensionless temperature fields are retrieved using
Eqs. (4a) and (4b). The temperature at the bottom wall can then
be evaluated as

hw n; sð Þ ¼ hs n; 0; sð Þ ¼ hf n; 0; sð Þ (16a,b)

where hw is the dimensionless temperature at the bottom wall.

Results and Discussion

Base Case. A base case, stemming from a microchannel-based
thermal device made of plexiglass through which flows air, is cho-
sen to illustrate the solution method. The thermal device is com-
prised of 25 microchannels 200 lm wide, 1mm tall, and 10mm
long. The air flowrate is 10 L/min. Using the upscaling model pro-
posed in Ref. [13], the dimensionless entry parameters shown in
Table 1 are obtained.

Convergence Analysis. Before analyzing the periodic response
and overall behavior of the porous channel, the convergence of
the results must be checked. Let Fs þHs and Ff þHf be written
as Ase

iXbs and Af e
iXbf , respectively, where As and Af are the

amplitudes of oscillation in the temperature fields for the solid
and fluid, whereas bs and bf are the thermal lags for these same
phases. Defining

�AðN Þ ¼
AjN¼200 �AjN

AjN¼200

�����
����� (17a)

�b Nð Þ ¼
bjN¼200 � bjN

bjN¼200

�����
����� (17b)

where �A and �b are the truncation errors for the amplitude and
thermal lag as compared to their values at N ¼ 200. Figures 2(a)
and 3(a) present the truncation errors of the amplitude in the tem-
perature fields for the solid and fluid phases, respectively, as a
function of the truncation order, N . These results are for the base
case. It is clear from these graphs that the convergence of the solid
temperature is much smoother. Similar conclusions are reached
by analyzing Figs. 2(b) and 3(b) with a noticeable slower conver-
gence of the thermal lag at g ¼ 0:25.

Table 2 presents more detailed information regarding the con-
vergence of the thermal lag in the fluid and solid temperature
fields. As imposed by the boundary condition of Eq. (6g), the ther-
mal lag at the bottom wall (g ¼ 0) is the same for the solid and
fluid phases. Increasing the truncation order from N ¼ 195 to
N ¼ 200 changes the obtained thermal lag by at most 0.26%,

Table 1 Dimensionless parameters for the base case

Variable name Symbol Value

Porosity e 0.5
P�eclet number Ped 767
Interstitial Nusselt number Nufs 111
Dimensionless angular frequency X 1
Ratio of thermal capacities Ws 1475
Ratio of thermal conductivities Ks 7.39
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except for the fluid at g ¼ 0:25, which was already identified as
slowly converging in Fig. 3(b), where the change of the thermal
lag reaches 1.76%. Nevertheless, these results are satisfactory in
the envisioned applications and N ¼ 200 is henceforth employed
throughout.

Verification and Validation. To build further confidence on
the results to follow, a verification and validation effort are carried
out by comparing, respectively, with numerical [13] and experi-
mental [54] results available in the literature. The results of these
comparisons are depicted in Fig. 4. In this graph, the dependency

Fig. 2 Truncation errors of the amplitude and thermal lag of the solid dimensionless tem-
perature: (a) amplitude of the temperature oscillation and (b) thermal lag

Fig. 3 Truncation errors of the amplitude and thermal lag of the fluid dimensionless temper-
ature: (a) amplitude of the temperature oscillation and (b) thermal lag

Table 2 Convergence of the thermal lag of the fluid and solid phases temperature fields (data from base case)

Solid Fluid

N g ¼ 0 g ¼ 0:25 g ¼ 0:5 g ¼ 0 g ¼ 0:25 g ¼ 0:5

50 �1.0071 �0.9547 �0.3181 �1.0071 �1.8005 0.6732
100 �1.0750 �1.0039 �0.3786 �1.0750 �0.8161 0.5582
120 �1.0847 �1.0106 �0.3880 �1.0847 �0.8627 0.5397
140 �1.0916 �1.0152 �0.3946 �1.0916 �0.7321 0.5269
160 �1.0966 �1.0185 �0.3994 �1.0966 �0.7614 0.5175
170 �1.0987 �1.0199 �0.4014 �1.0987 �0.7958 0.5136
180 �1.1005 �1.0211 �0.4032 �1.1005 �0.6841 0.5103
190 �1.1021 �1.0222 �0.4047 �1.1021 �0.6375 0.5073
195 �1.1029 �1.0227 �0.4054 �1.1029 �0.7163 0.5059
200 �1.1036 �1.0232 �0.4061 �1.1036 �0.7037 0.5046
Relative difference 0.06% 0.05% 0.17% 0.06% 1.76% 0.26%
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of the Nusselt number on the Reynolds number for three test cases
involving water flow through rectangular microchannels machined
in a copper block. Some relevant parameters for each test case are
presented in Table 3 and more information on the definitions of
the Nusselt and Reynolds numbers can be found elsewhere [54].
Both numerical and experimental results are for steady-state, then
the results from the curves in Fig. 4 were obtained by setting
X ¼ 0.

The agreement of the results from this work with the experi-
mental ones is good, with a somewhat more pronounced deviation
for test case #5, however, it is here presumed to be within experi-
mental errors, even though the authors of that work did not pro-
vide a thorough uncertainty analysis [54]. Adherence to the
numerical results from the literature is perfect to the graph scale,
and considering that the methodology of that work was evaluated

against experimental results for other independent experimental
results involving metal foams and pin fins heat sinks [13], it fur-
ther corroborates the adequacy of the present methodology and of
the associated computational code.

Physical Analysis. Figures 5(a) and 5(b) present contour plots
for the thermal lag of the fluid and solid phases in the base case,
respectively. Positive values for the thermal lag mean that, at that
point, the temperature is at least half period behind the periodic
heat load; this fact is due to output of the Arg function being
defined in the interval �p;p½ � [50]. As expected, for both the solid
and fluid phases, the thermal lag is more pronounced in regions
relatively close to the bottom wall, but not at it. The reason for
this behavior is that the information of the heat flux imposed at
the wall was not yet able to reach these intermediate layers, while
layers farther away from the wall are still experiencing the heat
front produced by the prior cycle and thus present milder phase
shifts. In addition, the thermal lag seems to be more pronounced
in the fluid than in the solid.

To get a clearer picture of what was discussed in the previous
paragraph, Figs. 6(a) and 6(b) present dimensionless temperature
profiles, respectively, for the fluid and solid phases at n ¼ 0:03
(roughly equivalent to 10mm from the inlet) for four times within
a period of oscillation of the heat flux. Indeed, the thermal lag is
shown to be more prominent for the fluid phase. At Xs=2p ¼ 0:25
ends a heating process, while at Xs=2p ¼ 0:75 a cooling process
is terminated. Nonetheless, the fluid at g ffi 0:1 is colder than the
wall at Xs=2p ¼ 0:25 and hotter than the wall at Xs=2p ¼ 0:75,

Fig. 4 Comparison of the behavior of the Nusselt number for varying Reynolds number
against numerical [13] and experimental [54] results from the literature: (a) test #1, (b) test
#2, and (c) test #5

Table 3 Parameters of the experimental cases used in the
validation [54]

Values

Variable name Symbol Test #1 Test #2 Test #5

Number of microchannels — 10
Width of the microchannels (lm) — 194 229 534
Height of the microchannels (lm) — 884 1250 2910
Ratio of thermal capacities Ws 0.82589
Ratio of thermal conductivities Ks 654.65
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which is indicative of the thermal lag. This behavior is also pres-
ent in the solid, but at a much smaller degree. It is noteworthy that
the temperature profiles for both phases differ significantly. Thus,
the common adoption of the LTE hypothesis [14–16] may be

inaccurate in periodic problems, where differences in thermal
capacities and the related thermal lag can introduce large tempera-
ture differences, thus confirming the necessity of adopting the
LTNE hypothesis in such unsteady situations.

Fig. 5 Contours of thermal lag along the porous channel: (a) fluid phase and (b) solid
phase. The scale bar is valid for both graphs.

Fig. 6 Dimensionless temperature profiles for four equally spaced times within a period of
oscillation of the heat load: (a) fluid phase and (b) solid phase

Fig. 7 Dimensionless wall temperature along the horizontal coordinate for three values of
the porosity of the porous channel: (a) s50:25 and (b) s5 0:75
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Figures 7–10 present the wall temperature at two instants of
time, namely, Xs=2p ¼ 0:25 and Xs=2p ¼ 0:75, for varying
dimensionless parameters such as e, Nufs, X, and Ped. At the end
of the heating process, i.e., Xs=2p ¼ 0:25, if thermal lag was

zero, the wall temperature should be considerably above the inlet
temperature and hw > 0. On the other hand, at the end of the cool-
ing process (Xs=2p ¼ 0:75), the opposite should occur. Thus, the
higher hw at Xs=2p ¼ 0:25 and the lower hw at Xs=2p ¼ 0:75, the

Fig. 8 Dimensionless wall temperature along the horizontal coordinate for four values of
the P�eclet number: (a) s5 0:25 and (b) s50:75

Fig. 9 Dimensionless wall temperature along the horizontal coordinate for four values of
the angular frequency: (a) s5 0:25 and (b) s50:75

Fig. 10 Dimensionless wall temperature along the horizontal coordinate for four values of
the interstitial Nusselt number: (a) s50:25 and (b) s5 0:75
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lower the thermal lag. As a result, higher porosities, e, and P�eclet
numbers, Ped , and lower angular frequencies, X, lead to smaller
thermal lags. The dependency on the interstitial Nusselt number,
however, is not monotonic, with increases in Nufs mostly disfavor-
ing thermal lag up until Nufs ffi 102, from which point the thermal
lag begins to increase. Overall, the more of the channel is occu-
pied by the solid phase and the worse the heat transfer rate
between phases, more pronounced the thermal lag will be. In fact,
the solid appears to function as an accumulator of thermal energy
exacerbating the thermal lag.

Interestingly, a wavelike behavior along n is apparent as Ped
grows, as seen in Fig. 8. Analyzing the transformed problem of Eqs.
(10a)–(10i) truncated at N ¼ 1, as Ped !1, a term proportional to
exp �iXC11nð Þ in the resulting expression for H1 appears and it is
responsible for the observed oscillatory behavior. For low values of
Ped , if an adiabatic porous channel section before the entrance at
n ¼ 0, the results of this work may prove inaccurate due to backpro-
pagation of thermal energy upstream, as described in Ref. [55].

Conclusions

An integral transform solution of the thermal transport in a
microdevice subjected to a periodic heat load, reformulated as a
porous medium with upscaled models representing microscale fea-
tures, was presented. First, the periodic problem is reformulated as a
quasi-steady problem by extracting the oscillatory information into
new terms with complex numbers in place of the time derivative
operator. Moreover, the employment of a coupled eigenvalue prob-
lem allowed for the attainment of a single set of ordinary differential
equations encompassing solid and fluid heat transfer phenomena
when the LTNE formulation is adopted, with little added computa-
tional effort compared to the adoption of the LTE hypothesis, which
is shown to be inadequate in the present class of problems.

The model and computational code were verified and validated
against previously published numerical and experimental results
with good agreement. Finally, thermal lag was shown to be deeply
affected by some key dimensionless parameters, such as P�eclet and
interstitial Nusselt numbers, porosity, and dimensionless angular
frequency. In sum, microdevices with larger portions occupied by
the solid phase tend to introduce more thermal inertia and induce
larger thermal lags, at least for the situation here analyzed. Further-
more, poorer heat transfer contributes to increased thermal lag.
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Nomenclature

A ¼ amplitude of oscillation in the temperature field
afs ¼ specific surface area of the porous medium

B, C, D ¼ integral coefficients with two indices
cp ¼ specific heat at constant temperature
d ¼ height of the porous medium
F ¼ filter solution

f , g, h ¼ integral coefficients with one index
hfs ¼ interstitial heat transfer coefficient
k ¼ thermal conductivity

Ks ¼ ratio of the solid and fluid thermal conductivities
Nm ¼ norm

Nufs ¼ interstitial Nusselt number
Ped ¼ P�eclet number
qw ¼ heat flux

qw;0 ¼ heat flux amplitude
Qw ¼ dimensionless heat flux
t ¼ time
T ¼ temperature
u ¼ seepage velocity of the fluid in the porous medium

Ws ¼ ratio of the solid and fluid phases heat capacities
x, y ¼ Cartesian coordinates

Greek Symbols

a ¼ thermal diffusivity
b ¼ phase shift of the oscillation in the temperature field

dmn ¼ Kronecker’s delta
� ¼ truncation error
e ¼ porosity
g ¼ dimensionless vertical coordinate
h ¼ dimensionless temperature
H ¼ filtered dimensionless temperature
k ¼ eigenvalues
n ¼ dimensionless horizontal coordinate
q ¼ density
s ¼ dimensionless time
w ¼ eigenfunctions
x ¼ angular frequency of the heat flux
X ¼ dimensionless angular frequency of the heat flux

Superscripts and Subscripts

f ¼ refers to the fluid phase
in ¼ refers to the inlet

m, n ¼ indices of the eigenfunction
s ¼ refers to the solid phase
w ¼ refers to the wall
¼ transformed quantity

� ¼ normalized quantity
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[23] Kakaç, S., Li, W., and Cotta, R. M., 1990, “Unsteady Laminar Forced Convec-
tion in Ducts With Periodic Variation of Inlet Temperature,” ASME J. Heat
Transfer, 112(4), pp. 913–920.

[24] Cheroto, S., Mikhailov, M. D., Kakaç, S., and Cotta, R. M., 1999, “Periodic
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