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ABSTRACT
An analysis based on integral transforms is undertaken for transient three-dimensional con-
jugated conduction-convection heat transfer, with a focus on mini or micro channels-based
devices. The numerical-analytical approach Generalized Integral Transform Technique (GITT)
is combined with a single domain reformulation, providing accurate, robust, and cost-effect-
ive simulations for determining temperature distributions within the domain. The fluid and
solid subdomains are represented as one single region, while the integral transformation is
carried out using a three-dimensional eigenvalue problem encompassing the thermophysi-
cal properties and velocity field abrupt spatial variations. The steady state problem solution
is employed as a filter and solved through an integral transformation based on the corre-
sponding two-dimensional eigenvalue problem defined for the channel cross section. The
transformed ordinary differential systems for both the steady and homogeneous transient
problems are handled analytically, requiring only the numerical solution of the associated
matrix eigensystem analysis. Converged numerical results for dimensionless temperature dis-
tributions are then critically compared with a finite element solution and a previously pro-
posed GITT solution that implements a partial transformation scheme under a pseudo-
transient formulation, both for the conjugated problem with thermally developing laminar
flow in a rectangular channel.

Introduction

Conjugated conduction-convection heat transfer is
one of the most classical problem formulations in
thermal sciences. While an exact solution is not yet
available to the general situation, a few approximate
analytical solutions have been proposed throughout
the last few decades, since the pioneering works of
Perelman [1] and Luikov et al. [2], especially for two-
dimensional steady formulations, either as fully
differential or mixed lumped-differential models.
Applications are numerous, in both the physical scien-
ces and engineering contexts, appearing whenever
solid structures or flow inserts cannot be disregarded
when analyzing the heat transfer process in the whole
fluid-solid thermal system. Then, classical correlations
or analytical solutions for purely convective heat
transfer are no longer applicable, and computational
fluid mechanics tools are forcedly required to provide

costly numerical solutions to such inherently conju-
gated problems.

Microfluidics is a fairly recent scientific domain
characterized by fluid flow and heat and mass transfer
at the micro-scale and the associated applications [3–5].
A literature survey on Google Scholar with the keyword
“microfluidics”, which includes journal papers, confer-
ences and patents, results in an ever-increasing number
of documents since 1981, with a marked increase after
the years 2000, and more than 20,000 documents per
year in 2020 [6]. Process intensification is the main
drive behind this miniaturization wave of various classes
of devices, including micro-mixers, micro-pumps,
micro-separators, micro-reactors, microfluidic batteries,
and micro-heat exchangers, among others. An increas-
ing focus in the research on heat and mass transfer at
the micro-scale, with focus on such different micro-
devices, has been evident in the open literature in
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recent decades, driven by the ever-growing demand
for lighter, smaller and more efficient micro-systems
[5, 7–10]. For instance, since the pioneering work of
Tuckerman and Pease [11], the reduced size of the
channels and the associated rise in heat dissipation cap-
acity, rendered micro-heat exchangers an interesting
option for the cooling of electronic devices. In 2012, the
International Technology Roadmap for Semiconductors
(ITRS) anticipated that, in 2020, the dissipated power of
integrated circuits would be above 100W/cm2 [12].
Since then, three-dimensional integrated circuits have
been advanced, outpacing ITRS roadmap forecasts,
while requiring cooling based on an interlayer micro-
channels structure [13–15]. In addition, single phase
microchannels-based heat exchangers have been the
preferred option in several heat removal intensive appli-
cations, ranging from high concentration photovoltaics,
3D chip stacks, fuel cells, micro-reactors, among others
[12, 16–23].

Along the development of micro-devices that
involve heat transfer, deviations have been observed
between experimental and theoretical results of
important performance parameters [24, 25], which
have been diminishing in recent years, largely on
account of advances in measurement techniques.
Nonetheless, discrepancies were also observed while
adopting correlations originally derived from macro-
scale experiments to verify quantities in microchan-
nels measurements, pointing out to the necessity of
proposing specific correlations for microscale devices.
One of the claims is that such deviations can be
mainly attributed to disregarding phenomena that,
differently from the macroscale, may have significant
importance in a thermal microsystem. These effects
are known as scaling effects, such as wall conjugation,
viscous dissipation, entry effects, measurement uncer-
tainty, axial heat diffusion, slip and temperature jump,
compressibility, among others [10, 24, 26–33]. There

Nomenclature

A Area of the cross section of the channel, m2

AR Aspect ratio
c Coefficients of the solution of the first order trans-

formed problem
cp Specific heat, J/kgK
Dh Hydraulic diameter, m
GITT Generalized Integral Transform Technique
ITRS International Technology Roadmap for

Semiconductors
k Thermal conductivity, W/mK
K Dimensionless thermal conductivity
L Coefficients matrix for the first order transformed

problem
LxT Microfluidic apparatus width in x direction, m
LyT Microfluidic apparatus width in y direction, m
LxM Microchannel width in x direction, m
LyM Microchannel width in y direction, m
N Normalization integrals
ODE Ordinary Differential Equation
PDMS Polydimethylsiloxane
Pe P�eclet number
t Time variable, s
T Temperature, �C
u Velocity vector, m/s
u Velocity component along the z-direction, m/s
U Dimensionless velocity component along the

z-direction
w Volumetric heat capacity (qcp), J/m

3K
W Dimensionless volumetric heat capacity
x, y, z Coordinates, m
X,Y,Z Dimensionless coordinates
z1 Length of the device, m
Z1 Dimensionless length of the device

Greek symbols
a Thermal diffusivity, m2/s
aj Eigenvalues of matrix L

b, �, l, k Eigenvalues associated to eigenfunctions n, X, W, v,
respectively

C,x Auxiliary eigenfunctions
di, j Kronecker’s delta
f Matrix of eigenvectors of L
f Eigenvectors of L
h Dimensionless temperature profile
n,X Eigenfunctions of the steady conjugated problem
q Density, kg/m3

rx Ratio between the hydraulic diameter and the width of
the device

ry Ratio between the hydraulic diameter and the height
of the device

s Dimensionless time
u Vector of dependent functions
w, v Eigenfunctions of the homogeneous transient conju-

gated problem

Subscripts
av Related to the average field
f Fluid region
H Related to the homogeneous transient problem
i, k,m, n Indices associated with the eigenvalue problems
in Related to the inlet conditions
P Related to the steady state problem
s Solid region
w Related to the channel wall
x Refers to the x-direction
y Refers to the y-direction

Superscripts
� Normalized eigenfunction
� Transformed potential
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is still a disagreement in the literature regarding which
scaling effects are essential on the correct treatment of
heat transfer problems at the microscale, for each specific
application, but there is strong evidence that the conjuga-
tion effect is highly relevant and its influence must be, at
least, checked for in every case [10, 27, 28, 31]. Thus, a
better agreement between experimental and simulation
results for convective heat transfer in microchannels
requires research on models and solution methodologies
that are capable of adequately describing the relevant
physical phenomena to fluid flow and heat transfer at
such scales.

Not rarely, the solid substrates and the channels of
thermal micro devices are of comparable sizes, and,
besides, due to combinations of physical dimensions
and properties, in general participate in the overall
heat transfer process. Thus, for the theoretical ana-
lysis, design and optimization of micro-devices that
involve heat transfer, it is commonly mandatory to
study the conjugated heat transfer problem. As previ-
ously mentioned, since the general class of conjugated
conduction-convection problems in full partial dif-
ferential formulation does not have known exact
analytical solutions, purely numerical or hybrid
(numerical-analytical) methods are possible alterna-
tives. However, due to the presence of multiple geo-
metric scales and abrupt interfaces between distinct
materials, purely numerical approaches in general
require refined discretization meshes in different sub-
regions and their transitions, which results in consid-
erable computational costs. In addition, purely
numerical schemes suffer from soaring computational
costs when dealing with three-dimensional formula-
tions. Therefore, previous works have dealt with
hybrid numerical-analytical solutions for this class of
conjugated problems, offering robustness, accuracy
and, in particular, mild computational effort. This
aspect becomes more evident in highly intensive com-
putational tasks, such as in optimization, inverse
problems, and simulation under uncertainty, when a
very large number of runs in the direct problem solu-
tion is required. One such hybrid approach is known
as the Generalized Integral Transform Technique -
GITT [34–43] which derives from the Classical
Integral Transform Method, Mikhailov and Ozisik
[44]. The GITT offers solutions with robustness and
error control similar to its purely analytical version,
significantly expanding the coverage of this more flex-
ible hybrid method in different classes of problems
that are, in principle, non-transformable in the analyt-
ical sense. The GITT solution of conjugated problems
was first proposed in the realm of periodic convection

with conjugation effects in the form of just a transver-
sal thermal resistance but considering the wall thermal
capacitance [45, 46]. Soon afterwards, the axial con-
duction along the wall was considered, but still simpli-
fying the formulation with respect to the transversal
wall conduction through a partial lumped analysis
[47–49]. This same concept was later extended
through an improved lumped-differential analysis [39,
50], being applied and experimentally validated in the
analysis of rectangular micro-heat exchangers [51].
The proposition of a single domain reformulation
strategy allowed for the solution of full conjugated
heat transfer problems through the introduction of
spatially variable coefficients without any approxima-
tion to the wall heat conduction process [52]. The
approach was then extended to include other scaling
effects and generalizing the formulation for regular
and complex geometries in steady or transient regi-
men [53–60]. More recently, Knupp et al. [61] devel-
oped a convective eigenvalue problem and achieved a
convergence acceleration in solving conjugated prob-
lems for parallel plate channels via GITT.

Besides extending the integral transform approach
to progressively more involved conjugated problem
formulations, a few works have previously addressed
transient conjugated problems, including periodic dis-
turbances or fluctuations in the flow field, and/or wall
and entry conditions, which only under very special
circumstances can be reduced to quasi-steady formu-
lations [62–66]. Though a two-dimensional transient
formulation [56] and a three-dimensional steady for-
mulation [55] have been previously dealt with GITT,
a total transformation scheme for transient three-
dimensional conjugated problems has not yet been
implemented. As for the full transient formulation in
micro heat exchangers, although the reduced spatial
scales lead a priori to very small-time scales in the
convective heat transfer transients, it should be
recalled that the substrate thermal capacitance may
play a major role in the time evolution of flow or
temperature disturbances, requiring the full transient
analysis of the thermal problem.

In this context, the present work aims to contribute
with a hybrid numerical-analytical solution of a full
transient three-dimensional conjugated problem for-
mulation in thermal microsystems, through the com-
bined use of GITT and the single domain
reformulation strategy. In microchannels, Reynolds
numbers are typically low and characteristic of lam-
inar flows. Also, the hydrodynamic development
lengths are in general very small relative to the total
length of the exchanger, and the flow entrance effects
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are negligible, leading to a thermally developing flow
situation. On the other hand, Peclet number may be
sufficiently low to require the inclusion of the fluid
axial diffusion term in the energy equation. The focus
of the present work is the generalization of the hybrid
methodology for the treatment, via total transform-
ation, of the transient three-dimensional energy equa-
tion, written for both the solid and fluid domains.
Following the single domain strategy, the problem is
reformulated through unified spatially variable coeffi-
cients that include the abrupt spatial variations associ-
ated with the properties and velocities of fluid and
solid. Thus, the integral transform method solves one
single energy equation for the entire region, obtaining
the transient temperature field through the expansion
of the appropriate three-dimensional eigenfunctions.
The spatial variation of the coefficients from the ori-
ginal problem is fully represented within the eigen-
value problem, which is itself solved via GITT due to
its inherent complexity and to the inexistence of an
analytical solution.

Problem formulation

Consider incompressible laminar flow of a Newtonian
fluid inside a rectangular microchannel, with dimen-
sions and coordinates system defined as in Figure 1,
and external walls subjected to a prescribed uniform
temperature Tw, different from the system initial tem-
perature, Tin: Two scaling effects are here considered,
namely the wall conjugation and the axial heat diffu-
sion effects. The channel walls participate in the heat
transfer process both in the transversal and longitu-
dinal directions. The flow is considered hydrodynami-
cally developed and thermally developing from a
uniform inlet temperature, Tin, the same as the initial
temperature of the whole device, with temperature
independent physical properties. The hydrodynami-
cally developed flow assumption is associated with the

presence of an upstream adiabatic channel section
where the fully developed flow profile is achieved.
Then, the transient three-dimensional conjugated
problem is reformulated as a single domain energy
equation as:

w x, yð Þ @T
@t

þ u � rT

� �
¼ r � k x, yð ÞrT

� �
, 0 < x < LxT ,

0 < y < LyT , 0 < z < z1, t > 0

(1a)

T 0, y, z, tð Þ ¼ Tw;T LxT , y, z, tð Þ ¼ Tw;

0 � y � LyT , 0 � z � z1, t > 0
(1b,c)

T x, 0, z, tð Þ ¼ Tw;T x, LyT , z, tð Þ ¼ Tw;

0 � x � LxT , 0 � z � z1, t > 0
(1d,e)

Tðx, y, 0, tÞ ¼ Tin;
@T
@z

����
z¼z1

¼ 0;

0 � x � LxT , 0 � y � LyT

(1f,g)

T x, y, z, 0ð Þ ¼ Tin; 0 � x � LxT , 0 � y � LyT , 0 � z � z1
(1h)

The thermophysical properties and the fully devel-
oped velocity profile are incorporated into spatially
variable coefficients, so as to represent the abrupt
transitions between the fluid and solid regions as:

k x, yð Þ ¼ kf , at fluid region
ks, at substrate region

�
(2a)

w x, yð Þ ¼ wf , at fluid region
ws, at substrate region

�
(2b)

u x, yð Þ ¼ uf x, yð Þ, at fluid region
0, at substrate region

�
(2c)

where wf and ws are, respectively, the fluid and solid
volumetric heat capacities, whereas kf and ks are,
respectively, the fluid and solid thermal conductiv-
ities, and uf x, yð Þ is the fully developed velocity

Figure 1. Schematic representation of the transient three-dimensional conjugated problem in a rectangular microchannel and cor-
responding solid substrate. (a) Coordinates system and (b) Definitions for the height and width of the substrate and microchannel.
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profile in the fluid. The dimensionless groups are
defined as:

W ¼ w
wf

; h ¼ T � Tw

Tin � Tw
; s ¼ af t

D2
h

(3a–c)

X ¼ 2x
LxT

;Y ¼ 2y
LyT

;Z ¼ z
DhPe

(3d–f)

U ¼ u
uav

;K ¼ k
kf
;Pe¼ uavDh

af
;af ¼

kf
wf

;Dh ¼ 2
LxMLyM

LxM þ LyM
(3g–k)

rx ¼ LxT
Dh

;ry ¼
LyT
Dh

;Xi ¼ LxM
LxT

;Yi ¼
LyM
LyT

;AR¼ Yi

Xi

(3l–p)

where uav is the average flow velocity. The dimension-
less transversal space variables were taken from 0 to 2
to match the definitions in Ref. [55] for comparison
purposes, which employed the limits from 0 to 1, but
imposed symmetry of the boundary conditions on the
transversal directions. Here, symmetry conditions
were not imposed, so as to generalize the approach
for non-symmetric boundary conditions and/or chan-
nel geometries. Equations (1a–h) can then be rewrit-
ten in dimensionless form as:

W X,Yð Þ @h
@s

þU X,Yð Þ @h
@Z

� �
¼ 4
r2x

@

@X
K X,Yð Þ @h

@X

� �

þ 4
r2y

@

@Y
K X,Yð Þ @h

@Y

� �
þ 1
Pe2

@

@Z
K X,Yð Þ @h

@Z

� �
,

0< X < 2, 0< Y < 2, 0< Z < Z1, s> 0

(4a)

h 0,Y ,Z,sð Þ¼0;h 2,Y ,Z,sð Þ¼0;0�Y�2,0�Z�Z1,s>0

(4b,c)

h X,0,Z,sð Þ¼0;h X,2,Z,sð Þ¼0;0�X�2,0�Z�Z1,s>0

(4d,e)

h X,Y ,0,sð Þ¼1;
@h
@Z

����
Z¼Z1

¼0;0�X�2,0�Y�2,s>0

(4f,g)

h X,Y ,Z,0ð Þ¼1;0�X�2,0�Y�2,0�Z�Z1 (4h)

The dimensionless thermophysical properties and
velocity profile are defined, for a straight rectangular
channel, as:

K X,Yð Þ ¼ 1, 1�Xi � X � 1þXi, 1�Yi � Y � 1þYi

kf =ks, otherwise

�

(5a)

W X,Yð Þ ¼ 1,1�Xi �X � 1þXi, 1�Yi � Y � 1þYi

wf =ws, otherwise

�

(5b)

U X,Yð Þ¼
uf x,yð Þ
uav

,1�Xi�X�1þXi,1�Yi�Y�1þYi

0, otherwise

8<
:

(5c)

The dimensionless velocity profile is obtained for
fully developed flow in a rectangular channel, which
has analytical solution by separation of variables, as
presented in Ref. [36]:

uf x, yð Þ
uav

¼ Uf X,Yð Þ ¼ A� X1
j¼1, 3, 5, :::

BjFj Yð ÞGj Xð Þ
(6a)

A� ¼ 48
p3

1� 192
p5

Xi

Yi

X1
l¼1, 3, 5, :::

1
l5
tanh

lpYi

2Xi

� 	� ��1

;

Bj ¼ �1ð Þ j�1ð Þ=2

j3

(6b,c)

Fj Yð Þ ¼ 1� cosh ajYð Þ
cosh ajYið Þ ;Gj Xð Þ ¼ cos ajXð Þ; aj ¼ jp

2Xi

(6d–f)

Solution methodology

Integral transform solutions for transient conjugated
heat transfer in two-dimensional parallel plate chan-
nels [56] and for steady-state three-dimensional rect-
angular channels [54] have been previously obtained.
In both works, the partial transformation scheme of
the GITT was employed, constructing eigenfunction
expansions in the transversal coordinates only, and
leaving the axial variable untransformed. Then, a
transformed partial differential system results, having
the longitudinal coordinate and time (for the transient
problem or a pseudo-transient formulation for the
steady problem) as independent variables, which is
numerically handled to yield the transformed temper-
atures. The partial transformation path reduces the
analytical involvement and, in many cases, competes
on computational cost with the more traditional total
transformation scheme. Nevertheless, accuracy
requirements might favor the adoption of the total
transformation alternative, eliminating all the space
variables in analytic form and solving an ordinary dif-
ferential transformed system instead. In addition, for
a linear transformed ordinary differential equation
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(ODE) system that is analytically solvable, there might
be a significant gain in overall computational cost as
well. Thus, a total integral transformation scheme
combined with the single domain reformulation strat-
egy is here employed in solving transient three-dimen-
sional conjugated problems.

For improved convergence of the eigenfunction
expansion, it is always recommended to reduce the
importance of the equation and boundary source
terms, with the associated gain in computational per-
formance [36]. Therefore, the following filtering solu-
tion for problem (4) is proposed:

h X,Y ,Z, sð Þ ¼ hH X,Y ,Z, sð Þ þ hP X,Y ,Zð Þ (7)

where hP X,Y ,Zð Þ is the solution of the steady-state
conjugated problem, which is here defined as a filter-
ing solution, and hH X,Y ,Z, sð Þ is the solution of the
homogeneous version of the transient problem (4).

Steady state conjugated problem
With respect to the present transient problem solu-
tion, other simpler filters can be proposed, but the
steady state solution is well known for having excel-
lent characteristics for convergence acceleration of
transient problems, and for this reason it has been the
adopted filter. The steady state solution could have
been obtained by the pseudo-transient solution path
in the partial transformation scheme [55], but here a
total double transformation is preferred, reaching a
transformed ODEs system in the longitudinal coordin-
ate only. The dimensionless steady conjugated prob-
lem that defines the filter is given by:

W X,Yð ÞU X,Yð Þ @hP
@Z

¼ 4
r2x

@

@X
K X,Yð Þ @hP

@X

� �

þ 4
r2y

@

@Y
K X,Yð Þ @hP

@Y

� �
þ KðX,YÞ

Pe2
@2hP
@Z2

(8a)

hP 0,Y ,Zð Þ ¼ 0; hP 2,Y ,Zð Þ ¼ 0; 0 � Y � 2, 0 � Z � Z1
(8b,c)

hP X, 0,Zð Þ ¼ 0; hP X, 2,Zð Þ ¼ 0; 0 � X � 2, 0 � Z � Z1
(8d,e)

hP X,Y , 0ð Þ ¼ 1;
@hP
@Z

����
Z¼Z1

¼ 0; 0 � X � 2, 0 � Y � 2

(8f,g)

The chosen transformation strategy for solving
Eq. (8) is based on a two-dimensional eigenfunction
expansion to eliminate the transversal coordinates,
leading to a transformed boundary value problem

along the longitudinal coordinate, Z: The following
integral transform pair is then defined:

Transform:

hPi Zð Þ ¼
ð2
0

ð2
0

KðX,YÞ
Pe2

hP X,Y ,Zð Þ~ni X,Yð ÞdXdY
(9a)

Inverse:

hP X,Y ,Zð Þ ¼ P1
i¼1

~ni X,Yð ÞhPi Zð Þ (9b)

The normalized eigenfunction and its associated
eigenvalues come from the following proposed eigen-
value problem:

4
r2x

@

@X
K X,Yð Þ @ni

@X

� �
þ 4
r2y

@

@Y
K X,Yð Þ @ni

@Y

� �

þ b2i
KðX,YÞ
Pe2

ni X,Yð Þ ¼ 0

(10a)

ni 0,Yð Þ ¼ 0; ni 2,Yð Þ ¼ 0, 0 � Y � 2 (10b,c)

ni X, 0ð Þ ¼ 0; ni X, 2ð Þ ¼ 0, 0 � X � 2 (10d,e)

and the normalized eigenfunctions are calculated from:

~ni X,Yð Þ ¼ ni X,Yð Þffiffiffiffiffiffiffi
Nni

p (10f)

with the normalization integrals given by:

Nni ¼
ð2
0

ð2
0

KðX,YÞ
Pe2

ni X,Yð Þ2dXdY (10g)

This eigenvalue problem with space variable coef-
ficients can be handled by the GITT itself with the
proposition of a simpler auxiliary problem, expand-
ing the unknown eigenfunctions in terms of the
chosen basis, following the procedure described in
Refs. [10, 42]. Thus, a simpler auxiliary problem is
defined as:

4
r2x

@2Xk

@X2
þ 4
r2y

@2Xk

@Y2
þ�2kXk X,Yð Þ¼ 0,0<X< 2,0<Y < 2

(11a)

Xk 0,Yð Þ¼ 0;Xk 2,Yð Þ¼ 0,0�Y � 2 (11b,c)

Xk X,0ð Þ¼ 0;Xk X,2ð Þ¼ 0,0�X� 2 (11d,e)

Applying separation of variables to problem (11), it
is found that the auxiliary eigenfunction can be
expressed as a product of two one-dimensional eigen-
functions, as:

X X,Yð Þ ¼ x Xð ÞC Yð Þ (12a)

6 A. H. R. SOUSA ET AL.



where,

4
r2x

d2x
dX2

þ �2xx Xð Þ ¼ 0 (12b)

x 0ð Þ ¼ 0;x 2ð Þ ¼ 0 (12c,d)

4
r2y

d2C
dY2

þ �2yC Yð Þ ¼ 0 (12e)

C 0ð Þ ¼ 0;C 2ð Þ ¼ 0 (12f,g)

Problems (12) are readily solved in analytical form
and the auxiliary eigenfunctions and eigenvalues are
given by:

Xk X,Yð Þ ¼ Xm, n X,Yð Þ ¼ sin
mpX
2

� 	
sin

npY
2

� 	
,

with �2k ¼ �2m, n ¼ �2xm þ �2yn

(13a,b)

Then, the following transform-inverse pair is pro-
posed for the expansion of the original eigenfunctions,
with the corresponding normalized eigenfunction and
normalization integral:

Transform:

n
ið Þ
m, n

¼
ð2
0

ð2
0

~Xm, n X,Yð Þni X,Yð ÞdXdY (14a)

Inverse:

ni X,Yð Þ ¼ P1
n¼1

P1
m¼1

~Xm, n X,Yð Þn ið Þ
m, n

(14b)

~Xm,n X,Yð Þ¼Xm,n X,Yð Þffiffiffiffiffiffiffiffiffiffiffi
NXm,n

p ,NXm,n ¼
ð2
0

ð2
0
Xm,n X,Yð Þ2dXdY

(14c,d)

For computational purposes, it is preferable to
rewrite the double summation of the inverse formula
(14b) as a single summation according to an appropri-
ate reordering rule, to account for the most relevant
terms of the multiple summation in the final numer-
ical result [39]. Since the final solution is not known a
priori, the simplest proposition is the ascending order
of the squared eigenvalues �2m, n defined in Eq. (13b).
Thus, for each index k is associated a pair m, nð Þ cor-
responding to the indices in the eigenvalues for each
coordinate direction, as given by Eqs. (13a,b), once
the eigenvalues are reorganized in ascending order
[39]. Then, the inverse formula (14b) becomes:

ni X,Yð Þ ¼ P1
k¼1

~Xk X,Yð Þn ið Þ
k

(14e)

The integral transformation of the eigenvalue prob-
lem with space variable coefficients is then achieved by
operating with

Ð 2
0

Ð 2
0
~Xk X,Yð Þ � dXdY , and substituting

the inverse formula (14e), to obtain the following alge-
braic eigensystem:

Aþ Cð Þn ¼ b2Bn (15a)

Akl ¼ �
ð2
0

ð2
0

�
4
r2x

1� K X,Yð Þ½ � @
~Xk

@X
@ ~Xl

@X

þ 4
r2y

1� K X,Yð Þ½ � @
~Xk

@Y
@ ~Xl

@Y

�
dXdY

(15b)

Ckl ¼ �2kdkl;Bkl ¼
ð2
0

ð2
0

K X,Yð Þ
Pe2

~Xk X,Yð Þ~Xl X,Yð ÞdXdY
(15c,d)

Well-established algorithms for matrix eigensystem
analysis can readily solve the algebraic problem given
by Eq. (15), obtaining the vector of eigenvalues b and
the eigenvectors n, after truncation to a sufficiently
large finite order NF. Then, operating the steady
energy equation (8a) with

Ð 2
0

Ð 2
0
~ni X,Yð Þ � dXdY and

making use of the inverse formula and boundary con-
ditions, it results the following coupled system of
ordinary differential equations for the steady state
transformed temperatures:

P1
j¼1 Mij

dhPj
dZ

¼ �b2i hPi Zð Þ þ d2hPi
dZ2

(16a)

hPi 0ð Þ ¼
ð2
0

ð2
0

K X,Yð Þ
Pe2

~ni X,Yð ÞdXdY; dhPi
dZ

j
Z¼Z1

¼ 0

(16b,c)

Mij ¼
ð2
0

ð2
0
W X,Yð ÞU X,Yð Þ~ni X,Yð Þ~nj X,Yð ÞdXdY

(16d)

The infinite system is then truncated to a sufficiently
large order NP and, despite being a coupled system,
may be solved analytically via diagonalization of the
coefficients matrix in the ODE system. Rewriting Eqs.
(16a–d) as a first order ODE system, we then have:

hPiþNP
Zð Þ¼dhPi

dZ
;
XNP

j¼1
MijhPjþNP

Zð Þ¼�b2i hPi Zð ÞþdhPiþNP

dZ
(16e,f)

hPi 0ð Þ¼
ð2
0

ð2
0

KðX,YÞ
Pe2

~ni X,Yð ÞdXdY;dhPi
dZ

����
Z¼Z1

¼0

(16g,h)

or in matrix form,

u0þLu¼0 (17a)

where L is the coefficients matrix of order 2NP, inde-
pendent of the axial coordinate, and the solution vec-
tor is formed by:
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u¼ hP1 Zð Þ,:::,hPNP Zð Þ,dhPNPþ1

dZ ,:::,
dhP2NP
dZ

n oT
(17b)

The corresponding matrix eigensystem problem for
solving Eq. (17a) is then given by:

L� aIð Þf ¼ 0 (18)

where I is the identity matrix, a are the eigenvalues of
the matrix L, and f are the associated eigenvectors.
The solution for the transformed potentials and their
derivatives is then constructed as:

ui Zð Þ ¼ P2NP
j¼1 cjfi, je

�ajZ , i ¼ 1, :::, 2NP (19a)

where the constants cj are obtained so as to satisfy the
boundary conditions, yielding the following linear
algebraic system:

c1fi, 1 þ :::þ c2NPfi, 2NP
¼

ð2
0

ð2
0

K X,Yð Þ
Pe2

~ni X,Yð ÞdXdY, i ¼ 1, :::,NP

(19b)

c1fi, 1e�a1Z1 þ :::þ c2NPfi, 2NP
e�a2NPZ1 ¼ 0, i ¼ NP þ 1, :::, 2NP

(19c)

Once the constants cj are obtained from the
numerical solution of system (19), the solution vector
is reconstructed from Eq. (19a). The inverse formula
of the steady conjugated problem, Eq. (9b), is then
recalled obtaining the dimensionless temperature at
any X,Y ,Zð Þ position, yielding the desired solution of
the filter problem, and the steady state solution of the
original problem itself.

Homogeneous transient conjugated problem
The homogeneous counterpart of the transient conju-
gated problem, after substituting the filtering proposal
stated in Eq. (7) and the filter problem, Eq. (8),
becomes the following partial differential equation:

W X,Yð Þ @hH
@s

þ U X,Yð Þ @hH
@Z

� �

¼ 4
r2x

@

@X
K X,Yð Þ @hH

@X

� �
þ 4
r2y

@

@Y
K X,Yð Þ @hH

@Y

� �

þ 1
Pe2

@

@Z
K X,Yð Þ @hH

@Z

� �
,

0 < X < 2, 0 < Y < 2, 0 < Z < Z1, s > 0 (20a)

hH 0,Y ,Z,sð Þ¼0,hH 2,Y,Z,sð Þ¼0,0�Y�2,0�Z�Z1,s>0

(20b,c)

hH X,0,Z,sð Þ¼0,hH X,2,Z,sð Þ¼0,0�X�2,0�Z�Z1,s>0

(20d,e)

hH X,Y ,0,sð Þ¼0,
@hH
@Z

����
Z¼Z1

¼0,0�X�2,0�Y�2,s>0

(20f,g)

hH X,Y ,Z,0ð Þ¼1�hP X,Y ,Zð Þ,0�X�2,0�Y�2,0�Z�Z1
(20h)

In order to solve the homogeneous transient prob-
lem through integral transformation, the following
transform-inverse pair is defined:

Transform:

hHi sð Þ¼
ðZ1

0

ð2
0

ð2
0
W X,Yð ÞhH X,Y,Z,sð Þ ~Wi X,Y ,Zð ÞdXdYdZ

(21a)

Inverse:

hH X,Y ,Z, sð Þ ¼ P1
i¼1

~Wi X,Y ,Zð ÞhHi sð Þ (21b)

The normalized eigenfunctions and the associated
eigenvalues come from solving the following three-
dimensional eigenvalue problem:

4
r2x

@

@X
K X,Yð Þ @Wi

@X

� �
þ 4
r2y

@

@Y
K X,Yð Þ @Wi

@Y

� �

þ 1
Pe2

@

@Z
K X,Yð Þ @Wi

@Z

� �

þ l2i W X,Yð ÞWi X,Y ,Zð Þ ¼ 0

(22a)

Wi 0,Y ,Zð Þ ¼ 0,Wi 2,Y ,Zð Þ ¼ 0, 0 � Y � 2, 0 � Z � Z1
(22b,c)

Wi X, 0,Zð Þ ¼ 0,Wi X, 2,Zð Þ ¼ 0, 0 � X � 2, 0 � Z � Z1
(22d,e)

Wi X,Y , 0ð Þ ¼ 0,
@Wi

@Z

����
Z¼Z1

¼ 0, 0 � X � 2, 0 � Y � 2

(22f,g)

and the normalized eigenfunctions with the normal-
ization integrals are calculated from:

~W i X,Y,Zð Þ¼Wi X,Y,Zð Þffiffiffiffiffiffiffiffi
NWi

p ;NWi ¼
ðZ1

0

ð2
0

ð2
0
W X,Yð ÞWi X,Y ,Zð Þ2dXdYdZ

(22h,i)

As previously stated, the eigenvalue problem with
space variable coefficients defined in Eq. (22) can be
handled by the GITT itself with the proposition of a
simpler auxiliary problem. Hence, the following auxil-
iary eigenvalue problem has been chosen:

4
r2x

@2vk
@X2

þ 4
r2y

@2vk
@Y2

þ 1
Pe2

@2vk
@Z2

þk2kvk¼0;0<X<2,0<Y<2,0<Z<Z1

(23a)

vk 0,Y ,Zð Þ¼0,vk 2,Y ,Zð Þ¼0,0�Y�2,0�Z�Z1
(23b,c)

vk X,0,Zð Þ¼0,vk X,2,Zð Þ¼0,0�X�2,0�Z�Z1
(23d,e)
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vk X,Y ,0ð Þ¼0,
@vk
@Z

����
Z¼Z1

¼0,0�X�2,0�Y�2 (23f,g)

As in the previous section, one can solve problem
(23) via separation of variables, then employ a reorder-
ing scheme to rewrite the triple summation as a single
one; each index then corresponds to the position of the
triad of eigenvalues associated with each direction when
sorted in ascending order of the sum of their squares.
Thus, the following transform-inverse pair is proposed
for the expansion of the original eigenfunctions:

Transform:

W
ið Þ
k ¼ Ð Z1

0

Ð 2
0

Ð 2
0 ~vk X,Y ,Zð ÞWi X,Y ,Zð ÞdXdYdZ

(24a)

Inverse:

Wi X,Y ,Zð Þ ¼ P1
k¼1 ~vk X,Y ,Zð ÞW ið Þ

k (24b)

where the normalized eigenfunctions and normaliza-
tion integrals are given by the following expression:

~vk X,Y,Zð Þ ¼ vk X,Y,Zð Þffiffiffiffiffiffiffi
Nvk

p ,

Nvk ¼
ðZ1

0

ð2
0

ð2
0
vk X,Y ,Zð Þ2dXdYdZ

(24c,d)

The integral transformation of the differential
eigenvalue problem with space variable coefficients,
Eqs. (22a–g), is then achieved by operating withÐ Z1
0

Ð 2
0

Ð 2
0 ~vl X,Y ,Zð Þ � dXdYdZ, yielding the following

algebraic eigensystem:

Dþ Eð ÞW ¼ l2FW (25a)

Dkl ¼ �
ðZ1

0

ð2
0

ð2
0
1� K X,Yð Þ½ �

�
4
r2x

@~vk
@X

@~vl
@X

þ 4
r2y

@~vk
@Y

@~vl
@Y

þ 1
Pe2

@~vk
@Z

@~vl
@Z

�
dXdYdZ

(25b)

Ekl ¼ k2kdkl;Fkl ¼
ðZ1

0

ð2
0

ð2
0
W X,Yð Þ~vk X,Y,Zð Þ~v l X,Y,Zð ÞdXdYdZ

(25c,d)

As previously discussed, well-established algorithms
for matrix eigensystem analysis can be recalled to
numerically solve the algebraic problem given by Eq.
(25), yielding the eigenvalues l and the eigenvectors
W, after truncation to a large finite order NH suffi-
cient to warrant convergence to a desired accuracy
target. Then, operating the homogeneous transient
energy equation (20a) with

Ð Z1
0

Ð 2
0

Ð 2
0
~Wi X,Y ,Zð Þ �

dXdYdZ and making use of the original eigenvalue

problem equation, Eqs. (22a–g), and the inverse for-
mula (21b), one obtains the following initial value
problem of ordinary differential equations for the
homogeneous transient transformed temperatures:

dhHi

ds
þ l2i hHi sð Þ þ

X1
j¼1

Gi, jhHj sð Þ ¼ 0, i ¼ 1, 2, 3, :::

(26a)

Gi, j ¼
ðZ1

0

ð2
0

ð2
0
W X,Yð ÞU X,Yð Þ ~Wi X,Y,Zð Þ@

~W j

@Z
dXdYdZ

(26b)

with the transformed initial conditions:

hHi 0ð Þ ¼ f i ¼
ðZ1

0

ð2
0

ð2
0
W X,Yð Þ 1� hP X,Y ,Zð Þ½ �

~Wi X,Y ,Zð ÞdXdYdZ
(26c)

The infinite system is truncated to a sufficiently
large order NT for the desired precision target and,
again, the transformed system of equations (26a–c),
despite being coupled, is linear and has analytical
solution through the appropriate matrix eigensystem
analysis. For this purpose, it is written in matrix
form as:

h
0
H sð Þ þ GhH sð Þ ¼ 0; hH 0ð Þ ¼ f (27a,b)

where G, the coefficients matrix independent from
the time variable, and the transformed initial condi-
tions vector, f , are given by:

G ¼ l2i di, j þ Gi, j

n o
i, j¼1, 2, 3, :::

; f ¼ f i

n o
i¼1, 2, 3, :::

(27c,d)

The solution for the transformed temperatures vec-
tor is then conveniently written in terms of the matrix
exponential function as:

hH sð Þ ¼ exp �Gsð Þ � f (28)

The inversion formula of the homogeneous transi-
ent conjugated problem, Eq. (21b), is then recalled,
together with the filter proposal, Eq. (7), to provide
the dimensionless temperature field for any dimen-
sionless position and time, X,Y ,Z, sð Þ, leading to
the desired solution of the transient three-dimen-
sional conjugated problem. Once the temperature
distribution has been derived, the transient bulk tem-
perature along the channel length is given from its
definition as:

hav Z, sð Þ ¼
Ð
Ah X,Y ,Z, sð ÞU X,Yð ÞdAÐ

AU X,Yð ÞdA (29)
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Results and discussion

Convergence analysis and verification

The fully developed velocity profile is taken from well-
known exact analytical solutions [36], as presented in
Eqs. (6a–f). For this reason, the focus of the work is
directed toward analyzing the temperature field and
other derived quantities, in order to probe the adequacy
of the integral transforms approach here proposed.

In order to identify typical values of the dimension-
less governing parameters, one fluid and three substrate
materials were selected from previous experiments, as
shown in Table 1, with water as working fluid and
PDMS (polydimethylsiloxane), Fused Silica and
Commercial Copper (90% Cu, 10% Al) as substrates,
first of all seeking comparisons with the analysis pre-
sented in Ref. [55]. The chosen geometric parameters
for a square channel, which are employed to characterize
the dimensionless parameters, are presented in Table 2.
The results that follow encompass temperature profiles
in the transient and steady regimen for the cases of the
squared cross section (AR ¼ 1) and rectangular channels
with different wall thicknesses, for fixed channel width
and variable channel height.

In order to analyze the convergence of the eigen-
function expansions for the temperature distribution,
one needs first to evaluate the convergence of the
two and three-dimensional eigenvalue problems solu-
tions, based on the integral transformation with sim-
pler auxiliary eigenvalue problems. Thus, Tables 3
and 4 illustrate the convergence of the 2D and 3D
eigenvalue problems in the case of a square channel.
The presented first ten eigenvalues converge to at
least the third significant digit with truncation orders
as low as NF or NH¼1000, where it is noticed a
slower convergence rate, as expected, relative to the
two-dimensional eigenvalue problem in Ref. [55],
given that the symmetry of the problem has been
accounted for beforehand in that work, thus reducing
the number of terms required for convergence. The
convergence behavior of the eigenvalue problems
expansions can be enhanced by employing, for
instance, an extended integral balance approach for
Sturm-Liouville problems [67].

Table 5 offers a brief convergence analysis of the
transient dimensionless temperature at the centerline
(X ¼ 1 and Y ¼ 1) and time s ¼ 0:5, for selected val-
ues of the axial coordinate. The centerline dimensionless
temperature is converged to ±1 in the fourth significant
digit, for truncation orders up to NT¼180 terms. Also
shown are the results from the commercial software

Table 1. Thermophysical properties of the working fluid and
substrates.
Thermophysical Properties at 20 �C

q (kg/m3) cp (kJ/kg K) k (W/m K)

Water 998 3.18 0.60
PDMS 970 1.46 0.15
Fused Silica 2220 0.74 1.38
Commercial Copper (90% Cu, 10% Al) 8800 0.42 52

Table 2. Geometric parameters for the test case of a square
channel (AR ¼ 1).
Parameter Value Parameter Value

LxM 100lm Dh 100 lm
LyM 100lm rx 2
LxT 200lm ry 2
LyT 200lm Pe 1

Table 3. Convergence of the first ten eigenvalues of the two-
dimensional eigenvalue problem in the case of a square chan-
nel (AR ¼ 1).
B NF¼200 NF¼400 NF¼600 NF¼800 NF¼1000

1 1.4208 1.4162 1.4147 1.4136 1.4128
2 3.3352 3.3345 3.3341 3.3339 3.3338
3 3.3352 3.3345 3.3341 3.3339 3.3338
4 4.4429 4.4429 4.4429 4.4429 4.4429
5 5.3523 5.3380 5.3336 5.3303 5.3278
6 5.5828 5.5720 5.5686 5.5662 5.5643
7 5.9380 5.9263 5.9206 5.9176 5.9153
8 5.9380 5.9263 5.9206 5.9176 5.9153
9 6.6181 6.5938 6.5772 6.5705 6.5653
10 6.6181 6.5938 6.5772 6.5705 6.5653

Table 4. Convergence of the first ten eigenvalues of the
three-dimensional eigenvalue problem in the case of a square
channel (AR ¼ 1).
l NH¼200 NH¼400 NH¼600 NH¼800 NH¼1000

1 1.4482 1.4330 1.4323 1.4317 1.4314
2 1.6878 1.6746 1.6740 1.6735 1.6732
3 2.0856 2.0747 2.0743 2.0739 2.0737
4 2.5681 2.5597 2.5594 2.5591 2.5590
5 3.0957 3.0948 3.0891 3.0889 3.0889
6 3.1948 3.1939 3.1919 3.1919 3.1918
7 3.1948 3.1939 3.1919 3.1919 3.1918
8 3.3044 3.3033 3.3014 3.3014 3.3014
9 3.3044 3.3033 3.3014 3.3014 3.3014
10 3.5130 3.5117 3.5100 3.5100 3.5099

Table 5. Convergence of the dimensionless temperature pro-
file for the case of the squared channel (AR ¼ 1), at the cen-
terline (X ¼ 1 and Y ¼ 1) of the microfluidic apparatus.
s ¼ 0:5

NT Z ¼ 0:1 Z ¼ 0:2 Z ¼ 0:3 Z ¼ 0:5 Z ¼ 0:75 Z ¼ 1 Z ¼ 2

30 0.9591 0.9182 0.8709 0.7766 0.6764 0.6031 0.4908
60 0.9585 0.9171 0.8695 0.7754 0.6761 0.6032 0.4914
90 0.9578 0.9157 0.8675 0.7725 0.6722 0.5980 0.4820
120 0.9575 0.9153 0.8671 0.7725 0.6725 0.5981 0.4820
150 0.9567 0.9137 0.8648 0.7690 0.6672 0.5905 0.4665
180 0.9567 0.9136 0.8649 0.7693 0.6675 0.5905 0.4665
COMSOL 0.9596 0.9144 0.8668 0.7739 0.6745 0.6006 0.4889
Rel. Deviation

(%)
0.31 0.08 0.18 0.47 0.9 1.5 4.1

10 A. H. R. SOUSA ET AL.



COMSOL MultiphysicsVR finite element method simula-
tion, with corresponding relative deviations.

Figure 2a,b shows the dimensionless temperature
profiles in a square channel with water as working
fluid and PDMS as substrate, across the transversal
coordinate, Y ¼ 1 to 2, at the central plane X ¼ 1,
and for different times (s ¼ 1 and 2), where the
steady state is approximately represented by the larger
time value (s ¼ 2). Different axial positions along the
microchannel length are plotted, where it is possible
to clearly distinguish the transition at the fluid/solid
interface, identified by a dashed line to highlight the
position of the interface. The GITT solution at s ¼ 1
is verified against the solution of the commercial soft-
ware COMSOL MultiphysicsVR , whereas the solution at
s ¼ 2 is verified against the steady state GITT solution
with partial transformation of Knupp et al. [55], both
represented as red circles, showing excellent agree-
ment to the graph scale in both cases.

Figure 3 shows the dimensionless temperature time
evolution at the centerline of the microfluidic apparatus
(Y ¼ 1 and X ¼ 1), located within the fluid domain,
and compared with the COMSOL MultiphysicsVR

results. Clearly, the GITT not only predicts well the
spatial behavior of the micro-device, but also its tem-
poral behavior, with only NT¼180 terms, which is a

fairly low truncation order for the eigenfunction expan-
sion, given the complexity of the problem (three-
dimensional transient conjugated formulation).

Figure 4 shows the steady state (s ¼ 2) dimension-
less temperature profiles for a rectangular channel
with aspect ratio AR ¼ 1:42, again across the trans-
versal coordinate, Y ¼ 1 to 2, at the central plane
X ¼ 1 of the channel-substrate arrangement, for dif-
ferent longitudinal positions. Following Knupp et al.
[55], the width of the channel is fixed while the height
is varied with respect to the square channel case. The

Figure 4. Dimensionless temperature profiles at steady state
for a rectangular channel with aspect ratio AR ¼ 1:42, com-
pared against the GITT solution with partial transformation of
Knupp et al. [55]: (a) along the width of the microfluidic
apparatus, at the center plane (Y ¼ 1) and (b) along the
height of the micro-device, at the center plane (X ¼ 1), for dif-
ferent axial positions.

Figure 2. Dimensionless temperature profiles in transient state
for a squared channel: (a) at s ¼ 1, compared with COMSOL
solution and (b) At steady state ðs ¼ 2Þ compared with the
GITT solution with partial transformation scheme [55], across
the transversal coordinate, Y 2 ½1, 2�, at the central plane
ðX ¼ 1Þ and for different axial positions.

Figure 3. Dimensionless temperature profiles in transient state
for a water/PDMS squared channel at its centerline (Y ¼ 1 and
X ¼ 1), compared with COMSOL solution for different axial
positions.
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present GITT solution obtained with the total trans-
formation scheme has an excellent agreement with the
GITT solution obtained by Knupp et al. [55] with the
pseudo-transient formulation and the partial trans-
formation scheme, when a two-dimensional eigen-
value problem was adopted and a partial differential
system for the transformed temperatures, with time
and longitudinal coordinate as independent variables,
is numerically solved for. The proposed total trans-
formation scheme, with its transformed problem con-
sisting of a system of ordinary differential equations
solvable by the associated matrix eigensystem analysis,
bears a noticeable advantage when compared with the
transformed partial differential equations system stem-
ming from the partial transformation alternative strat-
egy adopted in Ref. [55], both in terms of
computational cost and numerical accuracy. A more
complete comparative analysis of the total and partial
transformation schemes in multidimensional convec-
tion-diffusion problems was provided in Ref. [68].
The adherence of these results confirms not only the
robustness of the integral transform approach, but
also its flexibility in terms of solution path choices.

Table 6 provides the values of the thermal conduct-
ivity ratio, an important parameter in conjugated heat
transfer, for the three different substrates cases here
considered. Table 7 shows the maximum dimension-
less temperature variation across the wall, Dhcw, for
the three cases and at three different longitudinal
positions, which shows that, as expected, there is a
more marked temperature variation across the height
of the channel closer to the channel entry (Z ¼ 0:5)
and for smaller thermal conductivity ratio. The higher
thermal conductivities ratio, for fixed Peclet number
and aspect ratio, increases the conjugation parameter
as defined in Refs. [29, 46] and favors the adoption of
the approximate lumped-differential model that lumps

the temperature distribution in the transversal direc-
tion at the wall, due to the milder transversal tem-
perature gradients, and accounts for axial conduction
only in the solid region.

Figure 5 illustrates the effect of Peclet number on
the dimensionless bulk temperature distribution at the
fluid region of the microfluidic apparatus, across the
scaled axial coordinate ZPe, for AR ¼ 1, again with
the fluid/solid combination of water/PDMS. For lower
Pe numbers, the increased relevance of fluid axial con-
duction alters the usual proportionality between ther-
mal entry length and hydraulic diameter ratio with
the Peclet number. Nevertheless, the conjugation
effect does not alter the same qualitative behavior, i.e.,
larger thermal entry lengths with rising Pe, as can be
extracted from the comparison of the curves for Pe ¼
1 to 100 in Figure 5, which stems from the lower resi-
dence times of the fluid within the channel offsetting
the wall participation in heat transfer.

Figure 6 shows the dimensionless fluid bulk tem-
perature at steady state along the axial coordinate,
now varying the aspect ratio AR for a fixed Pe ¼ 1,
again utilizing water as working fluid and PDMS as
substrate. It can be observed the more effective cool-
ing with the reduction of the aspect ratio, while main-
taining the total fluid-solid interface area.

Figure 7 depicts dimensionless temperature con-
tours at the midplane parallel to YZ for four different
values of aspect ratio, defined as the ratio between the
height and the width of the channel. For an increase
in aspect ratio, the wall thickness becomes smaller
which is observable in Figure 7 by recognizing the
purple horizontal line as the interface between the
fluid and the solid. Close to the channel entrance sec-
tion, the temperature assumes its highest values, as
imposed by the boundary condition at Z ¼ 0, both at
the fluid and the wall; as the flow advances along the
channel, the temperature rapidly decays as the flow

Table 7. Maximum dimensionless temperature variation
across the channel.
Dhcw

Materials Z ¼ 0:5 Z ¼ 1 Z ¼ 1:5

PDMS/Water 0.110 0.086 0.053
Silica/Water 0.066 0.031 0.010
Copper/Water 0.025 0.008 0.001

Table 6. Materials and conductivities ration considered in the
present work.
Thermal conductivities ratio

Materials ks=kf
PDMS/Water 0.25
Silica/Water 2.3
Copper/Water 86.66

Figure 5. Dimensionless bulk temperature along the scaled
dimensionless axial coordinate for different Peclet numbers,
with AR ¼ 1 and s ¼ 2:
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approaches full thermal development. Along the Y
axis, the temperature decreases monotonically from
the center of the channel to the edge of the solid wall.
One may observe the transitions from the fluid to the
solid regions, in accordance with the interface con-
tinuity conditions. The single domain formulation
allows for the representation of the full region tem-
perature distribution through a single eigenfunction
expansion, which is indeed a major advantage of this
solution path and permits envisioning the extension
of this approach to more involved geometries and
complex configurations. Besides, this precise and cost-
effective simulation path is particularly handy in

Figure 7. Dimensionless temperature contours along the axial coordinate and across the width of the microsystem, at the center
plane (X ¼ 1): (a) AR ¼ 1, (b) AR ¼ 1:42, (c) AR ¼ 1:67 and (d) AR ¼ 1:82:

Figure 6. Dimensionless fluid bulk temperature along the axial
coordinate for different aspect ratio, AR, for the same total
area of the fluid-solid interface.
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intensive computational tasks such as inverse problem
analysis of heterogeneous media, especially under the
integral transformation of experimental data, as dem-
onstrated in Refs. [69, 70].

Conclusions

The present work has analyzed transient three-dimen-
sional conjugated heat transfer for internal laminar flow
in fluidic devices based on microchannels. The pro-
posed hybrid solution was constructed by the GITT,
reformulating the problem in a single domain for the
fluid current and solid substrate present on the original
formulation, which are represented through space vari-
able thermophysical properties and velocity fields, and
considering both transversal and axial diffusion effects
at both the wall and fluid subdomains. The spatially
variable coefficients of the single domain formulation
are carried on to a two-dimensional eigenvalue problem
for the steady state solution, and to a three-dimensional
eigenvalue problem for the transient solution, which
give the basis of the corresponding eigenfunction
expansions and are also solved via GITT. The results
for a single rectangular microchannel show excellent
agreement both on the transient regime against the
results obtained by the commercial platform COMSOL,
and on the steady regime with the solution obtained by
Knupp et al. [55], also handled by GITT, in which the
authors utilized a partial transformation scheme and a
pseudo-transient formulation. The present analysis also
inspected for the influence on the conjugated heat
transfer behavior of parameters such as thermal con-
ductivity ratio, aspect ratio, and Peclet number. The
present contribution closes a gap on the integral trans-
form treatment of conjugated heat transfer problems,
by dealing with a fairly general transient three-dimen-
sional situation, but also opens avenues for extensions
in terms of channel transversal and longitudinal geome-
tries, micro-device multichannel configuration, flow and
thermal regimen, and micro-heat transfer scaling effects.
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