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Turbulent pipe flow is still an essentially open area of research, boosted in the last two decades by considerable progress
achieved both on the experimental and numerical frontiers, mainly related to the identification and characterization of
coherent structures as basic building blocks of turbulence. It has been a challenging task, however, to detect and
visualize these coherent states. We address, by means of stereoscopic particle image velocimetry, that issue with the
help of a large diameter (6 inches) pipe loop, which allowed us to probe for coherent states at various moderate Reynolds
numbers (5300 < Re < 29000)). Although these states have been observed at flow regimes around laminar-turbulent
transition (Re ≈ 2300) and also at high Reynolds number pipe flow (Re ≈ 35000), at moderate Reynolds numbers
their existence had not been observed yet by experiment. By conditionally averaging the flow fields with respect to
their dominant azimuthal wavenumber of streamwise velocity streaks, we have been able to uncover the existence of
ten well-defined coherent flow patterns. It turns out, as a remarkable phenomenon, that their occurrence probabilities
and the total number of dominant modes do not essentially change as the Reynolds number is varied. Their occurrence
probabilities are noted to be reasonably well described by a Poisson distribution, which suggests that low-speed streaks
are created as a Poisson process on the pipe circular geometry.

I. INTRODUCTION

Turbulent structures in pipe flows have been a subject of
great interest in fluid dynamics since the very first pioneering
experiments of Reynolds in 18831. Until recently, research in
turbulence was mainly focused on the statistical perspective of
distinct flow features such as the statistical distribution of flow
variables2–4, turbulent energy spectra5,6, or RANS modeling7.
A relatively new approach, on the other hand, often-referred
to as dynamical systems viewpoint emerged in the last two
decades due to considerable progress achieved both on the ex-
perimental and numerical frontiers. This essentially open area
of research is related to the identification and characterization
of coherent structures8–11.

The term coherent (from lat. Cohaerens – consistency) em-
phasizes on the understanding that turbulence, contrary to ear-
lier assumptions, is no longer an example of chaos, but rather
a superposition of canonical building blocks of motion with
inherent patterns of spatial and temporal consistency. A better
understanding of these building blocks has been the motiva-
tion for hot contemporary debates and the elaboration of im-
proved experimental set-ups12. The near-wall production and
complex dynamics of evolving coherent structures (e.g., tur-
bulent puffs, quasi-streamwise and hairpin vortices, etc.) have
been the fundamental keywords in these developments13.

It is clear, however, that a gap in the literature persists, re-
lated to the visualization of near-wall coherent structures in
pipe flows, in order to see how they can validate, refine or
even suggest alternative perspectives to the ongoing scientific
discussions. It is well known that turbulent statistics for the
logarithmic region below Reynolds numbers of 25000 lack
universality due to their Reynolds number dependence, a phe-

nomenon often referred to as Reynolds number effect3,14,15. It
is still under debate if this unique behavior is also shown by
coherent structures. In this work, we provide a new step to-
wards closing these gaps, exploring, with the help of Stereo-
scopic Particle Image Velocimetry (SPIV), the intriguing pat-
terns of near-wall coherent structures associated with turbu-
lent regimes in pipe flow, applying methodological lines sim-
ilar to those applied by Hof et al.16, Schneider et al.17 and
Dennis and Sogaro18.

Hof et al.16 as one of the first presented a proper visualiza-
tion of traveling waves as coherent structures in pipe flow at
Reynolds numbers close to the laminar-turbulent transition by
means of SPIV experiments. The observed structures showed
azimuthal patterns of high-speed streaks close to the wall and
low-speed streaks closer to the pipe centre.

Not very long after, Schneider et al.17 , by means of numer-
ical simulation performed further investigations. They estab-
lished a new approach for the structure identification, which
allowed them to uncover a huge number of different coherent
states together with their statistical features. These authors
furthermore suggested that the transition dynamics could be
modeled as a Markovian stochastic process, a phenomenolog-
ical point that has been addressed in the recent literature? .

Both Hof et al.16 and Schneider et al.17 interpreted trav-
eling waves as phenomena related to laminar-turbulent tran-
sition. This assumption was called into question by Dennis
and Sogaro’s18 SPIV experiments in pipe flow at a highly tur-
bulent regime of Re = 35000. They showed that their flow
was also organized into different coherent states, which bear
a striking resemblance to travelling wave solutions observed
until then only at lower Reynolds numbers, with the propen-
sity for switching from one mode to another.
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In this study, we further investigate the turbulent states by
closing the huge gap between these coherent states observed
in laminar-turbulent transition by Hof et al.16 and Schneider et
al.17 , and those observed at relatively high Reynolds number
by Dennis and Sogaro18 in order to get a clearer picture of
how these states evolve with the Reynolds number.

The experimental setup, to be described in the next section,
allows us to get a deep insight into the boundary layer in con-
ditions of moderate Reynolds number turbulence. Also, we
explain in detail the methods applied to detect and visualize
the coherent states.

In Sec. 3, we present the results of our work in a twofold
manner; qualitatively, by visualization of the conditionally av-
eraged cross-stream patterns associated with the dominant co-
herent states and their organization along the mean flow di-
rection, and quantitatively by showing interesting statistical
features of the occurrence probabilities of these states.

Finally, in Sec. 4, we summarize and discuss the main ideas
of our work and give an outlook on future work required to
further improve our understanding regarding the nature of co-
herent states.

The experimental results and statistical analysis will un-
cover turbulent dynamics so far unexplored by providing
unique insight into turbulent pipe flow regarding its phe-
nomenology vis-à-vis with statistical features which are
highly relevant to better understand, predict and model tur-
bulence.

II. MATERIALS AND METHODS

A. Experimental setup

The experiment was performed in a flow loop specially de-
signed for the research on wall turbulence and coherent struc-
tures. The flow loop consists of a horizontal 6-inch diame-
ter, 10 meters long pipe, operating in a closed system. By
means of a progressive cavity pump, water is driven from a
large reservoir through a Coriolis flow meter before entering
the pipe. All components are connected by a flexible 2-inch
rubber hose, which further serves as a pulsation damper. A
settling chamber consisting of a diffuser cone with a 6-degree
angle and a 1:3 aspect ratio followed by a honeycomb and
a set of screens was installed to reduce eddies and swirling
motions before the flow enters the pipe. We estimate the hy-
drodynamic entrance length for turbulent pipe flow by means
of Eq. 1 (Ref.20):

LH = 1.359D(Re)1/4 (1)

and expect the flow to be fully developed long before entering
the observation section located at 5.8 meters downstream for
the Reynolds number with the longest entrance length studied
in this work, namely Re = 29000 (LH = 2.73 m).

Our experiment is based on a time-resolved Stereo PIV
(SPIV) setup with two high-speed CMOS cameras (Phantom
Speed-sense M310), arranged horizontally at an angle of 45

degrees to the pipe centerline aiming downstream in order to
capture a transversal plane of the flow as shown in Fig. 1.

The water-filled trapezoidal section was used to minimize
optical distortions caused by the pipe curvature. A two-level
15.4 cm diameter calibration target, visible for each camera
through the same angle of 45 degrees relative to the pipe, was
moved into the measurement plane to calibrate the SPIV sys-
tem by means of a long, pipe-centered traverse mechanism.
After calibration, the target was moved downstream into a
parking position located behind the pipe outlet in order to
avoid any flow disturbance. The flow was seeded with silver-
coated hollow glass spheres, neutrally buoyant with a mean
size of 17 microns, which accurately follow, as tracers, tur-
bulent fluctuations of the flow field. All Reynolds number
measurements were acquired with a sampling frequency of
15 Hz and a considerable number of acquisitions, approxi-
mately 20000 captured vector fields for each run, which re-
sult in approximately 308, 628, 829, 1259, and 1492 pipe
radii passing through the measurement plane for Re = 5300,
12000, 17800, 24400 and 29000, respectively. Each Reynolds
number measurement was acquired in subsets of 2000 snap-
shots which were separated by time intervals of several min-
utes. We, therefore, consider these subsets statistically inde-
pendent and the overall statistics of each Reynolds number set
hardly to be distorted by any kind of Very Large Scale Mo-
tions (VLSMs)? .

Within the lower and upper bounds of the Reynolds num-
bers studied in this work, the turbulent statistics measured
with our SPIV setup show very good agreement with data
from DenToonder and Nieuwstadt3 and Eggels et al.2 and also
clearly shows the aforementioned Reynolds number effect in
the log region, as demonstrated in Fig. 2.

Also, as demonstrated in Fig. 3, the cross-stream vector
fields we obtain with our measurement system are well-suited
for the detection of near-wall structures, both for stream-wise
streaks and also for in-plane motions like quasi-streamwise
vortices (at least four of them can be detected directly by eye
in this exemplary snapshot of Re = 24414).

B. Detection and visualization of coherent states

We base our coherent state detection on the appearance of
positive and negative velocity fluctuations of the streamwise
velocity components in each snapshot. These elongated, me-
andering regions of opposed fluctuations are advected along
the mean flow direction, as seen in Fig. 4 observed at a
Reynolds number of Re = 5300.
In a cross-stream slice, these fluctuations appear as an alter-
nating pattern of positive and negative fluctuations as seen in
Fig.5 (left), similar to the ones also observed by Dennis and
Sogaro18.

Nonetheless, due to the high number of vector fields ob-
tained for each Reynolds number set, the state detection to-
gether with the subsequent wave number assignment of the
corresponding snapshots require an automated procedure. In
the following, we present a procedure to reduce the complex
pattern of a 3-dimensional flow field to only one parame-
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FIG. 1: Experimental setup (not to scale) of the pipe rig with SPIV system. The flow direction is clockwise.

FIG. 2: Streamwise velocity profile in inner units at a
Reynolds number of 4928 and 29089 obtained with SPIV,
compared with the results of Eggels et al.2.

ter, i.e. the azimuthal wave number, to which each snapshot
will be assigned subsequently. First, we define a reference
point (r0, θ0) and introduce the spatial correlation function
between the reference point and equally distributed points lo-
cated along the r = r0 circumference with an azimuthal spac-
ing of ∆θ (see Fig. 5 (right)) by means of Eq. 2:

Ruu(r0 +∆r,∆θ) =
〈u(r0 +∆r,θ0 +∆θ) u(r0,θ0)〉

u2
rms

(2)

with an azimuthal spacing of ∆θ resulting in 72 equally
spaced azimuthal points. The square brackets indicate an az-
imuthal average over the initial angles θ0. If we limit Eq. 2
to a fixed radius of interest, in this work r0 = 0.78R, it turns
into an azimuthal correlation function which will be used for
the state detection. Fig. 6 shows an arbitrary section of the
azimuthal correlation over a length of 5 radii, here for the

FIG. 3: Instantaneous vector field for the flow at Re = 24414.
The color bar indicates the magnitude of the streamwise ve-
locity component normalized by the bulk velocity.

FIG. 4: Velocity fluctuations along the mean flow direction
(flow from left to right) at a Reynolds number of 5300. The
red and blue iso-contours correspond to velocities 1.5 per cent
above and below the mean velocity profile, respectively.
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FIG. 5: Left: Instantaneous snapshot with an alternating pat-
tern of streamwise velocity fluctuations.The red and blue iso-
contours correspond to velocities 1.5 per cent above and be-
low the mean velocity profile, respectively. Right: reference
point (r0, θ0) and azimuthal grid projected on an idealized
pattern of spatial correlations for a wave number of 4.

FIG. 6: Streamwise extent of the azimuthal correlation over
a length of 5 radii, here for the Reynolds number of 5300.
Positive peaks indicate a correlation, negative peaks anti-
correlation. Note that for reasons of symmetry we only plot
along an azimuth from zero to π .

Reynolds number of 5300, from zero to π .
Note that in the reference point itself, ∆θ = 0, the correla-

tion is one, as by definition. Further, it is possible to observe
how the azimuthal correlation function changes its number
of peaks several times along this streamwise dimension. We
obtain the corresponding azimuthal wave number by taking
the highest value of the power of the Fast Fourier Transform
(FFT) on the azimuthal correlation, which relates the flow
field to a well-defined wavenumber-labeled state. In this way,
all snapshots can be classified, according to their correspond-
ing wavenumber subset. For the visualization of the spatial
correlation not only above a single circumference line but on

the entire cross-stream plane (C =C(r,θ)), we expand the az-
imuthal correlation along a radial grid with a spacing of 1 mm
and plot the corresponding iso-surfaces of positive and nega-
tive correlation. In order to take advantage of the entire data
set of flow fields obtained by our measurements, we apply a
conditional average procedure in a twofold manner: The sub-
sets of the iso-surface cross-stream plane correlations are av-
eraged with regard to their allocated wavenumber. By means
of this averaging procedure, we expect the patterns to smooth
out and obtain figures comparable to the contours in Fig. 5
(right), in this case representative for the subset of azimuthal
wave number kθ = 4.

For wall-bounded turbulence13 and coherent states18 it is
known that regions of negative streamwise fluctuations are of-
ten related to different in-plane motions than positive stream-
wise fluctuations, namely Q2 and Q4 quadrant motions (also
known as ejections and sweeps4). Therefore, for the flow field
averaging, we further bifurcate our sampling condition by di-
viding the wavenumber subsets into these snapshots with a
positive and those with a negative streamwise velocity fluctu-
ation in the initial reference point. To visualize the spatial dis-
tribution of the coherent states along the stream direction Tay-
lor’s hypothesis22 was applied. In the appendix, we present a
flow diagram (Fig. 14) which illustrates the principal steps of
the procedure for the detection and visualization of coherent
states in a concise manner.

III. RESULTS

1. Flow patterns of coherent states

Fig. 7 presents examples for instantaneous snapshots of ve-
locity field fluctuations of Re =24400 assigned to azimuthal
the wave numbers 2 to 7 by our detection method. Although
small-scale fluctuations govern the background, the dominant
pattern of streaks along the azimuth clearly resembles its re-
spective wave number.

Fig. 8 exemplarily visualizes the correlation contour lev-
els of the coherent wave number states 2 to 7 obtained by the
conditional averaging procedure for the Reynolds number of
Re = 17800. The spatial correlation Ruu is visualized by iso-
contours with respect to the reference point, whose location
was also visualized by a black dot. The red level curves corre-
spond to Ruu = 0.05 and 0.1, and the blue ones to the opposite
sign.

By means of conditional averaging, we visualized the co-
herent flow patterns in the cross-stream slice in Fig. 9 for the
wave number state 4 of Re = 17800. All in-plane vectors were
normalized to the same magnitude in order to improve the vi-
sualization, particularly of the vortex patterns.
For all states, we were able to identify this alternating pat-
tern of streamwise fluctuations, similar to the one observed
by Dennis and Sogaro18. On average, the areas of nega-
tive streamwise fluctuations appear to extend more towards
the pipe center than the positive. For all conditionally aver-
aged vector fields, we clearly observe that regions of positive
streamwise fluctuation are related to an in-plane movement
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(a) kθ = 2 (b) kθ = 3 (c) kθ = 4

(d) kθ = 5 (e) kθ = 6 (f) kθ = 7

FIG. 7: Instantaneous snapshots of velocity field fluctuations assigned to azimuthal wave numbers 2 to 7 of Re =24400. The
red and blue iso-contours correspond to velocities 1.5 per cent above and below the mean velocity profile, respectively.

towards the pipe wall, while negative regions of streamwise
fluctuations show a movement in the opposite direction, to-
wards the pipe centre. These strong radial motions are ac-
companied by pairs of weaker, counter-rotating vortices that
are saddled symmetrically along the lateral sides of the fluc-
tuation regions. They are related to the shear layer between
the regions of opposed radial motions. The ability to observe
well-defined in-plane patterns underlines the potential of con-
ditional averaging to decipher the apparently chaotic nature of
turbulent flow fields, having in mind that an unconditional av-
erage of all flow field samples would just zero out all vector
components apart from the mean flow direction. The princi-
pal coherent patterns that we found to govern the cross-stream
vector fields of both Reynolds numbers are illustrated in Fig.
9. The relation between the streamwise and radial velocity
components coincides with earlier findings in the quadrant
analysis in turbulent pipe flow23, showing the dominance of
Q2 and Q4 quadrant motions in the near-wall region.

By the application of Taylor’s hypothesis, Fig. 10 exem-
plarily illustrates the advection of wave number states and
their corresponding spatial extent along the main flow direc-
tion along an arbitrary section of 20 pipe radii for Re = 5300.
At first glance, several wave number structures with stream-
wise extent within the order of the pipe radius can be identi-
fied. Longer structures can be observed for the wavenumbers
2 to 6. The remaining wave number states, on the other hand,

show structures of a more intermittent nature, including sev-
eral one-snapshot observations.

Because we were particularly interested in structures with
a streamwise extent, in Fig. 11 we excluded the wave number
snapshots that were only observed in one snapshot. On these
unstable wave number observations -hereafter called unstable
remainders- we will take a closer look in the next section.

2. Statistical distribution of coherent states

As emphasized in the foregoing, we applied a second con-
ditional average on the allocated wave number vector fields
with respect to the sign of the streamwise fluctuation in the
reference point. The corresponding snapshot proportions are
well-balanced for the states of all Reynolds numbers. We take
this observation as an indicator that the number of samples al-
located to each state is sufficient to consider our results as sta-
tistically converged for the ten wave number states we present.
We first present the statistical weight distributions, i.e. the per-
centual contribution of the ten dominant states with respect to
the total number of state-assigned vector fields in Fig. 12,
without applying any threshold.

We observe that for all Reynolds numbers the weight dis-
tributions show positive skewness towards lower states. For
all Reynolds numbers, the most detected state was wave num-
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(a) kθ = 2 (b) kθ = 3 (c) kθ = 4

(d) kθ = 5 (e) kθ = 6 (f) kθ = 7

FIG. 8: Organizational turbulent states with azimuthal wave numbers of 2 to 7 of Re =17800. The images show the spatial
correlation function Ruu, the red level curves correspond to Ruu = 0.05 and 0.1, and the blue ones to the opposite sign. The
reference point is illustrated as a black dot.

ber 3, which is in agreement with the previous observations18

for Re = 35000 and the most energetic azimuthal mode found
using Proper Orthogonal Decomposition (POD) of turbulent
pipe flow at Re = 24580 obtained with Direct Numerical Sim-
ulation (DNS) by Baltzer el al.24.

Of the ten dominant wave numbers, state 10 showed the
lowest statistical weight. We also detected wave number states
above 10, but their statistical contribution was very low (be-
low 1 per cent in all the sets) and might not show converged
statistics. The highest wave numbers we detected in each set
showed to increase with growing Reynolds number, namely
13, 14, 16, 21 and 22 for the Reynolds numbers of 5300,
12000, 17800, 24400, and 29000, respectively.

Figure 13 shows the normalized distribution from the per-
spective of wave number structures with a streamwise extent.
The unique feature of this presentation is that the statistical
weight distribution is calculated with respect to the number of
structures (independent of the number of snapshots it consists
of) passing through the measurement plane, and not solely on
the raw number of snapshots assigned to the wave number
sets.

Because we were interested in structures with a stream-
wise extent, we excluded the vector fields that were only ob-
served in one single snapshot, namely the unstable remain-
ders, from this representation. Nevertheless, the unstable re-

mainders vector fields showed a significant weight contribu-
tion, namely 25.2, 20.9, 28.1, 33.3, and 35.3 per cent for
the Reynolds number sets of 5300, 12000,17800, 24400, and
29000, respectively. With respected to the spatial resolution
of the unstable remainders note that the advection velocity
of the structures is increasing with the Reynolds number al-
though the sampling rate was held constant (constrained by
the maximum laser frequency) for all Reynolds number sets.
This implies a different advected structure length between two
snapshots for each Reynolds number, namely 0.028 pipe radii
for the lowest Re of 5300 and 0.148 pipe radii for the highest
Re of 29000.

Comparing Figs. 12 and 13, we see that from the structure’s
perspective, the weight contribution of higher wave number
structures is generally lower than observed from the viewpoint
of snapshots. We interpret this as an indicator that higher wave
number states present a more intermittent behavior, often be-
ing cut off as unstable remainder states in the structure repre-
sentation.

Another interesting statistical feature is that the distribution
of wave number structures is reasonably well-described by a
Poisson distribution with a mean value of λ = 4 (see Fig. 13).
Based on the nature of Poisson distributions, this is a hint that
the transition to a new wave number structure is independent
of the present state and supports earlier assumptions of an un-
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FIG. 9: Conditionally averaged vector field (left) and corresponding principal coherent patterns (right) related to regions of
positive (red) and negative velocity fluctuations (blue) of wave number state 4 of Re = 17800.

FIG. 10: Streamwise extent of coherent states along the main
flow direction in an arbitrary section 20 pipe radii at Re =
5300.

FIG. 11: Streamwise extent of coherent states along the main
flow direction in an arbitrary section 20 pipe radii at Re = 5300
without unstable remainders.

derlying Markovian description? .
For both the snapshot’s and the structure’s perspective, we

observe that the weight distribution of states is generally in-
dependent of the Reynolds number. On a closer perspective,
we observe a very slight shift to the right with increasing
Reynolds number, i.e., higher wave number states become
more frequent. Schneider et al.17 also observed that their
weight distribution of states shifts to the right with increas-
ing Reynolds number. Nevertheless, their work is focused
on transitional pipe flow and also their window of observa-
tion was relatively small (Re = 2200, 2350, and 2500) for a
strong statement on behalf of that matter. Furthermore, their
state detection incorporates a cut-off threshold which is very
likely the reason for the overall low weight contributions in

FIG. 12: Normalized distribution of dominant wave number
states based on snapshot observations.

FIG. 13: Normalized distribution of dominant wave number
states based on structures with a streamwise extent.
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the occurrence statistics of their wave numbers. Even with
their relatively big data sets (ca. 15000- 17000 vector fields)
it is difficult to state if their state contributions are statisti-
cally converged, particularly for the less encountered states.
The generally constant weight distribution of wave number
states for all Reynolds number leads us to the statement that
the aforementioned Reynolds number effect, i.e. the Reynolds
number dependence of turbulent statistics in the range of mod-
erate Reynolds numbers, is not reflected from the dynamical
systems viewpoint of coherent states.

IV. DISCUSSION

We set up a 6-inch diameter pipe flow loop with a SPIV sys-
tem to investigate a number of interesting open issues related
to coherent states in turbulent pipe flows. A robust detection
algorithm was developed which is not affected by the back-
ground fluctuation of the flow. With this setup, we were able
to reveal the nature of these states by visualizing their inherent
patterns and uncovering interesting statistical features. In this
way, we closed the huge gap between the Reynolds numbers
at which Schneider et al.17 and Dennis and Sogaro18 observed
these structures. Our key observations are presented in the
following:

1. For all investigated Reynolds numbers, 10 dominant
states were identified, consisting of patterns of alter-
nating streaks along the pipe’s azimuth. We thereby
confirm Dennis and Sogaro’s18 assertion, that coherent
states are not phenomena of laminar-turbulent transi-
tion as assumed earlier, but govern also the dynamics
of fully developed turbulent pipe flow.

2. For all investigated Reynolds numbers, the weight dis-
tribution of states shows probabilities with positive
skewness towards lower states, with a most encountered
azimuthal wave number of 3. The weight distribution of
wave number structures is reasonably-well described by
a Poisson distribution. This is a hint that the transition
to a new wave number structure is independent of the
present state.

3. The weight distribution of wave number states for all
Reynolds number is very similar. We conclude that the
Reynolds number effect, i.e. the Reynolds number de-
pendence of turbulent statistics in the range of moderate
Reynolds numbers, is not reflected from the dynamical
systems viewpoint of coherent states.

There is a lot of future work required in this new field of tur-
bulence: From a phenomenological perspective, we are par-
ticularly interested if it is possible to uncover any Reynolds
number dependencies. Therefore, more Reynolds number sets
are currently being measured in order to increase the resolu-
tion within the range of moderate Reynolds number flow and
thereby increase our sensibility to unveil possible tendencies.
In parallel, we are currently processing the present data sets to
present more statistical features regarding the streamwise or-
ganization of the wave number states, inter alia the maximum

and average length distributions, as well as their state recur-
rence timescales. We assume that coherent states, apart from
their phenomenological importance for the understanding of
the nature of turbulence25, play a key role in some of the most
relevant fields of fluid engineering, e.g. as contributors to the
Reynolds stresses, as well as to the heat- and species trans-
port between the bulk and near-wall region. Coherent motions
likely have a strong contribution to high particle concentra-
tions close to the wall, namely turbophoresis, which causes
to scaling of pipe walls, one of the key issues to be tackled
in particle-laden flows. Therefore, we are interested in mech-
anisms to control the coherent structures. For instance, we
address how the magnetic fields can influence coherent mo-
tions by turbulent dissipation from a theoretical, experimental
and numerical perspective26–29, and suspect that damping of
the coherent sweeps can reduce an important chain element of
the process that transports scaling particles close to the wall
region.
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Appendix A: Detection- and visualization procedure

In Fig. 14, we present a concise illustration of the method-
ology for the detection and visualization of the coherent states.
First, in the detection procedure, by means of a spatial corre-
lation function long the pipe’s azimuth, the individual snap-
shot’s wave number can be obtained by an FFT- analysis. Its
inherent flow field is then allocated to its corresponding state
bin. Then, in the visualization procedure, the coherent pat-
terns are reconstructed by means of conditional averaging of
the state-assigned flow fields.
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