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Unified Integral Transforms
and Non-Classical Eigenvalue
Problems in Heat and Mass
Transfer

The generalized integral transform technique (GITT) is reviewed as a
computational-analytical methodology in linear and nonlinear convection—diffusion
problems, based on eigenfunction expansions extracted from characteristic differential
operators, coefficients, and boundary conditions present in the original partial differen-
tial problem formulation. Here, the emphasis is on the employment of nonclassical eigen-
value problems as the expansion basis, which do not fall into the more usual framework
of Sturm—Liouville problems. The goal is to enable or improve the eigenfunction expan-
sions convergence, by incorporating more information from the original operators into
the chosen eigenvalue problem, while requiring the handling of such a more involved
expansion base. In this concern, the proposed differential eigenvalue problem can itself
be handled by the GITT, leading to an algebraic eigensystem analysis. Different classes
of nonclassical eigenvalue problems are then reviewed and associated with typical appli-
cations in heat and mass transfer. Representative test cases are then chosen to illustrate
the extended methodology and demonstrate the convergence rates attainable by this
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1 Introduction

Modern engineering practice is nowadays inconceivable with-
out the computational simulation tools that were introduced and
advanced over the last few decades, both in individual physical
areas and in the Multiphysics framework. Models, methodologies,
and algorithms were combined either as a standalone tool or as
parts of more general multipurpose packages. While much has
been achieved and progressively consolidated, offering to the spe-
cialized practitioner an arsenal of solution alternatives, the
research on numerical methodologies and analysis in engineering
sciences simulation is far from being exhausted.

Hybrid numerical-analytical methods for partial differential
equations, in different physical contexts, are recognized not only
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as a benchmarking tool for numerical schemes and codes but also
as alternative computational-analytical methodologies them-
selves, that bridge the gap between simple mathematical formula-
tions, that are directly treatable by classical analytical methods,
and more complex formulations, that in general require costly
numerical methods and associated computational codes [1-3].
Such hybrid approaches are derived from classical analytical
methods, mostly developed before the computer boom in science
and engineering. In the transport phenomena area, the integral
transform method is certainly the most widely applied analytical
approach, and a few reference books have been made available
over the years [4-9]. One such extension of classical methods is
the so-called generalized integral transform technique (GITT)
[10-17], which has been previously reviewed with different appli-
cation emphasis [1-3,18-20].

The GITT is an eigenfunction expansion approach for partial
differential equations, which relies on the choice of an eigenvalue
problem that desirably carries enough characteristic information
on the original problem differential operators and coefficients, to
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warrant convergence of the expanded potential, within practical
limits, of the infinite eigenfunction expansion truncation order.
Eventually, convergence acceleration techniques, such as analyti-
cal filtering and/or integral balance schemes, might be recalled,
offering improved convergence and, consequently, reduced com-
putational costs. In the realm of uncoupled diffusion problems
with the most common first to third-type boundary conditions,
Sturm-Liouville’s theory provides a natural choice of eigenfunc-
tion expansion base, and it has been the preferred eigenvalue
problem proposition in various applications reported in the litera-
ture. However, when equation and/or boundary conditions cou-
pling among the different potentials become a dominant effect,
the simpler choice of decoupled Sturm-Liouville-type problems
might not be the best possible path for constructing the analytical
representation. The treatise by Mikhailov and Ozisik [9] unifies
and classifies linear diffusion problems in seven different classes
of formulations, which can be solved exactly through integral
transforms, starting with the so-called Class I problems that
involve essentially diffusion of a single potential. Then, in their
systematic presentation, the following classes of problems evolve
in terms of linear coupling terms among the different potentials,
which may be present at either or both the governing equations
and boundary conditions. Exact solutions are then provided by
integral transforms, starting from the nonclassical eigenvalue
problems that are obtained through the separation of variables as
applied to the homogeneous versions of the originally posed prob-
lems. This compendium [9] is a unique source for both the integral
transform approach and ready-to-use exact expressions for a wide
range of problems. Meanwhile, other classes of linear problems
were also explored, and exact solutions were achieved through
integral transforms based on nonclassical eigenvalue problems,
though not compiled in one single source, such as in the case of
boundary conditions with a finite capacitance [21], diffusion in
anisotropic media [22,23], and extended Graetz problems [24,25],
to name a few. Also, the advancement of the GITT promoted dif-
ferent alternatives of eigenfunction expansion basis, such as in
handling eigenvalue problems in irregular domains [26,27], solv-
ing moving boundary problems [28,29], in extensions to fourth-
order eigenvalue problems for boundary layer and Navier—Stokes
equations [30,31], in single domain representation of heterogene-
ous multiregion problems [32,33], in incorporating convective
terms into the eigenvalue problems [34,35], in vector eigenfunc-
tion expansions for Navier—Stokes equations [36,37], and more
recently, in accounting for nonlinearities in the eigenvalue prob-
lem itself [38,39].

The present contribution first provides an overview of the GITT
as a computational-analytical tool in linear and nonlinear
convection—diffusion problems, including the solution of the
required eigenvalue problem itself. Emphasis is then placed on
reviewing different classes of eigenfunction expansion proposals
that extend the classical Sturm-Liouville theory, pointing out the
novel aspects in each alternative solution path. The aim is to pro-
vide a unified compilation source for developments that have
either enabled or offered relevant computational gains in conver-
gence, as opposed to the conventional approach of choosing a
classical Sturm-Liouville auxiliary problem. Finally, selected
applications are more closely examined, to illustrate such conver-
gence rates and allow for discussions of their relative merits,
while accounting for the increased analytical complexity.

2 Basic Steps and Formal Solutions

Before describing the formalism behind the GITT approach
[1-3] for a certain proposed partial differential problem formula-
tion, it is worthwhile to review the basic steps that should be fol-
lowed in its application to a new problem, and thus offer an
overview of the methodology for new users. The GITT is an
eigenfunction expansion approach that is not restricted to formula-
tions that permit finding an exact decoupled analytical solution,
such as in the classical integral transform method [9] for linear
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transformable diffusion problems. Thus, it offers some alternative
solution paths that the user can benefit from. As general guidance,
the basic steps can then be summarized as:

(1) Expansion base selection: This very first step is perhaps the
one that requires the most experience with the hybrid meth-
odology since it somehow defines the effort balancing
between analytical and numerical tasks. Essentially, if
more information from the original problem operators is
carried into the eigenvalue problem that provides the
expansion base, faster expansion convergence, and more
weakly coupled transformed systems are expected. Thus, in
general, that means more analytical and less numerical
work. Even though heterogeneous and anisotropic media,
moving boundaries, and nonlinear eigenvalue problems can
nowadays be considered, the user should judge its capabil-
ity or need of handling a more involved eigenvalue prob-
lem, instead of opting for a simpler expansion base and
then just handling larger transformed ordinary differential
equations (ODE) systems for the required convergence criteria.

(2) Problem rewriting: Once the eigenvalue problem has been
selected, it is handy to rewrite the original problem formu-
lation by showing explicitly the chosen operators that are
part of the eigenvalue problem formulation, since these will
be exactly transformed in the step ahead, while all the
remaining terms are gathered into an expanded source term
that will be transformed in a single integral operation. For
instance, if for a certain nonlinear problem, it has been cho-
sen to employ a linear eigenvalue problem, all the corre-
sponding nonlinear portions of the terms in the original
formulation are then moved to the corresponding source
terms in the equations and boundary conditions.

(3) Filtering: An important step for reducing the computational
effort, analytical filtering can extract information from the
original formulation that corresponds to a portion of the
solution or for an approximate formulation of the original
problem that allows for an analytical solution. In any inte-
gral transform solution, the source terms are responsible for
deviating the convergence rate pattern from the pure expo-
nential spectral-type behavior. The more important the
source terms, the more impacted shall be the convergence
rates; thus, filtering can eventually eliminate source terms
or at least reduce their importance in the filtered problem
formulation. It should be recalled that the concept of the
source term in the present context goes beyond the physical
meaning of a source/sink effect, also incorporating all the
mathematical terms that are not exactly transformed
through the specific choice of eigenvalue problem, and then
have to be merged into the expanded source terms. It is
already quite useful to filter at least the boundary condi-
tions, providing a more uniform convergence behavior
throughout the solution domain. In addition, successive fil-
tering remains a useful tool in improving convergence rates
once a single filter pass is not judged to enhance conver-
gence to the desired rates.

(4) Eigenvalue problem solution: Classical separation of varia-
bles is indeed an important tool in handling simpler eigen-
value problems, especially with the aid of modern symbolic
computation platforms. However, as more involved formu-
lations are considered by retaining more information from
the original partial differential equation (PDE), as advo-
cated above, it is unlikely that an exact analytical solution
can be readily obtained. Then, the GITT itself is a versatile
approach in handling such eigenvalue problems, expanding
the solution in terms of simpler eigenfunctions, thus leading
to algebraic eigenvalue problems in the transformed
domain that can be handled numerically by well-
established algorithms and routines.

(5) Integral transformation process: This step is essentially the
application of the appropriate integral transformation
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operator over the resulting filtered problem formulation,
manipulated together with the boundary conditions once
source terms are present. From the substitution of the
inverse formula within such integrals, the outcome is the
need for evaluating the integral coefficients, preferably in
analytical form, again with the aid of symbolic computation
systems. Once the integrand does not allow for a fully ana-
lytical integration, such as for most nonlinear formulations,
the alternative of a semi-analytical integration scheme is
the preferable path, thus avoiding costly numerical integra-
tion routines, especially when called from within the trans-
formed ODEs system solver.

(6) Transformed system solution: Linear PDEs with space
variable-only coefficients, in general, allow for an analytical
solution of the transformed potentials system, even if it is a
coupled infinite system, through the appropriate truncation
and handling via the corresponding matrix eigensystem analy-
sis. Otherwise, the numerical solution of the transformed
ODE:s system is in general the most time-consuming task in
this hybrid numerical-analytical methodology. The trans-
formed system is likely to be stiff in the numerical analysis
sense, but several routines are readily available, either in the
public domain or general-purpose libraries that can be suc-
cessfully employed under reliable accuracy control schemes.

(7) Recovery of original potentials: Once the transformed
potentials are either analytically or numerically obtained,
the inverse formula of the integral transform pair is recalled
to reconstruct the filtered potential in analytic form, and
then added to the filter solution to reconstruct the desired
original potentials.

The emphasis in the present review is on the employment of
nonclassical eigenvalue problems as the expansion base, either
due to the impossibility of adopting a classical Sturm—Liouville
problem in a particular class of problems or to the actual choice of
incorporating more information into the eigenvalue problem, from
the original formulation operators, for improved computational
performance. For more clarity in the classes of problems that may
be dealt with through this alternative procedure, first, the most
usual solution path of the GITT, adopting classical Sturm-—
Liouville problems as a base for the eigenfunction expansions, is
briefly reviewed. We consider a sufficiently general nonlinear
convection—diffusion problem for the n potentials, Ti(x,?),
k=1,2,...n, which encompasses most classes of linear problems
considered in [9] and some of the additional extended formula-
tions here discussed, as special cases, defined in the region V with
boundary surface S as

8Tk(x,t)

or =V [Kk(X)VTk(X,[)] — dk(X)Tk(X,l) +Pk(X,[,T),

wi(X)

xeV,t>0
(1a)
with initial and boundary conditions given by
Ty (x,0) =fi(x), x€V (1b)

o (X) + [)’,\,(X)Kk(x)2 Ti(x,t) = ¢p(x,1,T), x€8,:t>0

on
(le)
T={T,Ts,....Tx,....,T,}" (1d)

It should be clarified that Eq. (1) is not necessarily the original
form of the proposed problem, but already encompass the basic
steps (1) and (2) above, reflecting the user choice of eigenvalue
problem through the coefficients in the operators of Eq. (1), which
in the present representation are linear and dependent only on the
spatial  coordinates. Therefore, through the coefficients,
wi(x), Ki(x), di(x), ox(x), Bi(x), a choice of the characteristic
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functional behavior to be represented through the eigenfunction
expansion base has been implicitly made in rewriting the problem
as in Eq. (1). Thus, a nonlinear eigenvalue problem is not explic-
itly considered in this formal analysis, but the present choice still
allows for dealing with nonlinear formulations through the source
terms in both the governing equations and boundary conditions,
which incorporate the nonlinear terms of the original formulation
that have been merged into the expanded source functions,
Pu(x,t,T) and ¢i(x,t,T), as described in more detail in Ref. [3].
For linear source terms, Pi(x, ) and ¢x(x,?), Eq. (1) becomes the
Class I problem according to the classification in Ref. [9], for
which exact analytical solutions are readily available through the
integral transform method. It is also implicit that Eq. (1) repre-
sents either the unfiltered or filtered formulations, since the filter-
ing process essentially modifies the functional form of the
equation and boundary source terms, Pi(x,#,T) and ¢i(x,1,T),
and the initial condition, f;(x).

Following the basic steps in the formal solution, the problem
formulation in Eq. (1) already suggests the decoupled
Sturm—Liouville eigenvalue problems to be considered, given by

V- [Ke () Vi (3)] + 1w (%) — die(x)J1r3(x) = 0,
xeV,k=1,2,...n

(2a)

3) B KA o () =0, xES (@)

where the eigenvalues, py;, and eigenfunctions, 1;(x), are known
from the application of separation of variables or from the GITT
itself [14,18]. The orthogonality property of the general
Sturm—Liouville eigenfunctions provides the following integral
transform pairs:

Tu(t) = J wi (X)¥,; (X)Tx(x,1)dV,  transforms (a)
v

Ti(x,1) = Z{bki(x)fk,;(t), inverses (3b)
i1

where the normalized eigenfunctions and respective norms are
given by 1

Vi(x) = \/T,:Wki(x)v with (3ce)

Ny = J wi (XY (x)dV (3d)

By applying the operator jvl/} «(x)(.)dV over Eq. (1a) and mak-
ing use of the boundary conditions, Egs. (1¢) and (2b), the coupled
transformed system is obtained as

dT (1) = ~
a 1 Tr() = g4, (1,T),

i=1,2,...,t>0, k=1,2,....n

(4a)

while the initial conditions, Eq. (1b), are transformed through the
operator fvwk(x)wki(x)(.)dV

m@:mszwm@mww (4b)

and the transformed source terms, g,;(z, T), become
(1 T) = J Ui (X)Pi(x,1, T)aV
v

Vu(x) — Ki(x) 2400
P e e

+ Js¢k(xv L T)
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The formal solution of the transformed potentials is given by

Tu(1) = Fuexp(-1) + j Gua (7T (1))exp [ (¢ — 1 )ar
(©)

Again, for linear source terms, Eq. (5) becomes the exact solu-
tion for the transformed potentials, recovering the general solution
for Class I problems in Ref. [9]. For nonlinear problems, Eq. (5) is
still useful in the inspection of convergence rates or providing
approximate estimates, through linearization of the transformed
source terms. In the more general nonlinear situations, the result-
ing coupled system (4) can be numerically solved, after being
truncated to a sufficiently large finite order, N, for each potential.
Well-tested initial value problem solvers that include the option of
handling stiff systems, preferably with automatic accuracy con-
trol, should then be employed. The Mathematica system [40] pro-
vides the NDSolve function, which automatically implements an
interpolating function object that recovers the behavior of the
transformed potential along with the 7 variable as a continuous
function. Then, the inverse formula (3b) provides the analytical
representation of the desired potentials.

The hybrid numerical-analytical solution is only completed
once the eigenvalue problem 2 has been solved for the eigenval-
ues and respective eigenfunctions. Symbolic computation plat-
forms [40] have been facilitating the job of finding analytical
solutions for separable Sturm—Liouville problems, but this possi-
bility shall not be further discussed here. The most general case of
an eigenvalue problem with an unknown analytical solution shall
be addressed instead. The same hybrid approach, GITT, can be
used to handle this general differential eigenvalue problem.
Through the choice of a simpler auxiliary eigenvalue problem
with a known exact solution, the eigenfunction expansion
approach reduces problem (2) to an algebraic eigensystem analy-
sis [14,18,27,41,42]. This auxiliary eigenvalue problem, for each
potential order £, is given as

V. [kk(x)Vka(x)] + [AinIWk(X) — cik(X)]ka(X) = 07 xeV
(6a)

ok (x) + Br(X)Ki(x) gn Qn(x) =0, x€S (6b)

which results from the user choice of the simpler coefficients
K (x), wi(x), and di(x), and should then offer an exact analyti-
cal solution for the corresponding auxiliary eigenfunctions, while
retaining information, as much as possible, from the original prob-
lem formulation. As a simplification limit, problem 6 can be taken
as Helmholtz equations in the specific coordinates system of the
considered problem. In general, the auxiliary problem retains the
same boundary condition coefficients of the original eigenvalue
problem, a;(x) and fi(x), but in principle, even those could be
simplified if required for achieving an analytical solution.
Problem 6 provides the integral transform pair below

l/;,((;)l = J Wi (X) Qo (X)Y;(x)dV,  transform (Ta)
v

W (x) = Zﬂkm(x)l}gn),, inverse (7b)
m=1

where the normalized auxiliary eigenfunctions and corresponding
norms are given by

ka (X)

Qpn(x) = . with (70)
( ) V N Qi
No,, = | 0095, (0av (7d)
\%4
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Problem (2) is operated on with fvflkm(x)(.)dV, to yield the
transformed linear algebraic system, for each potential order &,
truncated to the M}(h order, written in matrix form as

(Ac+CO{W} = B {V, } (8a)

with the elements of the M; x M) matrices and vector p, given by
[2,18]

G (x) — Ka(x) 220
o J 2(X) + B (X)
.00 (00— K ) 220
[ (Kt = Ru) un ) 22al) (®)
+ JV (Ki(x) — Ki (X)) VQun (X) - VQp (x)dV
+JV (%) — i (%)) Q1o (x) 0 ()Y
Biomn = vak (%) Qo (X) Q4 (X) @V (8¢)
Chmn = Ay On (8d)
Be = L s - tian, Y (8¢)

where 0,,,, is the Kronecker delta. The choice of the truncation
order M, for the algebraic system (8) is directly associated with
the truncation order (N;) required for the transformed ODE sys-
tem, Eq. (4), as will be discussed in what follows, since we should
always have M > N. The constant coefficients’ algebraic structure
of Eq. (8a) makes it straightforward to implement a quick analyti-
cal iteration, starting from the diagonal form to the matrices, to
inspect for convergence of the N, first eigenvalues with the
increase in M. It should be recalled that the first few eigenvalues
are the dominant modes in the eigenfunction expansion, and the
more restrictive accuracy control should be placed on them.

The above formal solutions based on the general Sturm—
Liouville eigenfunction expansion base are quite effective and
have been employed in the majority of applications handled
through the GITT over the years, in combination with conver-
gence acceleration techniques when required, such as single or
multipass analytical explicit filtering, progressive filtering for
multidimensional applications, implicit filtering for nonlinear
problems, integral balance approach for a priori and a posteriori
convergence enhancement, and infinite series convergence accel-
eration algorithms [16,43—46]. These possibilities act on rewriting
the inverse formula (3b), whose convergence is in principle gov-
erned by the decaying behavior of the transformed potentials in
absolute value with an increasing number of terms in the expan-
sion. For instance, filtering proposals essentially extract informa-
tion from the original source terms, to reduce their relative
importance in the evolution of the transformed potentials both
with increasing eigenvalue index and with the ¢ variable,
approaching the spectral convergence pattern typical of homoge-
neous linear problems. A general filtering proposal can be written
as

Ti(x, 1) = F(x, 1) + T{(x, 1) (9a)

where F(x, ) are the proposed filters and T} (x, t) are the filtered
potentials, given by

3

Tr(x, 1) = > ()T, () (9b)
1

1
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which is an eigenfunction expansion on the same base but with fil-
tered transformed potentials.

This effect becomes clearer once we examine the formal solu-
tion of Eq. (5) after performing the integration by parts of the
right-hand side as

Tyi(t) :fkiexp(_ﬂgil)'i_uiz [gki (t.T() —8u (071‘(0))6"?(_#@")}
ki

1 ["dgy 2
| oo Lo

10)

From the second term in the r.h.s., it can be noticed that the
transformed source term may dominate the convergence behavior,
which would then be governed by the pattern 1/ ,uf,-, instead of the
more favorable spectral pattern, exp(—g2;¢). The formal solution
in Eq. (10) is also quite useful in providing a first guess to the
truncation order N; of the transformed system, starting with the
linearization of the source term and dropping out the third term in
the r.h.s. This should be sufficient for an overall inspection of con-
vergence rates but, if needed, an iterative analytical refinement
[14] can be undertaken by considering the third term in Eq. (10)
via symbolic computation.

Here, we do not attempt to review these various possibilities,
but to discuss more closely another convergence enhancement
path, which inherently brings more information on the original
problem formulation into the eigenfunctions themselves. When-
ever there are operators in the original problem that are not
accounted for by the chosen Sturm—-Liouville base, it intrinsically
means that these missing operators are carried along into the
source terms, either in the equations or boundary conditions, and
end up by acting as modified sources that slow down the absolute
decaying behavior of the transformed potentials. Therefore, either
alone or in combination with other convergence acceleration
schemes above discussed, Sec. 3 below reviews some previous
work that, in the realm of the GITT, have considered nonclassical
eigenvalue problems in the proposed eigenfunction expansions.

3 Nonclassical Eigenvalue Problems

The Sturm-Liouville theory is fully established and provides a
reliable path for the proposition of eigenfunction expansions such
as those illustrated in the above formal solutions. On the other
hand, nonclassical eigenvalue problem choices, if not reducible
through variables transformation to a Sturm-Liouville structure,
in general, require the establishment of the corresponding ortho-
gonality property and the spectral analysis to identify the possibil-
ity of occurrence of nonpositive real and/or complex eigenvalues
in finite domains. Despite the added analytical difficulties, repre-
senting more closely the original operators of the proposed prob-
lem through a nonclassical eigenvalue problem proposal should
lead to improvement in the expansion convergence, with the
related reduction in computational costs, especially for nonlinear
formulations.

The present review aims at providing a systematic presentation
of different classes of problems where the employment of a non-
classical basis has resulted in representative gains in the integral
transform approach. Due to space limitations, only a few of these
extensions are analyzed more closely in Sec. 4.

3.1 Moving Boundary Problems. The first class of problems
to be considered is associated with moving boundaries, such as
phase change, ablation, oxidation, degradation, and other phenom-
ena that alter the problem domain as the heat or mass transfer pro-
cess evolves [16,28,29,47]. Even if the problem formulation fits
the general representation in Eq. (1), the domain is now character-
ized by time-dependent external surface and overall volume, S(¢)
and V(¢), respectively. Thus, the eigenvalues and eigenfunctions
now become time-dependent and, except for simpler formulations

Journal of Heat and Mass Transfer

when explicit expressions are obtainable for both, the eigenvalues
need to be solved simultaneously with the transformed potentials.
The time-dependent eigenvalue problem is given by

V- [Ki (%) Vg (%,0)] + [, (0w (X) = di (X) [ (x,1) =0, x€ V(1)
(11a)

0
{ock(x) + B (x)Ki (x) 87} Vu(x,0) =0, xeS(r) (11b)
resulting in the following integral transform pair

Tki(t):J. wi (X)W (x, )Ty (x,£)dV,  transform (12a)

V()
inverse (12b)

ilz/ XtTkl

where the normalized eigenfunction is defined as

- Vii(x, 1)
(x,1) = YD) 12¢
lpkl(x I) Ne (12¢)
with
Nult) = | (Y (124)
Vi

A limited class of linear problems with a prescribed functional
relation for the boundary movement have been proposed [14,17],
but in general these moving boundary problems are inherently
nonlinear and a heat or mass balance at the phase change interfa-
ces closes the problem formulation and is not shown here, since
these depend on the specific application. Due to the time-
dependence of the eigenvalue problem, an additional term appears
in the transformed system, in the form

dT, - .
. +ZA,W T(t) = g4 (6 T), 6> 0,i,j= 1,2...

(13a)
where

Ny (x,8) ~
w0 =00+ [ I puenav s

3.2 Heterogeneous Media. Class II problems as described in
Ref. [9] involve the solution of linear diffusion problems in multi-
region domains. Although the theory for finding the integral trans-
form solution is well-established in this class, through the
associated coupled multiregion eigenvalue problem with a single
set of eigenvalues, dealing with a complex heterogeneous multidi-
mensional region through this path can be cumbersome, both in
the analytical and numerical tasks. A more straightforward alter-
native is reformulating the heterogeneous media problem into a
single domain, rewriting it as a Class I problem with space vari-
able coefficients and source terms that account for any sort of sub-
regions transitions. This single domain strategy was introduced in
the context of fluid-porous media instability problems [48,49] and
conjugated heat transfer [50], and subsequently extended to differ-
ent classes of heterogeneous media situations [32-36,51-56],
including the consideration of interfacial resistances dealt with as
fictitious layers [55,56].

Consider an extended Class II nonlinear diffusion problem
defined in a heterogeneous media that is represented by 7y subre-
gions with volumes V;,=1, 2, ..., ny, and the corresponding
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potential and flux conditions at the interfaces. Different potentials
are accounted for in each subregion, Ty/(x,?), k=1,2,...,n and
[=1,2,...,ny, including nonlinear equation and boundary source
terms, respectively, Py(x,t,T) and ¢ (x,1,T), in the following
formulation:

0Ty (x,t
XeV), t>0,k=1,2,..n,1=1,2,....ny

(14a)

with initial, interface, and boundary conditions given by
Tu(x,0) = fu(x), x€V (14b)

OTy(x,t
K’d(x)% = higm (X) [T (X, 1) = Tin (X, 1)], X € Sp, £ >0
(14c¢)
OTw(x, 1) OT i (X, 1)
K — = K A, ms 14

u(®)—p n(X) =5 XE S, t>0 (14d)

[O(k](X) + ﬁk](X)Kkl(x) %:| Tk1(X7 I) = qﬁk,(x, t, T)7 xeS$,t>0
(14e)

where n denotes the outward-drawn normal to the interfaces, S,
represents interfacial surfaces, and S, stands for external surfaces.
The corresponding eigenvalue problem is then given by

V- Ky (X)V%” <x)] + [wi(x) — de(X)]‘//kli(X> =0,

(15a)
xeV,k=12...n1=12,.. ny
o (x
K“(x)% = T (X) Y0 (X) = Vi (X)], X € Spy £ >0
(15b)
N (x) O i (X)
Kkl(X)T = Kkm(X)T7 X E S, t>0 (15¢)

[ak,(x) + Bu(X) K (x) 8%1} Vui(x) =0, xe€8,t>0 (15d)

with orthogonality property given as

ny

ZJ Wit (X)W (W (X) AV = 35N (15¢)

=1

However, it is possible to rewrite problem (14) as one single
domain with spatially variable coefficients and source terms, such
as in Eq. (1), accounting for the material regions transitions,
where the single domain and its bounding surface are written as

V=SV 5= (16)
=1 =1

Then, problem 2 can be adopted as the eigenvalue problem,
with the corresponding equation and boundary condition coeffi-
cients associated with the single domain reformulation. To write
the heterogeneous media problem, Eq. (14), and the related eigen-
value problem 15, as a single domain formulation that accounts
for interface conditions with potential discontinuities, Eq. (14c¢), a
fictitious thin layer can be introduced between the two subregions,
with appropriate dimensionless thickness and conductivity, to
reproduce the equivalent interface resistance [55,56].

3.3 Irregular Domains. Problem (1) and the corresponding
eigenvalue problem, Eq. (2), are defined for any arbitrary region

010801-6 / Vol. 145, JANUARY 2023

=V [Ku(X) VT (x,1)] = du(X)Tu (X, 0) + Pu(x,2,T),

V. Therefore, the solution here reviewed is in principle valid for
any irregular region and can be readily computed once a solution
is offered to the eigenvalue problem and the volume and surface
integrals in Eqs. (4b) and (4c¢) have been evaluated. Thus, in prin-
ciple, if an analytical solution is available in this domain for the
simplest form possible of the problem 6, known as the Helmholtz
equation, this auxiliary problem would be readily employed in the
expansion of the unknown eigenfunctions. There are more than
eleven orthogonal coordinate systems for which separation of var-
iables provides an exact solution to the Helmholtz equation [57],
but these apply only to the corresponding geometries that can be
mapped as fixed coordinates surface boundaries in such coordi-
nate systems.

A general integral transform solution of multidimensional
eigenvalue problems has been provided in Ref. [27] and applied
in Refs. [58,59], not requiring its representation in a specific coor-
dinate system that matches the boundary surfaces. The idea relies
on a progressive integral transformation process based on one-
dimensional auxiliary problems in each coordinate direction.
Then, the irregular boundaries need to be mapped as functions of
the coordinates in such a way that the progressive integral trans-
formation scheme can be applied. For instance, in a three-
dimensional rectangular coordinate system, the irregular region
bounding surfaces could be represented as

xo <x < xp, yolx) Sy <yi(x), zo(x,y) <z <zi(xy) (17a)

Then, the volume integrals can be implemented in the appropriate
order as

. v yi(x) pzi(xy)
J (.)dV:J J [ (.)dzdydx (17b)

xo Jyo(x) Jzo(x.y)

It should be recalled that the order of integration in Eq. (17b) in
each independent variable becomes mandatory with the choice of
irregular domain representation proposed in Eq. (17a), which in
many situations may allow for analytical or at least semi-
analytical integration. However, more general purely discrete
numerical integration algorithms can be adopted in the overall
region V, without requiring the boundaries mapping of Eq. (17a),
allowing for the determination of the integral transformation coef-
ficients in arbitrarily irregular domains.

Conformal mapping techniques have been applied in conjunc-
tion with the GITT approach [60], directly applied to the original
partial differential problem, and in principle, the same idea could
be employed in handling the associated auxiliary eigenvalue prob-
lem instead. A third solution path considers a fictitious domain
that envelopes the original irregular region [61] and, through the
appropriate definition of fictitious properties and boundary condi-
tions, recovers the irregular eigenvalue problem solution. A com-
parative analysis of the methodologies employed in Refs. [58,59]
and Ref. [61] for the solution of eigenvalue problems in irregular
geometries with Dirichlet and Neumann boundary conditions was
presented [61]. In such work, the former methodology was coined
the coincident domain approach and the latter the fictitious
domain approach. The results demonstrated that the coincident
domain approach has a better performance for irregular bounda-
ries with Dirichlet conditions, whereas the fictitious domain
approach is better suited for Neumann conditions.

Also, the integral transformation of irregular domains through
progressive one-dimensional transformations, such as described
above, may be directly applied to the original partial differential
problem, and was, in fact, the first proposed solution path for the
application of the GITT in irregular domains [26], shown to be an
interesting alternative in different applications [62—67].

3.4 Anisotropic Media. The analysis of linear diffusion
problems in anisotropic media through integral transforms was
first proposed in Ref. [22], as an extension of the classical integral
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transform method, which accounts for general nonsymmetric ani-
sotropy in finite regions. An adjoint eigenvalue problem is pro-
posed that forms a biorthogonal set with the original one, which
by itself would be nonself-adjoint. This analysis was later
expanded and written more concisely through a convenient matrix
operator form [23]. This approach was then further generalized,
employing the GITT, to handle nonlinear and heterogeneous
media problems [68,69].

Therefore, if in Eq. (1a), the diffusion operator is characterized
by the tensorial coefficient, Kk,-j(x), instead of a scalar one, the
eigenvalue problem obtained through separation of variables
would then be given by

Ly (x) = w@wi(x)(x), inxeV (18a)
with boundary conditions given as
B, (x) =0, x€8§ (18b)

with the operators being given as

0 0
Lk = *B—Xi (kaj(x) a—xj) + dA(X) (186‘)
0
Bk = OCk(X) + ﬁk(X) n; Kk,'j(x)a— (lgd)
Xj

For a general anisotropy tensor, the eigenvalue problem 18 is
nonself-adjoint and the resulting eigenfunctions are not orthogo-
nal. Following Refs. [22,23,70], an adjoint eigenvalue problem is
proposed, which will lead to orthogonal eigenfunctions to those
from Eq. (18), as

Ly (%) = mowe()yi(x), inx eV (19a)
with boundary conditions given as
By (x) =0, xe8§ (19b)

where the adjoint operators are given by

. B d
Lk = 78—)61- {Kkﬁ(x) a—)e}:| + dk(X) (196‘)
x 0
Bk = O(k(X) + ﬂk(X) n; Kkji(x) 87 (lgd)
'/

Then, the eigenfunctions 1/, (x) and v (x) obey the orthogonal-
ity condition below, yielding a biorthogonal set

J Wik (X) lﬁk,, (X) W}tm (X) dV = 0,mNin (20a)
v
where d,,, is the Kronecker delta and the norms are given by
Nir = [ w0, (00, )V 0b)
14

The integral transform-inverse pair is then established with the
help of the orthogonality property, as

Tin (t) = J wi(X)Tr (X, )Yy, (x)dV transform (2la)
v
Ti(X,1) = i NLkn W, (X)T1n(2)  inverse (21b)

n=1

The GITT approach itself can be employed in transforming the
original differential eigenvalue problems into algebraic ones, by

Journal of Heat and Mass Transfer

proposing a simpler auxiliary eigenvalue problem to provide a base
for the eigenfunction expansions, such as previously described. A
similar path of considering a biorthogonal expansion may also be
followed in solving the eigenvalue problem, for enhanced conver-
gence also in finding eigenvalues and eigenfunctions.

3.5 Coupled Equations. Class IV problems in Ref. [9] corre-
spond to linear diffusion problems of any arbitrary number of
potentials that are coupled through source (or sink) terms in the
governing balance equations. The exact integral transform solu-
tion of this class of problems was originally proposed in Ref. [69],
by considering the corresponding coupled set of eigenvalue prob-
lems. In Ref. [69], the potentials are symmetrically coupled
through linear source terms, and the coupling can be split from the
source terms of Eq. (1a), as

Py (x, t, T) =P, (x, t, T) + b(x) Z o T (X, t) — T(x, t)]
p=1
(22a)
Oip = Opk (22[7)

Then, the integral transform solution is constructed through the
following coupled eigenvalue problem [9,69]:

V- [K; (X)Vl,bk (x)] + [1Pwy (x) —d (x)]l//k (x)
() Z o1l () — v (¥)]

=0, xeV (23a)

00+ B o w0 =0, xes )

while the orthogonality property of the eigenfunctions is given by

n

3 jvwk(xm,-(xm,-(x)dv = 5N, 230

k=1

where the norms are computed from
N; = ZJ wi (X)Y2(x)dV (23d)
k=1"V

The transform-inverse pair is deduced as [9,69]

n

Ti(f) = E vak(x)lﬁk,-(x)Tk (x,1)dV,  transform (24a)

Ti(x, 1) = il\%wki(x)ﬂ (1), inverse (24b)
P

This choice of eigenfunction expansion base was recently
extended to the analysis of more complex nonlinear problems in
heterogeneous media [70,71]. As anticipated, substantial gains in
the analytical and computational steps of the methodology were
achieved. The coupled eigenvalue problems enable the integral
transformation process to merge all the spatial and coupling infor-
mation into a single ordinary differential system for the trans-
formed potentials. Since the information on the coupling of the
different potentials is carried on into the coupled eigenvalue prob-
lems, even though just through characteristic linear functional
forms, improved convergence rates are achieved in comparison to
the most usual integral transformation path with uncoupled
Sturm—Liouville  problems. The nonsymmetric coupling
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formulation was also considered in Ref. [72], which is coined as
Class V problems in Ref. [9], though an exact solution through inte-
gral transforms was reported only for the case of two coupled
potentials.

Coupled eigenvalue problems also commonly occur in linear
stability analyses of heat and fluid flow problems. These problems
have been solved using the GITT itself by employing a basis
stemming from simpler eigenvalue problems that admit analytical
solutions, as described in Refs. [48,49,73-75]. The consideration
of coupled auxiliary eigenvalue problems opens out an interesting
alternative for enhancing convergence in such applications.

3.6 Coupled Boundary Conditions. Class III problems in ref-
erence [9] involve two linear diffusion equations, such as Eq. (1) but
with linear source terms, that are coupled through the boundary con-
ditions in a more general form, thus leading to coupled eigenvalue
problems to achieve an exact solution through integral transforms
[76]. The Class III eigenvalue problem is written as

V- [Ke () Vg (x)] + [1Pwe (x) — di (x) ] (x) = 0,

(25a)
k=12 xeV

Buy, (X) + By, (x) =0, x€S8;, k=1,2 (25h)
B (x) =0, x€8, k=12 (25¢)

0
Bk = |:OCk(X) + ﬁk(X)Kk(X) 87:| (25d)

n

0

By = {akm(x) + B (X)Ki(x) %} , km=12 (25¢)

while the orthogonality property of the eigenfunctions is given by

2

Z akJVwk(x)tpki(x)l,bkj(x)dV = 0;iN; (26a)

k=1

where the norms are computed from
2
Ni=> akJ wi(X)i (x)dV (26b)
k=1 JV

with the o coefficients obtained from the determinants below

o1 = det P o (26¢)
Par 21

o5 = de{(x12 [312} (26d)
022 /322

The transform-inverse pair is deduced as [9,76]

2
T:(t) = Z GkJ wi (XY (x)Tx (x,1)dV,  transform  (27a)
k=1 v

inverse (27h)

This class of diffusion problems was initially motivated by the
analysis of drying in moist capillary porous media [77] and
coupled heat and mass transfer in concurrent channel flow [78].
Concerning the solution of Luikov equations of drying, it was
soon observed in Ref. [79] that the eigenvalue problem 25 could
lead to complex eigenvalues, which if not accounted for could
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lead to erroneous results in the temperature and moisture distribu-
tions. In addition, the numerical computation of such complex
eigenvalues should be undertaken with care, since missing just
one of these roots could again affect the results. Considering this
difficulty, the GITT was employed on this system of equations but
employing the alternative path of considering a simpler decoupled
eigenvalue problems set [80]. This solution path was also
extended to the solution of nonlinear drying problems [81] and,
more recently, to the analysis of intense drying [82], including the
pressure field as a third dependent variable. Nevertheless, the
GITT itself, as applied to the solution of this eigenvalue problem
coupled at the boundary conditions, following the same basic
ideas as in Eqgs. (6)—(8), is a powerful tool in automatically deter-
mining real and complex eigenvalues through the corresponding
algebraic matrix eigensystem solution [83], thus directly applying
the exact solution of Class III problems.

Eigenvalue problems such as Eq. (25) were also solved in the
analysis of the hydrodynamically developed flow of a gas in a
duct whose walls are coated with a sublimating material [78] and
in thermally developing flows in concurrent flow within double-
pipe heat exchangers [84].

3.7 Boundary Conditions With Finite Capacitance. We
now consider diffusion problems such as in Eq. (1), but with a
more general boundary condition type, involving a thin boundary
film with finite capacitance. The corresponding boundary condi-
tion is written as

OTy(x,1)

7e(X) o + | o (x) + /3,{()()1(,(()()2 Te(x, 1) = ¢p(x,1,T),

On
xeS, t>0
(28)
where the boundary capacitance coefficient, y.(x), becomes zero
wherever there are no capacitance effects at the boundary surface S.
The integral transform analysis of the linear version of this
class of problems was introduced in Ref. [21]. Applying the sepa-

ration of variables to the homogeneous version of the original
problem, the nonclassical eigenvalue problem is given as [21]

V- K () Vi ()] + [pwe (x) — di(x)]Y (x) =0, x€V
(29a)

0 = [0+ A0k 2] i, x5 eon

with the squared eigenvalue appearing also in the boundary condi-
tion, while the orthogonality property of the eigenfunctions is
given by

J, w00V + [ 2k 0105 = o,

(29¢)

where the norms are computed from

N = | ow v + [ 23 u2mas @0

The transform-inverse pair is deduced as [21]

Tl = |

T AV + | ) )T (x, 1)dS,

s Be(x)
transform

(30a)

Ty(x,1) = iL Vu(x)Tw(r), inverse (30b)
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In heat transfer problems, boundary condition (28) is usually
called a fifth kind boundary condition and, for oy (x)=0, it is
called a fourth kind boundary condition. An interesting applica-
tion to the transient thermal analysis of a nuclear fuel rod, includ-
ing the ceramic fuel and a lumped formulation for the cladding, is
presented in Ref. [85]. There, however, the GITT was employed
to avoid the above eigenvalue problem, and a simpler
Sturm-Liouville problem was employed, such as in Eq. (2). In
such situations, since the original problem and the chosen eigen-
value problem do not present the same operators in the boundary
conditions, to avoid slower convergence of the eigenfunction
expansions, either an implicit filtering [47,81,86,87] or an integral
balance approach [16,29,43,45] should be adopted.

In Ref. [88], the GITT was applied to transient three-
dimensional pumping of aquifers, considering a fully penetrating
vertical well between two parallel streams. Different physical sit-
uations were considered, but the unconfined aquifer case introdu-
ces a fifth-kind boundary condition, which is partially handled as
described above. A simpler three-dimensional eigenvalue problem
that is uncoupled in the three coordinates is considered instead,
though accounting for the finite capacitance in the corresponding
coordinate, allowing for the straightforward definition of the
three-dimensional eigenfunction expansion.

3.8 Boundary Conditions With Unknown Source Term. A
more general coupling of diffusion equations through the bound-
ary conditions is represented by the so-called Class VI problems
in Ref. [9], when there is a gross substance balance along the
boundary surface, that does not allow for a priori knowledge of
the boundary condition source terms, ¢y, in Eq. (1¢), which then
becomes part of the solution. This class of problems was first
motivated by the extraction of substances from a solid porous
medium [89], and the exact integral transform solution was
obtained by combining the Laplace transform and the classical
integral transform methods, based on a nonclassical eigenvalue
problem. In the proposed general formulation, each diffusion
equation (la) can be defined in a specific region V,, and the
boundary conditions are now given as [9]

{ock(x) + fi(x)Ki(x) 0%1] Ti(x,0) = ¢(1), x€S,t>0 (3la)

where the unknown source term, ¢(¢), is coupled to the potentials
through the overall substance balance as
Ty (X l‘)

ERe I RLE o

with initial condition

as=0(@), t>0 (3lb)

P(1) = o (le)

After employing the Laplace transform method and applying

separation of variables to the homogeneous version of the original

problem, the resulting nonclassical eigenvalue problem is given as
[9,89]

V- K (x) Vi ()] + [1Pwe (x) — di ()] (x) =0, x € Vg,
k=1,2,...n
(32a)
S| w0V + [0+ B K ) v =0 v
k=1 Vi
(32b)

with the orthogonality property of the eigenfunctions given by

Zak}' J wi (X) g (x )'//kj(X)dV—i— <zn:“/kjwwk(x)¢ki (x)dV)

k=1

(iykjv wi (X) ¥ (x)dV) =0;N; (320)

k=1
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where the norms are computed from

n

N; = Z“W"J w (x 1//“( )dv + ykJVka(X)lﬁki(X)dV:r

(32d)

k=1
The transform-inverse pair is deduced as [9]

)=

+ (;VkJ.w wie (X) ¥y (x)dV) (Xn:ka.Vk wie (x) Tk (x,5)dV),

k=1

l//kl ( )fk (x, s) dav

transform
(33a)

- Zl\i/ Yu(X)Tu(s), inverse (33b)
=1

where s is the Laplace transform variable and the Laplace trans-
formed potential is defined as

Ti(x,s) = J e 'Ti(x,1)dt (33¢)
0

An important class of problems in dealing with double-pipe
heat exchangers follows the same basic formulation, leading to
the same eigenvalue problem, once one of the streams is lumped
and the thermal resistance due to the wall is accounted for
[90-92]. Then, the convection—diffusion equation for one of the
streams is coupled through the boundary condition with the
lumped temperature of the other stream. Here, the longitudinal
coordinate plays the role of the time variable. The GITT was the
solution methodology in these works, but a simpler eigenvalue
problem was chosen, coupling the transformed temperatures with
the lumped stream temperature. Again in Ref. [85], on transient
thermal analysis of a nuclear fuel rod, but for the model that also
accounts for the gap thermal resistance, the lumped cladding tem-
perature becomes an unknown boundary quantity, such as
described in Eq. (31), and must be simultaneously determined
with the temperature distribution in the ceramic pellet, following
a heat balance that is mathematically analogous to Eq. (31b). In
this case, the GITT was employed with a simpler Sturm—Liouville
problem, thus coupling the transformed transient ceramic temper-
atures with a priori unknown cladding temperature. More recently
[93], an integral transform solution of the concurrent parallel
plates moving bed heat exchanger was proposed, when the solid
and fluid temperatures are coupled such as described above. In
this case, the solution of the actual nonclassical eigenvalue prob-
lem was pursued, to find the proper exact solution.

3.9 Eigenvalue Problem With Nonlinear Dependence of
the Eigenvalue. A classical problem in convective heat transfer is
known as the extended Graetz problem, due to the consideration
of axial heat diffusion in the fluid. The exact analytical solution of
this problem via separation of variables [24] leads to an eigen-
value problem where coefficients appear with nonlinear depend-
ence on the eigenvalues; more specifically in this case, the
eigenvalue appears both squared and to the fourth power in the
same equation. A similar class of problems was analyzed in a dif-
ferent application [94]. The GITT itself, with a simpler
Sturm—Liouville eigenvalue problem, was employed in obtaining
approximate analytical solutions to this extended Graetz problem
[95], by considering only the diagonal terms in the coefficients
matrix and was later utilized to obtain  hybrid
numerical—analytical solutions of the complete coupled system
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[9,96], as well as semi-analytical solutions to the complete system
in infinite channels [97]. This same solution path of GITT adopt-
ing a simpler Sturm-Liouville problem was also employed in han-
dling steady and transient conjugated heat transfer problems with
axial diffusion effects [51,52,98].

In Ref. [25], the GITT itself was employed in solving this class
of eigenvalue problems with nonlinear dependence of the eigen-
value, following the same strategy described in Egs. (6-8), then
leading to the exact integral transform solution of the initially
posed problem. The nonclassical eigenvalue problem with nonlin-
ear dependence on the eigenvalue is written in this case as

V- [Ky (X*)V‘Pki (X*)] + Kk (X*) + (X*)
—d(x") Y (x*) =0, x eV (34a)

wlx) + BOKGD) Ly ) =0, xes G

where V* corresponds at most to a two-dimensional region, with
the corresponding position vector x*, since the elimination of the
axial variable is already accomplished, which causes the appear-
ance of the nonlinear dependence on the eigenvalue. This non-
classical eigenfunction expansion provides a significant
convergence enhancement effect and was also employed in the
analysis of conjugated heat transfer problems with and without
slip flow conditions [51,52,55,56,98].

3.10 Convective Eigenvalue Problems. The GITT solution
of convection—diffusion problems dates to Refs. [99-102], when a
purely diffusive eigenvalue problem has been adopted, such as in
Eq. (2), while the convective terms are incorporated into the
source terms in Eq. (1a). Though this approach has been quite
successful in different classes of applications in transport phenom-
ena, for highly convective situations, it remains of interest to
employ convective eigenvalue problems that can provide a con-
vergence enhancement effect. For the linear constant coefficients’
situation, a dependent variable transformation has been proposed
in Ref. [103] that eliminates the convection terms and collapses
the information into new equation coefficients. In combination
with the integral transform method, analytical solutions were
obtained for three-dimensional linear convection—diffusion prob-
lems in both transient and steady-states. The eigenfunction expan-
sion of the modified problem resulted in improved convergence in
comparison with the GITT solution directly applied to the original
problem, employing the simple diffusive eigenvalue problem.

The dependent variable transformation pathway was extended
to handle nonlinear convection—diffusion problems in Refs.
[34,35,104], through consideration of the original variable veloc-
ity fields in the transformation, thus leading to a modified diffu-
sive nonself-adjoint eigenvalue problem, or by considering a
characteristic, yet simple, representation of the velocity fields that
could still allow for obtaining a modified self-adjoint eigenvalue
problem, thus mixing the variable transformation with the GITT
application.

Consider the modified version of Eq. (1a), for a single potential
for simplicity, but now explicitly incorporating the convective
term in its left-hand side, as

w(x)g—l—wVT:V- [KxX)VT]=d(x)T(x,t) +P(x,t,T), x€V

ot
(35)

Instead of merging the convective term into the source term,
P(x,t,T), and proceeding with the traditional GITT as previously
described, one may first propose the dependent variable transfor-
mation to obtain a modified diffusion problem formulation. For
the sake of illustration, vector u is represented by the three com-
ponents {u,, iy, u,} for a general three-dimensional situation, in
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the Cartesian coordinates system, x = {x, y, z}. Equation (35) is
then given in the generalized diffusive form as [34,104]

R TR [ RN
2 [T+ kw02 e T
—d(xX)T(x,0)+P(x,1,T), XEV, t>0
(36a)
where
K(x) = ko(x)ky (%) (%) (36b)
w(x) = w(x) K (x)/K(x) (36¢)
c;’(x) =d(x) K(X)/K(X) (36d)
p(xv Z, T) :P(thvT)k(X)/K(x) (36¢)
u(x) = ﬁ [u(x) — VK(x)] (36f)
. — | (x)dx
ke(x)=e J ® (36¢)
L) —e J Kt (36h)
k(x)=e J () (36i)

By imposing adequate restrictions on the choices of the charac-
teristic linear coefficients K(x) and u(x), the transformed diffusion
coefficients shall be given as functions of only the corresponding
space coordinate, or k (X) = k.(x),  k,(x) = k,(y), k.(x)=
k.(z), and then the resulting generalized diffusion formulation
will lead to a classical self-adjoint eigenvalue problem [34,104],
such as in Egs. (2).

These previous contributions have in common that advective and
diffusive terms are partially or fully merged into a generalized dif-
fusion problem. The goal is to offer an eigenfunction expansion
base that partially incorporates the convective effects, toward
expansions with improved convergence rates. The transformation
strategy allows for different choices of reference coefficients, which
lead to different effects on overall convergence enhancement.

3.11 Biharmonic Eigenvalue Problems. The integral trans-
form analysis of either the boundary layer or the Navier—Stokes
equations has been introduced under both the primitive variables
[105-108] and stream function-only (for two-dimensional prob-
lems) or scalar/vector potentials (for three-dimensional problems)
formulations [30,31,109-113]. The stream function formulation has
been clearly preferred over the years, due to the improved conver-
gence behavior, automatic satisfaction of the continuity equation,
and inherent elimination of the pressure field, as reviewed in Ref.
[20]. The associated eigenvalue problem employed in combination
with the GITT is a fourth-order one, like the biharmonic eigenvalue
problems commonly used in vibration problems [114]. As a matter
of fact, the GITT approach with biharmonic eigenvalue problems
has been increasingly employed in different classes of problems in
structural dynamics, such as detailed in Refs. [115-120].

More recently, a novel vector eigenfunction expansion proposal
[36] has unified the GITT solution of the two- and three-
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dimensional primitive variables formulations, by collapsing in
one set of transformed potentials, all velocity components. The
velocity vector field representation is physically interpreted as the
influence of an infinite number of vortices disturbing a base flow.
The stream function-only formulation for the two-dimensional sit-
uation is then automatically recovered as a special case. This
approach has been advanced in recent extensions dealing with
fluid flow and heat or mass transfer within channels and cavities
filled with fluids or partially filled with a saturated porous medium
[36,37,53,54].

Thus, due to its marked differences from Eq. (1), consider the
transient Navier—Stokes equations in dimensionless vector form
for an incompressible flow, given as [37]

V-u=0, xeV (37a)

Ou 1

0t+v (u®@u) = Vp+ReV [uVu], xeV  (37b)
where V represents the fluid domain, u the dimensionless velocity
vector, p the dimensionless pressure field, Re the Reynolds num-
ber, and p the dimensionless variable viscosity. The associated
eigenvalue problem for the GITT application is obtained for the
linear case of Stoke’s flow, when Re—0. The associated self-
adjoint eigenvalue problem equation is written as [37]

Vx V- [uV(Vx®)]+@Z(VxVx®)=0 (38

Following the proposition of separating the flow field into a
base flow and an infinite number of vortices, and after applying a
filter to the velocity field, the integral transform pair is proposed
in terms of the base vector [37]

u(x,t) = iﬁi(t)(v x ®@;), inverse (39a)

i=1
(1) = J (V x @) -@t(x,1)dV, transform (39D)
v

where the filtered velocity field, z(x, r), comes from
u(x, 1) = a(x,1) + up(x,1) (40)

3.12 Nonlinear Eigenvalue Problems. Except for those
moving boundary problems when the domain evolution is not
known a priori, and must be determined as part of the solution, all
the alternative nonclassical eigenvalue problems considered so far
do not account for nonlinearities in the equation or boundary coef-
ficients. Essentially, the nonlinearities in the original formulation
are merged into the source terms, Py (x, t, T) and ¢, (x,1,T).
Then, the eigenvalue problems are in general constructed with
characteristic linear functional forms of the equations and bound-
ary conditions coefficients, wy(x), Ky (X), dp(x), ox(x), and f(x),
which are not necessarily identical to the coefficients in the origi-
nal problem formulation. For this reason, all the nonlinearities of
the problem are concentrated into the transformed system, and
thus, on the transformed potential.

The idea of carrying along the nonlinearities in the coefficients
of the original problem anticipates the perception that eigenvalues
and eigenfunctions shall now be functions of the actual potentials
that they are supposed to represent, thus inherently requiring some
sort of coupled solution of potentials and eigenfunctions. Such as
in moving boundary problems, eigenvalues, and consequently
eigenfunctions and norms, become functions of the potentials that
are now solved simultaneously. This concept was formally intro-
duced in Refs. [38,121], with the GITT working with a nonlinear
eigenfunction expansion base due to a nonlinear boundary condi-
tion in a heat conduction problem, as reviewed in [3]. Thus, con-
sider a diffusion problem such as given by Eq. (1), but for a single
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potential and with nonlinear boundary condition coefficients, writ-
ten as

a(x,,T)T + B(x,t,T) K(x) %:q&(x,t,T% xeS, t>0
41)

where o and f§ are the nonlinear boundary condition coefficients.

An implicit filter can be introduced to account for the nonlinear
boundary source term an offer a homogeneous boundary condition
for the filtered potential, T#(x,r). Then, the nonlinear eigenvalue
problem is adopted, which still carries the original nonlinear
boundary condition coefficients, in the form

VKX)VY;(x31) + [1F ()w(x) — d(x)]y;(x;1) =0, x€V
(424)

with boundary conditions

o(x, 6, T (x;1) + p(x,1,T)K(x) M =0,

on Xe S (42b)

and the associated time-dependent eigenfunctions, ;(x;t), and
eigenvalues, f,(¢), are for the moment assumed as known. Prob-
lem (42), through the corresponding orthogonality property,
allows for the development of the following integral transform
pair:

Ti(t) = va(x) i (x;7) T*(x,7) dV,  transform (43a)

T*(x,1) = iNil(t) Yi(x;)Ti(t), inverse (43b)

i=1

with norms given by

N(r) = j w(x)Y2 (x; 1) dV @30)
4

Other applications on heat and mass transfer have already been
reported in the literature adopting nonlinear eigenfunction expan-
sions, including coupled nonlinear problems and the combination

of nonlinear boundary conditions, and moving boundary problems
[39,47,122].

4 Applications

Four application problems are now considered more closely,
that offer each an opportunity of convergence enhancement
through one of the nonclassical eigenvalue problem choices here
reviewed. This analysis serves as both illustration of the conver-
gence improvement and confirmation of the achievable accuracy,
under each proposed eigenfunction expansion base.

4.1 Transient Heat or Mass Diffusion in Heterogeneous
Slab. Let us consider a heterogeneous slab consisting of n differ-
ent components, with concentrations or temperatures given by
Ti(x, 1), k=1,2,...,n, which are continuous functions of space and
time in the region V defined by x&€[0, L]. This is an example from
Ref. [9] that corresponds to the present Sec. 3.5 on Coupled Equa-
tions, with the coupling term introduced by Eqgs. (22a) and (22b),
thus modifying Eq. (1a). The problem formulation, such as for a
three-component chemically reacting mass diffusion problem in a
slab, is written in dimensionless form as [9]

Ty (R, ¢

AT (R, 1) ) e
Wi R +I;ak,,[T,,(R,r)—Tk(R,z)},

ot

= Bi

O =0pm, R€0,1], k=123 >0

(44a)
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with initial and boundary conditions given by

T(R,0)=1, Rel0,1] (44b)
8Tk(R,z) - - )
T—O, R—O,f>0 (446)

To(R,1)=0, R=1,t>0 (44d)

The corresponding nonclassical coupled eigenvalue problem is
then given by Egs. (23a) and (23b), simplified as

Y (R) : _
KkW + wwi (R) + pz::l Okp [l//p(R) — Y (R)| =0, 4sa)
Re[0,1], k=123
dy(R) _ _
R =0 R=0 (45b)
Y (R) =0, R=1 (45¢)

The exact integral transform solution has also been verified
with the direct application of the GITT with a simpler decoupled
Sturm—Liouville eigenvalue problem, which does not include the
coupling term in Eq. (44a), written as

a* (R
Kkﬁg)+iiwk9k(1€) =0, Re[0,1],k=1,2,3 (46a)
do(R) _
=0 R=0 (46Db)
QUR) =0, R=1 (46¢)

Numerical results are here reported for the following combina-
tion of parameters: K, = (0.1, 1, 10), w,=(1, 1, 1), and three dif-
ferent cases in terms of the coupling coefficients value,
oy =0=(0, 1, 10), where the case c=0 corresponds to the
absence of coupling, for checking purposes.

Tables 1 and 2 provide a brief convergence analysis of the inte-
gral transform solution for the coupled potentials, T\(R,?),
k=123, at R=0 and r=0.02 and 0.1, respectively, employing
the nonclassical eigenvalue problem proposal. As usual, the con-
vergence of eigenfunction expansions is slowed down as the time
variable ¢ gets smaller. Nevertheless, full convergence to five sig-
nificant digits is achieved for all three potentials for truncation
orders as low as N < 20. The numerical results for the GITT solu-
tion with decoupled Sturm-Liouville problems are not shown here
since it agrees to all five significant digits. In fact, for this linear
problem, the analytical solution would be the same through the

Table 1 Convergence of the coupled potentials Ty(0, f),
k=1,2,3, at t=0.02 and ¢ =10 in chemically reacting mass dif-
fusion problem in a heterogeneous slab

N k=1 k=2 k=3

2 0.87793 0.93125 0.81837
4 0.94723 0.98306 0.82139
6 0.97048 0.98663 0.82161
8 0.98074 0.98704 0.82165
10 0.98536 0.98714 0.82166
12 0.98727 0.98716 0.82166
14 0.98798 0.98717 0.82166
16 0.98820 0.98717 0.82166
18 0.98827 0.98717 0.82166
20 0.98828 0.98717 0.82166

NDSolve [40] 0.98830 0.98718 0.82194

010801-12 / Vol. 145, JANUARY 2023

Table 2 Convergence of the coupled potentials Tg(O0, 1),
k=1,2,3, at t=0.1 and ¢ = 10 in chemically reacting mass diffu-
sion problem in a heterogeneous slab

N k=1 k=2 k=3

2 0.70135 0.69107 0.39463
4 0.71872 0.69496 0.39506
6 0.72078 0.69509 0.39507
8 0.72095 0.69510 0.39507
10 0.72096 0.69510 0.39507
12 0.72096 0.69510 0.39507
14 0.72096 0.69510 0.39507
16 0.72096 0.69510 0.39507
18 0.72096 0.69510 0.39507
20 0.72096 0.69510 0.39507
NDSolve [40] 0.72134 0.69552 0.39578

two paths, but the algorithm can slightly affect the overall preci-
sion and, most importantly, the computational cost. When adopt-
ing the decoupled eigenvalue problem, the integral transformation
process eventually leads to a coupled ordinary differential system
for the transformed potentials, which once solved numerically
raises the computational cost and introduces some numerical error
due to the methodology employed in handling the initial value
problem. In the present linear problem, only the sixth digit of the
potentials was affected by choosing the Sturm—Liouville base, but
the computational cost was noticeably increased. Also shown, at
the last line of each table, are the numerical results obtained
through the Method of Lines as implemented in the Mathematica
routine NDSolve [40], employing variable finite difference order
and variable step size. At the smaller time ¢, results from the ana-
Iytical and numerical approaches are in better agreement, but
some noticeable deviation is observed in the numerical solution
for larger times, but still agreeing to the third significant digit with
the fully converged integral transform solutions.

Figure 1 compares the results for the three potentials evolution,
TR, k=123, at R=0, with ¢=10 and 1, respectively.
Although not noticeable to the graph scale, the solutions with
GITT and a decoupled Sturm-Liouville problem and with the
numerical routine NDSolve [40] are also plotted together, with
different line thicknesses, and overall excellent adherence. As the
value of ¢ increases, and thus the coupling effect, the curves for
the three potentials tend to merge.

It is also of interest to examine the behavior of the dimension-
less wall mass flux (at R=1) along with the time variable.
Figure 2 provides the evolution of the three potential fluxes, repre-
sented by the derivative OT(/, )/OR plotted for the case =10
and N = 30 terms.

The dimensionless fluxes are fully converged to at least five sig-
nificant digits, with the slowest convergence observed at r=0.01
for the first potential (k=1). The results from the default use of
the NDSolve function in [40] are also plotted, in thiner lines,
where it can be seen from the deviation of the solid thicker
(GITT) and thiner (NDSolve) lines, that the Method of Lines shall
require user prescribed mesh refinement to reach full agreement
with the fully converged GITT results for lower values of #, espe-
cially for k=1. For instance, the five digits converged GITT
results for the flux at #=0.01, for the three potentials, is given by
{=15.666, —5.6187, —1.9994}, while NDSolve provides
{—18.880, —5.6036, —1.9978}, clearly requiring a mesh conver-
gence analysis for lower values of 7. Restricting the maximum
step sizes of the spatial and temporal variables to, respectively,
0.002 and 0.01, the Method of Lines [40] results change to
{—15.517, —5.5646, —1.9799}, which at least for the critical case
of k=1 markedly improves, recovering the agreement to the
graphical scale of the two sets of results.

4.2 Line Heat Source Method for Thermophysical Proper-

ties of Liquids. The line heat source method is a well-established
experimental technique for the determination of thermal
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Fig. 1 Evolution of the three potentials concentration in
chemically reacting mass diffusion problem in a heterogeneous
slab, T(0, f), k=1, 2, 3, with (a) ¢ =10 and (b) ¢ =1, for all three
methodologies (CITT, GITT, and method of lines)

o=10

1
o\

aTk(1,1)/6R

-15

Fig. 2 Evolution of the three potentials dimensionless wall
mass fluxes in chemically reacting mass diffusion problem in a
heterogeneous slab, d T,(1, §)/0R, k=1,2,3, with ¢ =10, for GITT
in black lines, and Method of Lines [40] in thiner lines

diffusivity and conductivity of liquids [123,124]. It consists of a
probe that encapsulates an electrical resistance and thermocou-
ples, immersed in a cylindrical reservoir of the liquid with
unknown thermophysical properties. After a power pulse that
heats the probe, the thermocouple registers the transient

Journal of Heat and Mass Transfer

temperature evolution at the interface with the fluid, from which
the properties are estimated. A reduced mathematical model can
be employed for the experimental design, which helps define the
reservoir volume, the probe power source, and the duration of the
pulse, among other parameters. Here, a reduced model is proposed
that lumps the temperature distributions in both the probe body
and the reservoir bounding wall, while keeping a distributed for-
mulation within the fluid region. It then results in a formulation
for the fluid temperature that incorporates finite capacitances at
both boundaries of the cylindrical region, in the form

Lonry 19 [;*Lf(r’ [)} . on<r<n, >0 #a

w Ot ror or

Ty(r,0) = Tro (47b)
(9Tf (I‘, l) - I I an'(l”, [) )
K —5 T 580 = PsPs 55— K >0 (470

My (rit) | _re PP (r2 — 12) 0T (1, 1)
=R [Ty = Ty(r,0)] — e i 7
ky or ; ’ [ f (’ t)] 25 or ;

t>0

47d)

where r,, r; and r, represent, respectively, the probe radius, the
internal and the external radii of the reservoir wall; &, PCps and o
represent, respectively, the thermal conductivity, volumetric ther-
mal capacity, and thermal diffusivity of each material, while the
indices f, m, and s refer to the fluid, the reservoir wall, and the
probe, respectively; gy, s, and T, represent the volumetric heat
generation rate within the probe, the effective heat transfer coeffi-
cient of the wall with the external ambient, and the external ambi-
ent temperature.

Equation (47) belongs to the class of problems discussed in
Sec. 3.7, which refers to boundary conditions with finite capaci-
tance. The first step in the integral transform solution is the propo-
sition of a filtering solution to eliminate the nonhomogeneities in
Egs. (47¢) and (47d), which is obtained from the steady-state solu-
tion of problem (47), or

10 _anf(r)] B )
~ar {r o =0, re <r<r; (48a)
OTpp(r)| s
g0 3. (48b)
kf—aTgF(") =Lnr = T (1) (48¢)
r no T !

Thus, applying the filtering Ty (r7 t) = Tf* (r7 t) + Ty r (r), the fil-
tered problem becomes

oT: (r,t oT: (r,t
lif(, )_10 [;‘*f v )] , rs<r<ry t>0 (49a)

o It ror or
T;(r,0) =f(r) = Tro — Tr.r(r) (49b)
ot (r,t 1 OTF (1t
- f% = —PsCPs E% , >0 (49¢)
oTs (l‘ l‘) r C (}'2 — 12) oT; (r [)

_ A\ _ e PmCPm\T', i f\
Yo |, T et a0 "0
(49d)

The nonclassical eigenvalue problem that leads to the exact
solution is given by
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Ld | dy(r )} 2008 R
rdr [r dr + 1oy (r) =0, Is <T <Ti (50a)
dlp r Iy
—ks df’) . Pucps 5 AU (1) (506)
dlp r Fe PmCPm }’3 B riz
+G0) = [E-h - +)°‘f”2} e

with normalization integral

T o 5
| PsCPsTs o PPm (12 —77)
N 2 (Fdr + r, PP D2 - e 1) g2
j J ;i (r)dr + preps 2 yi(rs) +1 T i (ri)

(504d)
The exact integral transform solution is then written as
o0

1 _ s
=Tpr(r) + Zﬁjwj(r)f/e*“f‘ (51a)

J=1

Ty (r,1)

where f jis the transformed initial condition, given as

PnCDn () )
R — W(rif (ri) (51h)

where the eigenfunctions, /;(r), and eigenvalues, 1, are obtained
from

¥i(r) = Sifo(wyr) —

S;U; = V;W; =0 (51d)

ViYo(uyr) (51c)

with

Te h pmcpm (’.(2' — ’12)

2
)¢ Iy 51
ri k,r preps - 2ri 'u’} oty 1)

S; = - (KT7) [

B | Te h PmCPm (rt% — "1'2) 2
V= —ujjl(ﬂji,'){ kf WTM’ Jo(ﬂj”i) (51/)

PsCPs I's 1
prepr 2

W= ¥ (u,n)( >Y0(,Uj”s) (519)

p s CP s rX
U =~ () (pfcpfguf)fo(ujrs) (51h)

The integral transform solution of Egs. (47) through the GITT
with a classical Sturm—Liouville problem would normally be
undertaken by dropping out the terms involving the squared eigen-
value in the boundary conditions, Egs. (50b) and (50c). However,
since the boundary conditions for the eigenfunctions would then
not satisfy the filtered problem boundary conditions, Eqs. (49¢)
and (49d), convergence could become very slow, especially in the
vicinity of these positions, and would certainly not converge at
the boundary position itself. Then, an integral balance scheme
applied over Eq. (49a) would be required or an implicit filter
should be used, coupling the filter and the transformed potentials,
to improve convergence.

Numerical results are here reported for a test case involving the
physical properties and dimensions from an actual experimental
setup [123,124], involving a stainless steel probe, agar gel, and a

010801-14 / Vol. 145, JANUARY 2023

Table 3 Convergence of the fluid temperature (°C) in the line
heat source problem at different radial positions for t=15s

N r=r;=0.06cm r=0.16cm r=r;=43cm
3 35.2762 31.7424 26.6060
6 33.0414 29.6094 26.8636
9 32.2652 28.9374 26.8280
12 31.9537 28.7072 26.8464
15 31.8563 28.6510 26.8429
18 31.8275 28.6397 26.8442
21 31.8210 28.6384 26.8440
24 31.8197 28.6385 26.8440
27 31.8195 28.6385 26.8440
30 31.8195 28.6385 26.8440

Table 4 Convergence of the fluid temperature (°C) in the line
heat source problem at different radial positions for t=60s

N r=r;=0.06cm r=0.16cm r=r;=43cm
3 35.6734 32.1360 26.6090
6 34.3680 30.8849 26.7762
9 34.2154 30.7513 26.7664
12 34.2032 30.7421 26.7673
15 34.2028 30.7418 26.7673
18 34.2028 30.7418 26.7673
21 34.2028 30.7418 26.7673
24 34.2028 30.7418 26.7673
27 34.2028 30.7418 26.7673
30 34.2028 30.7418 26.7673
Pyrex reserv01r as: ry,=0.6mm, r;=4.3cm, r,=4.491cm,

ps=7790kg/m?, Cps =470 J/kg°C, p,, = 2200 kg/m?, me =750/
kg°C, py= 1000kg/m?, Cor= 4180 J/kg°C, k=0.6 W/m°C,
goz 1.21261 x 107 W/m®, h=20 W/m%c Trp=26.9°C,

Too =25.4°C. The heat pulse in the probe is analyzed for =15,
30, 60, and 120s. Tables 3 and 4 provide a brief convergence
analysis for the fluid temperature at different radial positions, at
t=15 and 60s, respectively. The two extreme radial positions
correspond to the interface with the probe (r;) and with the reser-
voir wall (7,), and the intermediate position is 1 mm distant from
the heating probe. Truncation orders up to N =30 have been con-
sidered, and it can clearly be inspected that full convergence to
six significant digits has been achieved in all positions and for
both time values, as expected with a faster convergence rate for
the larger value of 7. Comparative numerical results for the
NDSolve routine [40] could not be directly obtained, since its
algorithm does not deal with time derivatives in the boundary con-
ditions. In any case, for verification purposes, the GITT results for
the time derivatives in the boundary conditions were fed into the
NDSolve problem formulation as prescribed boundary source
terms, and then the Method of Lines could be implemented and
reproduced to the graph scale the fully converged temperature dis-
tributions here obtained.

Figure 3 provides the radial distribution of the fluid temperature
within the reservoir, for the four different time values (= 15, 30,
60, and 120s). Also shown are the initial temperature in the fluid
and the external environment temperature. It can be observed that
the slight temperature profile distortion close to the external reser-
voir wall is essentially due to the temperature difference between
the cell initial temperature, Ty, and the external environment 7.
Thus, the boundary condition at the reservoir external wall does
not have a significant effect on the solution within the medium,
especially close to the probe region, and should not influence the
thermophysical properties measurements, considering the rela-
tively short duration of the heat pulses and sufficiently large reser-
voir radius, as required by this technique. Also shown in this
figure are the profiles obtained with the routine NDSolve [40] but
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Fig. 3 Radial distribution of the fluid temperatures (°C) in the
line heat source problem for different time values (=15, 30, 60,
and 120 s)

employing the GITT solution to estimate the time derivatives in
the boundary conditions, Eqgs. (49¢) and (49d), which have excel-
lent adherence to the graph scale.

The convergence analysis for the heat flux at the probe surface
(r=r;=0.06cm) is provided in Table 5, for different time values,
t=15, 30, and 60s. The truncation orders are extended to N =36
just to reconfirm the convergence of the heat flux for the lowest
time value. It can be observed that full convergence to six signifi-
cant digits is achieved for truncation orders of N <30 in all three
cases, with more terms being required, as usual in eigenfunction
expansions, at shorter times. The heat flux at the boundary can
either be computed from the direct differentiation of the tempera-
ture expansion with respect to the spatial variable, r, or from the
boundary condition, Eq. (47¢), by differentiating the inverse for-
mula with respect to 7. As expected, both results were verified to
be identical.

4.3 Local Thermal Non-Equilibrium Formulation for
Convective Heat Transfer in Partially Porous Channels. Con-
vective heat transfer in porous media is usually handled through
the local thermal equilibrium (LTE) hypothesis, essentially stating
that, at the pore level, the temperature difference between the
solid and fluid phases is negligible. Such assumption stems from
the small length scales typical of porous materials and the associ-
ated improvement on heat transfer. However, there are situations
in which this hypothesis ceases to hold, most notably when the
difference between the solid and fluid phases thermal conductiv-
ities is large 125, which is usually the case in heat transfer equip-
ment design. For these cases, employment of local thermal
nonequilibrium (LTNE) formulations is inevitable, i.e., assuming
there is a finite heat transfer resistance at the pore level between
the fluid and solid phases, yielding a coupled two-equation model

Table 5 Convergence of the heat flux at the probe surface
(W/m?) at different times t= 15, 30, and 60's (r= rs = 0.06 cm)

N t=15s t=30s t=60s
3 3627.58 3627.96 3628.66
6 3596.87 3603.22 3612.29
9 3564.83 3585.33 3606.45
12 3539.17 3577.10 3605.52
15 3525.64 3575.07 3605.47
18 3519.62 3574.72 3605.47
21 3517.71 3574.69 3605.47
24 3517.20 3574.69 3605.47
27 3517.09 3574.69 3605.47
30 3517.08 3574.69 3605.47
33 3517.07 3574.69 3605.47
36 3517.07 3574.69 3605.47

Journal of Heat and Mass Transfer

in fluid-saturated porous domains. Figure 4 depicts a parallel
plates channel partially filled with a fluid-saturated porous
medium. A more detailed description of the model and the
hypothesis involved can be found in Ref. [71].

Here, we present only the dimensionless form of the LTNE
convective heat transfer model for the fluid and solid phases, writ-
ten as

1 T, 0T,
0= ks,eff( S+ g) —apNug(Ts — Tr1), 0<y<y,

Pe? Ox2 ' Oy?
(52a)
8Tf1 1 82T,e1 62Tf1
= Kfeff | 55 - - — aiNug(Try — Ts),
Yo e (Pe2 R
0<y<y

Ty 1 0*Tp  O*Tp
— = — : <y<l1 52
" ox f <Pe2 Ox2 + oyt |’ V= (52¢)

with boundary conditions given by

T,(0,y) = 1 (52d)
Tfl (O,y) =1 (526)
T5(0,y) =1 (521)
o, T}y T .
s — 7 =] = 29-52
ax X—00 ax X—00 ax X—00 0 (5 g 5 l)
anl (9Tf2 .
ke efi—— =—= — Ntting [Tr1 (%, yp) — Ts(x, 52
ety |, ay |, M (T yp) = To(x,3p)] (52)
T
k,meffa—y = Nujy [Tfl (% ¥p) — Tv(X>Y1;)] (52k)
Y=¥p
Tfl (X7 yp) = TfZ(xayp) (521)
Ts(x, 0) =T (x,O) =0; (52m)
T,
Mn| _,, (520)
2) -

This configuration brings a new challenge, method-wise, when
compared with Class IV problems described in Sec. 3.5. Instead
of coupled potentials defined within coincident domains, in Fig. 4
and Eqgs. (52a)—(520), the fluid phase domain extrapolates the
porous medium region. Recently [71], an analytical solution was
obtained by extending the eigenvalue problem of Egs.
(23a)—(23d) to noncoincident domains of validity of coupled
potentials. This eigenvalue problem, applied to the physical situa-
tion of Fig. 4, is given by

*

: Ay
u .
A
. . Fluid
T, y
£ Fluid saturated
porous medium 3

T*

w

Fig. 4 Parallel plates channel partially filled with a fluid-
saturated porous medium, with uniform temperature at the bot-
tom wall and adiabatic top wall
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>y,

ks,eff d;//; + X,I-st.effl//xi — aﬁNL%(szi — wfli) = ()7 0< y < Vp
(53a)

dz'/’fli 2
ket =g T Ai Ky estWpii — apNugs (Vg — ) =0, 0<y <y,
(53b)

dzlpri 2

dy? + 4V =0, y<y<1 (53¢)

with boundary conditions given as

Ay g
Kt eft d; ! T d; 2 L Natim [Yr51:(9p) — V()] (53d)
dv .
kx,eff :f” = Nuint [l//fli(yﬁ) - lpsi(yh)} (533)
y Y=Yp
lPfli(yp) = szi()’p) (53f)
l//si(o) = ‘//flf(o) =0 (539)
d!pri .
— =0 53
il (53i)

while the normalization integral and normalized eigenfunctions
are written in the form

Vp 1
N = L etV (3) + e () 1y +j V20)dy (53
Yp

Va(y) = ‘p;[%) (53k)
Vri(y) = lp% ) (530)
Vpai(y) = % (53m)

and bearing the following orthogonality property [71]

rp e v, ) stj (v) + k_f,effl;fli 8) ‘;f 1j (v)Jdy
0
(53n)

I ~ ~
+ [ Vi (V)W (v)dy = 8

The orthogonality property of Eq. (53n) allows for the proposi-
tion of transform-inverse pairs for each potential as follows:

Yp

Ti(x) = JO el () T (x,y) + kfleff‘Lfn()’)Tfl (x,y)]dy

o
+ J Vi (V) T2 (x, y)dy (54a)
p
Ty(x,y) = > ¥u0Ti(x) (54b)
i=1
Tr () = > ¥ Tix) (54c)
i=1
Tp(x,y) = Y Up(0)Ti(x) (54d)
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Table 6 Convergence of the bulk fluid temperature and the
Nusselt number at different axial positions when the local ther-
mal nonequilibrium hypothesis is adopted

x = 0.0001 x = 0.0002 x = 0.0003

M Th,f Nu Th’ f Nu Th f Nu

5 0.885634  8.09353  0.838438 6.75854 0.799184 6.11414
15 0.887049 8.53914 0.838415 6.84102 0.798952  6.12042
25 0.887053 8.54196 0.838415 6.84101 0.798952  6.12034
35 0.887054 8.54206 0.838415 6.84105 0.798953  6.12034
40 0.887054 8.54210 0.838416 6.84106 0.798953  6.12035
45 0.887055 8.54216 0.838416 6.84107 0.798953  6.12035
50 0.887055 8.54220 0.838416 6.84108 0.798953  6.12035
55 0.887055 8.54222 0.838416 6.84108 0.798953  6.12035
60 0.887055 8.54224  0.838416 6.84108 0.798953  6.12035

Together with the overall framework of Secs. 2 and 3, the
eigenvalue problem of Eqs. (53a)—(53i) and the transform-inverse
pair of Egs. (54a)—(54d) enable the solution of LTNE formula-
tions for roughly the same computational cost as LTE ones. The
reason is its capability of collapsing the model into a single trans-
formed problem encompassing the heat transport information in
both phases, even when the domains of validity are not the same.

Inevitably, the infinite series of Eqs. (54b)—(54d) must be trun-
cated at a finite order, M. This way, the accuracy of the fluid and
solid temperatures is solely dependent on M. To evaluate the
behavior of these quantities with the truncation order, Table 6
shows values of the bulk fluid temperature and the Nusselt number
as M varies from 5 to 60. The porous medium has a porosity of
90% and occupies half the channel. The solid phase is assumed to
be composed of particles with sizes of 5% of the channel height
and thermal conductivity 200 times larger than that of the fluid.
Finally, the Péclet number, Pe, is set to 83,405. The convergence
is quite remarkable, with a six-significant-digit accuracy being
attained with relatively few terms in the truncated series. Given
the mostly analytical approach used, the results can be used as a
reliable benchmark to verify numerical methods and codes.

Table 7 shows a comparison between the present integral trans-
form analysis and a numerical solution for thermally developed
flow in partially porous channels reported in Ref. [126]. Values
for the fully developed Nusselt number evaluated at two different
Darcy numbers and with the porous medium occupying three dif-
ferent fractions of the channel. The relative deviation between the
analytical and numerical solutions is at most 1.22%, further cor-
roborating the adequacy of the proposed integral transform
methodology.

Figure 5(a) shows a semilogarithmic graph of the Nusselt num-
ber (for definition, see Ref. [71]) as a function of the longitudinal
coordinate, x. Two values for the porous medium porosity are con-
templated. Solid lines and dashed lines represent LTNE and LTE
results, respectively. From these results, we can conclude that

Table 7 Comparison of analytical (present) and numerical
[126] results for fully developed Nusselt number (LTNE) at dif-
ferent Darcy numbers and with the porous medium occupying
different fractions of the channel

Nu,,

Da Yp Present work Ref. [126] Relative difference
0.001 0.2 1.670 1.673 0.18 %

0.5 1.369 1.374 0.36 %

0.8 1.287 1.275 0.94 %
0.0001 0.2 1.645 1.639 0.37 %

0.5 1.343 1.340 0.22 %

0.8 1.158 1.144 1.22 %
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Fig. 5 Nusselt number and fluid temperature profiles. (a) Nusselt number—solid lines and dashed
lines represent LTNE and LTE results, respectively; (b) fluid temperature—solid lines and symbols

represent LTNE and LTE results, respectively.

adopting the LTE hypothesis overestimates the heat transfer capa-
bility of the apparatus illustrated in Fig. 4, when compared with
the more general LTNE formulation, which might be deceiving in
applications aiming to improve heat transfer. Since the proposed
integral transform framework accomplishes the solution for a very
similar computational cost, there is little to no reason to employ
the simpler LTE formulation.

Figure 5(b) illustrates the fluid temperature profiles for three
different longitudinal positions for a porosity equal to 0.8. As can
be seen, conductive heat transfer is dominant within most of the
porous domain (y <0.5), due to lower fluid velocities there
induced by the large hydraulic resistance of the porous material.
A comparison between LTNE and LTE fluid temperature profiles
shows a smoother transition in the former when compared with
the latter at the interface between the free fluid and the porous
medium.

Overall, the proposed extension of the solution for the class of
problems in Sec. 3.5 is quite effective to cope with problems
involving coupled potentials in noncoincident domains.

4.4 Transient Heat Transfer in a Regenerator Channel.
The next application deals with convective heat transfer in chan-
nels of regenerative heat exchangers. Although conventional mod-
els [127] for predicting the thermal performance of such devices
are composed of a system of two one-dimensional ODEs and
require previous knowledge of the convective heat transfer coeffi-
cient between the channel wall and process stream, a modification
of this model, that allows for a local description of the tempera-
ture field in the flow, can be readily employed, in the form

20 00

W0 0 P
ot 9E

o2 o (55a)
which resembles a transient Graetz problem with axial diffusion
and comprises a simplified version of models previously solved
by purely numerical techniques [128].

The model here demonstrated not only assumes a uniform
velocity field for simplicity, but also includes the effect of axial
diffusion in the fluid, which may become important for shorter
channels. The dimensionless variables are given by

T — Tmin
0=——— (55b)
Tmax - Tmin

Journal of Heat and Mass Transfer

= I (55¢)
n= HL/Z (55d)
= (140/(7;)2 (55¢)

where the Péclet number is Pe = i(H/2)/o. The initial and
boundary conditions are

0(&n,0) =1 (55)
0(0,7,7) =0 (559)
(g%) L 0 (55h)
(g—:) T 0 (55i)
wg:_g_za at =1 (55))

This problem involves the so-called fourth-kind boundary con-
dition at the wall (= 1), given in terms of the solid-to-fluid heat
capacity ratio parameter

e

= 56
e, (56)

W

in which ¢ is the wall thickness, H is the channel spacing, p,.c,, is
the wall volumetric heat capacity, and pc,, is the fluid volumetric
heat capacity.

The proposed eigenfunction expansion for this problem stems
from a couple of one-dimensional eigenvalue problems, given by

d dXi(O] | a2 e
az {K(é)d—é} +yiw(6)Xi(8) =0 (57a)
X,(0) =0 (57b)
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Table 8 Convergence of the bulk fluid temperature at different
axial positions for different dimensionless times in a regenera-
tor channel transient

for which K(&) =w(¢) :exp(—Pezﬁ). As can be seen, this applica-
tion illustrates the combined application of a convective
eigenvalue problem (in the ¢-direction), Sec. 3.10, and a finite-
capacitance boundary condition problem (for the n-direction),

N ’ ¢=0001 £=001 £=01 <=1 Sec. 3.5. These problems admit the following solutions:
50 0.1  0.0024948 0.0250349 0.238331 0.951330 PR o2 s
100 0.1  0.0027347 0.0274098 0.239784 0.949271 X;(&) = " /% sin(Pe*w;&/2) (59a)
200 0.1  0.0028316 0.0283494 0.235972 0.948161
300 0.1 0.0029084 0.0290807 0.234547 0.947705 Ye(n) = cos(in) (59b)
400 0.1 0.0029474 0.0294434 0.234686 0.947518
500 0.1 0.0029741 0.0296861 0.235086 0.947455 . : .
here th 1 ; f he sol £
600 0. 00029985  0.0299047 0235471  0.947537 :}Vleetrrzrtlsseifs;é 21‘ :elj;t‘i’o irsld e are obtained from the solution o
700 0.1  0.0030166 0.0300635 0.235662 0.947569 q
N T £=0.001 £=0.01 ¢=0.1 =1 sin(Pe2w,~/2) + w; cos (PeZwi/z) =0 (60a)
50 1 0.00120784  0.0121265 0.120681 0.554575 ,
100 1 0.00122452 00122926  0.121253  0.554416 —Chopyc cos(py) — sin(py) =0 (60D)
200 1 0.00123393  0.0123858 0.121371 0.554417
300 1 0.00123630  0.0124091 0.121366 0.554419  and y; = (Pez/Z)\/l + @?. The integral transformation pair is
400 1 0.00123739  0.0124198 0.121362 0.554415  then written as
500 1 0.00123797  0.0124254 0.121360 0.554417
600 1 0.00123831  0.0124287 0.121359 0.554418 - 1l
700 1 0.00123853  0.0124309 0.121359 0.554417 0 (1) = J J w(E)X;(E)Ye(n)0(E,n,7)dndé + C, Y, (1)
N T £=0.001 £=0.01 &=0.1 =1 R (6la)
50 10 000014970  0.00150364  0.0156287  0.125482 L w(£)Xi(€)0(5,1,7)dé,  transform
100 10 0.00014973  0.00150400  0.0156324  0.125486
200 10 0.00014974  0.00150409  0.0156333  0.125487 o oo
300 10 0.00014975  0.00150412  0.0156335  0.125487 0(& 1, 7) = X;(E)Y (0 (1), inverse  (61h)
400 10 0.00014975  0.00150413  0.0156336  0.125487 (€n.7) ;;M,-Nk (e ()0 ),
500 10 0.00014975  0.00150413  0.0156337  0.125487
600 10  0.00014975  0.00150413  0.0156337  0.125487 . .
700 10 0.00014975 0.00150413 00156337 0.125487 Then, the integral transformation of Egs. (55a) and (55f) leads to
dé,‘k(‘l,') & -
. PR ; ;Eijkz()ﬂ(f) =0 (62a)
: .
=0 (57¢)
d¢ - 11 1
0u(0) = | | wOX©@nanac + cx (1) | w(exi(e)ac
szk(n) N 0Jo 0
ap Y =0 (58) (62b)
v, (0) in which the matrix coefficients are given by
dn 0 (58b) 2 —2,2 —2p 2
n Eji = (1 +Pe?97) 60 — CPe *Byyi o (62¢)
dYk(l) 2
—12CY (1) =0 (58¢) Y (1)Y,(1
dn kW By = M (62d)
N;
eout
10
[ —— C,=1,Pe=1
o8 X, \(ziveee-.- - v
T N S N C,, =10,Pe =1
o6 N\ SRINmee- Y mmeee - C;, =100, Pe =1
L N g
. R *
I L C,=1Pe=2
0.4+ *
» % N eeaa- C, =10,Pe=2
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Fig. 6 Outlet bulk temperature evolution for different values of the Péclet number and of the thermal

capacity ratio in a regenerator channel transient
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Fig. 7 Evolution of relative error with truncation order for integral transform solutions
using a classical eigenvalue problem (CEP) and a nonclassical eigenvalue problem (NEP)

for the axial direction

The double series in Eq. (61b) is then rewritten as a single sum-
mation representation with index m = m(i,k), using the expression
13 + Pe~2y? as a reordering function. This representation allows
for the analytical integration of the transformed system, which is
computationally implemented using the Mathematica MatrixExp
function [40].

A brief convergence analysis of the current application is pre-
sented in Table 8, which displays the bulk temperature calculated
for different axial positions and dimensionless times. N represents
the reordered summation truncation order. This temperature is
selected for analysis since it is typically used for energy balances

Journal of Heat and Mass Transfer

in thermal regenerators. As expected, the convergence rate is
clearly better for larger dimensionless times, for which there
seems to be little influence of the axial position on convergence.
On the other hand, for smaller values of 7 the convergence rate is
improved for downstream positions, a typical behavior in Graetz-
type problems.

Figure 6 displays the outlet bulk temperature calculated for dif-
ferent values of the Péclet number, Pe, and different heat capacity
ratios, C,,. For the cases with higher capacity ratios (i.e., the wall
has a much greater heat capacity than the fluid), the bulk fluid
temperature decreases at a slower rate, as expected. When looking
into the effect of the Péclet number values, one clearly notices
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that cases with a weaker axial diffusion component (Pe =2) pres-
ent a steeper temperature variation when compared to the case
with Pe = 1, which is expected, as the axial diffusion component
increases the amount of heat that is transported downstream from
the hot upstream region. Naturally, this must be examined by con-
templating the fact that, as the time scale is diffusion-based, an
increase in the Péclet number effectively acts as an augmentation
of the flow velocity (advective transport) while maintaining the
diffusion velocity.

Finally, for the sake of briefly illustrating the performance
improvement achieved by employing a nonconventional eigen-
value problem, the previous results are recalculated using a classi-
cal eigenvalue problem (CEP) in the ¢-coordinate, instead of the
nonclassical convective eigenvalue problem (NEP) given by Egs.
(57a)—(57c). The classical problem is obtained from the simple
one-dimensional Helmholtz problem X" (&) + w?X (&) = 0, having
the same boundary conditions, as given by Eqgs. (57b) and (57¢).
Then, to compare the achievable convergence rates, the results are
compared by plotting the relative error for each solution for differ-
ent truncation orders, up to N=1000. This error is evaluated by
calculating the difference (in mdgmtude) for the given truncation
order and a reference value, ey = | 'VH Oret |. In all cases, the
adopted reference temperature is calculated with 2000 terms in
the series using the nonclassical eigenvalue problem. Figure 7
present the calculated relative error results using the two different
eigenvalue problems.

As can be seen, the nonclassical eigenvalue problem (NEP)
solution clearly shows superior convergence rates, when com-
pared to the classical eigenvalue problem (CEP) one, especially
when increasing values of the nondimensional time are considered
(t = 1 and 7 = 10). For lower values of the nondimensional time
(t = 0.1), the two solutions roughly display the same convergence
rates. As the computational time for each solution is equivalent
for the same truncation order, this analysis shows that the non-
classical eigenvalue problem adoption is an enhanced solution
path for the given problem.

5 Conclusions

The GITT is reviewed as a hybrid computational-analytical
methodology for handling linear or nonlinear partial differential
equations in transport phenomena, with emphasis on the employ-
ment of nonclassical eigenvalue problems for convergence
achievement or enhancement of the associated eigenfunction
expansions. The most usual path in application of this methodol-
ogy has been the adoption of well-known Sturm—Liouville prob-
lems as the expansion base and, if required, employing filtering or
integral balance schemes to reduce the effects of source terms on
convergence rates. These sources include any operators of the
original equations and boundary conditions that are not accounted
for by the operators of the chosen Sturm-Liouville problem.
Therefore, one important path toward convergence enhancement
is the consideration of eigenvalue problems that incorporate, at
least partially, this additional information that is in fact transferred
to the source terms when a simpler eigenfunction expansion base
is adopted. This work has thus reviewed the formal GITT method-
ology and compiled different classes of nonclassical eigenvalue
problems that have been employed in association with the integral
transform approach throughout the years, leading to successful
analytical or hybrid solution implementations. This unification
effort is then followed by a section on illustrations of representa-
tive test cases that result in excellent convergence rates. This sys-
tematic presentation of alternative integral transform solution
paths complements in scope the availability of exact analytical
solutions [9] and the flexibility of the traditional GITT
computational-analytical algorithm [14].

The GITT approach can be said to have been introduced as
an approximate analytical solution methodology for nontrans-
formable diffusion problems with time-dependent heat transfer
coefficients [10], in this same journal, back in 1974. Almost

010801-20 / Vol. 145, JANUARY 2023

S50years have passed by and this approach has reached a
mature development stage with a consolidated hybrid
numerical-analytical structure. While the different classes of
problems of interest to the transport phenomena broad field have
already been dealt with, and more recently reaching even other
physical areas [115-117,129-130], it remains a challenge to fur-
ther exploit it in some key areas such as instability analysis, multi-
phase flows, multiscale problems, simulation under uncertainty,
and direct numerical simulation of turbulent flows, to name a few.
Again, the choice of expansion base should play a crucial role in
the progressive advancement in these directions, which should
certainly benefit from the recent breakthroughs, for instance, on
single domain reformulation, implicit filtering, vector eigenfunc-
tion expansions, and nonlinear eigenvalue problems.
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Nomenclature

d; = linear dissipation term coefficient, Eq. (1a)
fi = initial condition function, Eq. (1)
f 1 = transformed initial condition, Eq. (4b)
P, = nonlinear source term, Eq. (1a)
8, = transformed source term, Eq. (4¢)
i = index for eigenfunction/eigenvalue
k = index for number of potentials, Eq. (1a)
K = diffusion term coefficient, Eq. (1a)

n = number of potentials, Eq. (1a)

n = outward-drawn normal to the surface S, problem (1)
Nyi; = normalization integral (or norm), Eq. (3d)

§ = domain surface, problem (1)

t = time variable or corresponding spatial variable
T, = k" potential (dependent variable), problem (1)
T = transformed £ potential

T = potentials vector, Eq. (1d)
u = convective term coefficient, Eq. (1a)
V = domain region, problem (1)
= transient term coefficient, Eq. (1a)
X = position vector, problem (1)

Greek Symbols

= boundary condition coefficient, Eq. (1¢)

fr = boundary condition coefficient, Eq. (1¢)

wi = auxiliary eigenvalues, problem (6)

W, = eigenvalues, problem (2)

¢, = nonlinear boundary source term defined in Eq. (1¢)
Y, = eigenfunctions, problem (2)

V,; = normalized eigenfunctions, Eq. (3¢)
(), = auxiliary eigenfunctions, problem (6)
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