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Stochastic model of organizational state transitions in a turbulent pipe flow
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Turbulent pipe flows exhibit organizational states (OSs) that are labeled by discrete
azimuthal wave number modes and are reminiscent of the traveling wave solutions of
low Reynolds number regimes. The discretized time evolution of the OSs, obtained
through stereoscopic particle image velocimetry, is shown to be non-Markovian for data
acquisition carried out at a structure-resolved sampling rate. In particular, properly defined
time-correlation functions for the OS transitions are observed to decay as intriguing power
laws, up to a large-eddy time horizon, beyond which they decorrelate at much faster
rates. We are able to establish, relying upon a probabilistic description of the creation and
annihilation of streamwise streaks, a lower-level Markovian model for the OS transitions,
which reproduces their time-correlated behavior with meaningful accuracy. These findings
indicate that the OSs are distributed along the pipe as statistically correlated packets of
quasistreamwise vortical structures.

DOI: 10.1103/PhysRevFluids.8.064609

I. INTRODUCTION

Notwithstanding the large body of knowledge accumulated since the landmark experiments of
Reynolds [1], turbulent pipes comprise flow patterns which have remained surprisingly unsuspected
until recent years. They can be depicted as relatively organized sets of wall-attached low-speed
streaks coupled to pairs of counterrotating quasistreamwise vortices [2–4]. These organizational
states (OSs) actually characterize the turbulent velocity fluctuations at high Reynolds numbers and
are topologically similar to traveling waves—a class of exact (but unstable) low-Reynolds number
solutions of the Navier-Stokes equations [5–7].

As for traveling waves, the OSs can be classified by the number of low-speed streaks they
contain. Observation tells us, however, that this quantity changes in an apparently random way along
the turbulent pipe. For the sake of illustration, Fig. 1 shows a transition between OSs, visualized
from a pair of cross-sectional snapshots of the flow obtained through stereoscopic particle image
velocimetry (sPIV).

The existence of spatial transitions among the OS modes suggests, within the perspective of
dynamical systems, that the turbulent pipe flow could be described as a chaotic attractor and its
unstable periodic orbits in a phase space of much reduced dimensionality [8–12]. In connection
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FIG. 1. Example of a transition between organizational states, as sampled out from our measurements,
which are associated with two and three low-speed streaks. Blue and red refer, respectively, to negative and
positive streamwise velocity fluctuations around the mean. The systematic procedure to ascertain a well-defined
number of low-speed structures to a given flow snapshot is discussed in the text.

with this circle of ideas, we are motivated to study the OS transitions in the framework of stochastic
processes, focusing particular attention on their recurrent dynamics.

This paper is organized as follows. We highlight in Sec. II the main methodological aspects re-
lated to the classification and detection of the OS modes. In Sec. III their transitions are investigated
from the point of view of stochastic processes. A standard statistical test (reported in an Appendix)
shows that the transitions between OS modes do not form a Markov chain. In order to explore
the time recurrence of states and transitions, we introduce correlation functions which unveil the
existence of a peculiar hidden self-similar behavior of the OS mode fluctuations. Next, in Sec. IV
we recover some of the essential results of the previous section, addressing the OS mode transitions
as a high-level (non-Markovian) description of a more fundamental low-level Markovian stochastic
process. Finally, in Sec. IV we summarize our findings and point out directions of further research.

II. ORGANIZATIONAL STATES: CLASSIFICATION AND DETECTION

To start, let u = u(r, θ ) be in polar coordinates the fluctuating streamwise component of the
velocity field defined over a fixed pipe’s cross-sectional plane. We may introduce accordingly the
instantaneous spectral power density,

I (kn) =
∫ 2π

0
dθeiknθ fuu(r0, θ ), (2.1)

where

fuu(r0, θ ) =
∫ 2π

0
dθ ′u(r0, θ

′)u(r0, θ
′ + θ ), (2.2)

kn = n ∈ Z+ is an azimuthal wave number, and r0 is a reference radial distance which falls within
the log region of the pipe’s turbulent boundary layer. In order to probe low-speed streaks as close as
possible to the pipe’s surface and avoid spurious bulk effects, the value of r0 is taken to be ≈80%
of the pipe’s radius (sPIV measurements are affected by lack of resolution for r > 0.8R, so this
region is completely discarded in our statistical analyses). Empirical evidence shows that I (kn) is in
general peaked at some clearly dominant wave number k∗ (to be identified to the number of snapshot
low-speed streaks), which can be used to label the probed velocity profile u(r, θ ).

For the purpose of concreteness, Fig. 2 shows the power spectrum for a snapshot of the OS mode
kn = 4. We note that the dominant peak in the spectral density I (kn) is not always as prominent as
in Fig. 2, and other Fourier modes can sometimes be nearly as important as the dominant mode.

We also remark, to avoid (tempting) misconceptions, that the selected dominant OS modes may
not dominate the cross-sectional flow energy (that is, u2 + v2 + w2 integrated over the entire pipe’s
cross section). All we can assume, on more precise grounds, is that the dominant OS mode contains
most of the streamwise kinetic energy restricted to a radial range which partially comprises the
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FIG. 2. Power spectrum for a given sPIV snapshot of the flow, as evaluated from Eq. (2.1). The streamwise
velocity field is in this instance dominated by the wave number k∗ = 4.

inner boundary layer. For the case illustrated in Fig. 2, we find that the single wave number k∗ = 4
supports, for 0.6 � r/R � 0.8, about 32% of the streamwise kinetic energy that flows through that
annular region.

As time evolves, I (kn) changes, and so does the wave number position of its dominant peak.
Therefore, if u(r, θ ) is recorded at equally spaced time intervals �, the dynamical evolution of the
pipe turbulent field can be mapped into the stochastic process

S ≡ {k∗(t ), k∗(t + �), k∗(t + 2�), . . .}. (2.3)

In order to investigate the still very open statistical properties of S , we have performed a pipe flow
experiment, at Reynolds number Re = 24 415, in the large pipe rig facility of the Interdisciplinary
Nucleus for Fluid Dynamics (NIDF) at the Federal University of Rio de Janeiro. The pipe’s diameter
and length are, respectively, D = 15 cm and L = 12 m. By means of sPIV, with sampling rate
of 10 Hz (i.e., � = 0.1 s), we have collected 104 cross-sectional snapshots of the flow, each one
containing the three components of the turbulent velocity field over a uniform grid of size 78×78.
It turns out that essentially all the observed OS modes fall into the range 0 � k∗ � k∗

max = 10.
Our experimental data have been validated with the help of previous benchmark pipe flow

experiments [13] through the inspection of the performance of first- and second-order single-point
statistics for the streamwise component of velocity field. We have also attained a further validation
of the entire measured velocity field, from the evaluation of particularly defined streamwise velocity-
velocity correlation functions conditioned on the OS modes k∗, more precisely,

Ruu(�r|k∗) ≡ E[u(r0)u(r0 + �r)|k∗], (2.4)

which has its level curves depicted in Fig. 3, for the case k∗ = 5, in close correspondence with
known results [4]. The above conditional average is taken over all the sPIV snapshots that are
labeled by the same dominant wave number k∗. A further azimuthal average is carried out as well,
over rotations of the cross-sectional streamwise velocity field around the pipe’s symmetry axis.

For a discussion of additional measurements and experimental details, we draw the reader’s
attention to Ref. [14] for a comprehensive account.
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FIG. 3. Statistical results for the OS mode k∗ = 5. Left image: positive (red) and negative (blue) level
curves of Ruu, defined by |Ruu(r − r0|k∗)| = 5% and 10% of (Ruu)max, with the reference point r0 depicted as a
black dot. Right image: a closer look at the averaged streamwise velocity fluctuations (red for positive, blue for
negative), conditioned on u(r0 ) > 0. The cross-sectional averaged velocity field reveals the vortical structures
that are usually coupled with velocity streaks.

III. ORGANIZATIONAL STATE TRANSITIONS AS A STOCHASTIC PROCESS

The first immediate question that can be raised about the stochastic process S is whether it is
Markovian or not, that is, whether its state probabilities are independent of the past, making the
system effectively memoryless. A standard statistical test, reported in the Appendix, indicates in a
straightforward way that S is not Markovian.

It is reasonable to expect, however, that the decimated process for large enough time lags
is essentially Markovian, since in this situation the OS modes become weakly correlated. The
transition to Markovian behavior can be alternatively addressed from the analysis of correlation
functions, which we introduce as it follows. Taking 0 � m, m′ � k∗

max, let Vm(t ) and Mm′m(t ) be,
respectively, the components of a vector V(t ) and a matrix M(t ), both derived from S as

Vm(t ) =
{

1, if k∗(t ) = m

0, otherwise
(3.1)

and

Mm′m(t ) =
{

1, if k∗(t ) = m and k∗(t + �) = m′

0, otherwise.
(3.2)

From V(t ) and M(t ) we may find which are the OS modes and the transitions that take place at time
instant t . As an instructive example of the above definitions, take k∗

max = 5 and

V(t ) =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦, M(t ) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦. (3.3)

We infer, from (3.3), that the OS mode m = 2, recorded at time t , changed to m′ = 3 at time t + �.
It is clear that V(t ) in fact can be obtained from M(t ), since the only nonvanishing row of the latter
is, as a rule, the transpose of the former. Define now the correlation functions

F̃ (t − t ′) ≡ E[V(t ) · V(t ′)] − (E[V])2, (3.4)

G̃(t − t ′) ≡ Tr{E[MT (t )M(t ′)] − E[M]TE[M]}, (3.5)
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FIG. 4. The time-dependent correlation functions defined in (3.6) are noticed to decay as power laws for
|t − t ′| � δt ≈ 2 s. The dotted lines in (a) and (b) have scaling exponent −1 for both F (t − t ′) and G(t − t ′).

and their normalized versions,

F (t − t ′) ≡ F̃ (t − t ′)
F̃ (0)

, G(t − t ′) ≡ G̃(t − t ′)
G̃(0)

. (3.6)

The functions F (t − t ′) and G(t − t ′) describe, respectively, the correlations of returning OS modes
and transitions which are separated from each other by the time interval |t − t ′|. Actually, note
that V(t ) · V(t ′) and Tr[MT (t )M(t ′)] are nonvanishing only if, respectively, the OS modes and
OS mode transitions observed at times t and t ′ are the same. Both definitions (3.4) and (3.5) are
motivated, in this sense, from the assumption that unstable periodic orbits play a fundamental role
in the description of turbulent pipe flow dynamics [8–12].

The correlation functions F (t − t ′) and G(t − t ′) are plotted in Fig. 4 and are noticed to have
interesting power-law decays (with the same approximate scaling exponent −1) up to |t − t ′| ≡
δt ≈ 20� = 2 s, which suggests some sort of self-similarity across the spatial distribution of about
ten OS modes (their mean lifetime is 0.2 s ≈ δt/10). For time separations larger than δt , the
correlation functions become undersampled.
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Reasoning in terms of the integral (large eddy) timescale of the flow, D/U , where U is the
bulk flow velocity, we point out that δt ≈ 2D/U , which suggests that the spatial extension of the
self-similar group of OS modes scales with the flow’s outer units.

IV. UNDERLYING MARKOVIAN MODEL

It is worth emphasizing that the non-Markovian nature of the stochastic process S does not mean
at all that it cannot be modeled as a Markov process defined in terms of lower-level state variables.

We can render this point more palatable by briefly digressing on a simple example. Consider a
stochastic process which has four “microscopic” (i.e., low-level) states labeled as a1, a2, a3, and
a4. States a1 and a2 are associated with a single “macroscopic” (i.e., high-level) state A, while a3

and a4 are, in their turn, both the degenerate microstates of another macrostate B. Suppose now that
transitions between these four microstates define a Markov process, with transition probabilities
p(ai → a j ), with i, j ∈ {1, 2, 3, 4}.

Taking p(ai, n) to be the probability to observe the microstate ai at discretized time instant n (an
integer number), we have

P(A, n) = p(a1, n) + p(a2, n), (4.1)

P(B, n) = p(a3, n) + p(a4, n), (4.2)

for the probabilities that the macrostates A and B be observed at the time instant n, respectively.
Resorting, furthermore, to the Markov chain relation,

p(ai, n) =
4∑

j=1

p(a j, n − 1)p(aj → ai ), (4.3)

it is not difficult to show, from Eqs. (4.1)–(4.3) that, in general,

P(A, n) �= P(A, n − 1)P(A → A) + P(B, n − 1)P(B → A), (4.4)

P(B, n) �= P(B, n − 1)P(B → B) + P(A, n − 1)P(A → B), (4.5)

where P(A → A), P(B → A), etc., are the transition probabilities for the reduced stochastic process
given by the macrostates A and B. We conclude, from (4.4) and (4.5), that the transitions between
states A and B are not expected to be Markovian, since the state probabilities are not given by the
preceding time alone.

To build a bridge to the problem of OS transitions, we first notice that low-speed streaks are
created around angular positions of the pipe’s cross section which are not necessarily equally spaced
(this is actually hinted by the snapshots of Fig. 1). As a matter of fact, positional fluctuations of low-
speed streaks are commonly observed during an OS mode life span. The almost perfectly symmetric
profiles of OS modes, as the one shown in Fig. 3, are, in contrast, the result of statistical averages.

We assume, thus, that when the creation of a given OS mode k∗ = m comes into play, the whole
group of its m wall-attached low-speed streaks may be labeled into

�(k∗
max, m) =

(
k∗

max

m

)
(4.6)

different ways (microstate degeneracy), meaning that the pipe’s cross-sectional plane is taken to hold
at most k∗

max active low-speed streak channels. The phenomenological ground for the introduction
of low-speed streak microstates is that they initially appear as small turbulent perturbations at any
possible place over the pipe’s surface, which can then be azimuthally partitioned into k∗

max equally
sized sectors. These are, in other words, the streak channels, angular positions around which the
low-speed streaks are centered. Figure 5 illustrates the idea, taking advantage of the same sPIV
snapshot that leads to the power spectrum reported in Fig. 2.
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FIG. 5. The sPIV snapshot in (a) gives the power spectrum of Fig. 2. The reference radial distance used
in Eq. (2.1), r0, is the radius of the dotted circle, which essentially crosses the streamwise velocity profile in
four disconnected regions that contain low-speed streaks (red spots). Partitioning the snapshot into k∗

max = 10
slices, we schematically represent in (b) the positions of the low-speed streaks as small blue dots (the active
streak channels are hence labeled as 3, 4, 8, and 10).

The phase space of the microscopic state variables for the underlying Markovian model of S is
spanned, therefore, by all the possible sets of k∗

max streak bits, X ≡ {s1, s2, . . . , sk∗
max

}, where

si =
{

1, if the ith streak channel is active
0, otherwise. (4.7)

To make the concept clear, referring back to Fig. 5(b), we encode the microstate there exemplified
as the set of streak bits

s1 = s2 = s5 = s6 = s7 = s9 = 0,

s3 = s4 = s8 = s10 = 1. (4.8)

We postulate now that the time evolution of the microscopic states X is produced from the
independent fluctuations of streak bits, which have persistence probabilities that depend on the
total number of active streak channels, that is, the OS label m. In this way we define qm and pm to
be the persistence probabilities for any given streak bit to keep its value 0 or 1, respectively, along
subsequent sPIV snapshots. There are, thus, four different types of streak bit flips, which appear in
different occurrence numbers for a given OS mode transition, as summarized in Table I.

The parameters reported in Table I are related to the OS mode transition m → m′, where
m = n3 + n4 and m′ = n2 + n4. The transition probability between any specific pair of associated
microstates is, as a consequence, qn1

m (1 − qm)n2 (1 − pm)n3 pn4
m . Taking into account, furthermore, the

role of degeneracy factors, we may write the transition probability Tm′m between the OS modes m

TABLE I. Definition of the four possible transition types for the streak channel states together with the
notations for their occurrence numbers and individual transition probabilities. m = n3 + n4 labels the OS mode.

Transition type No. of streak channels Transition probability

0 → 0 n1 qm

0 → 1 n2 1−qm

1 → 0 n3 1−pm

1 → 1 n4 pm

064609-7



R. JÄCKEL et al.

and m′ as

Tm′m =
(

k∗
max

m

)−1 k∗
max∑

n1=0

k∗
max∑

n2=0

k∗
max∑

n3=0

k∗
max∑

n4=0

δ

(
4∑

i=1

ni, k∗
max

)
δ(n3 + n4, m)δ(n2 + n4, m′)

× �1�2�3qn1
m (1 − qm)n2 (1 − pm)n3 pn4

m , (4.9)

where

�1 =
(

k∗
max

n1

)
, (4.10)

�2 =
(

k∗
max − n1

n2

)
, (4.11)

�3 =
(

k∗
max − n1 − n2

n3

)
. (4.12)

Using, from now on, k∗
max = 10, the Markovian model just introduced may not appear very

phenomenologically attractive at first glance, since Tm′m is parametrized by a large number of
unknown parameters (q0, q1, . . . , q9 and p1, p2, . . . , p10). Note, however, that there are, in principle,
90 independent entries in the empirical transition matrix (the one derived from the sPIV measure-
ments), so the model is rather underdetermined (as we would expect for a phase-space reduced
description of turbulent fluctuations).

Instead of attempting to provide a detailed and computationally costly model of the empirical
transition matrix, we address a much simpler approach, where we focus on the asymptotic proba-
bility eigenvector of the modeled transition matrix,

P = (P1, P2, . . . , P10), (4.13)

which satisfies TP = P , that is,
∑10

m=0 Tm′mPm = Pm′ . Here Pm is the probability that the OS mode m
be observed in the statistically stationary regime. In an analogous way, denoting by P∞ the empirical
probability vector, determined from the sPIV measurements, we are interested to find the set of
probabilities qm and pm that minimize the quadratic error

d ({qm}, {pm}) ≡ ||P − P∞||2. (4.14)

While, as already commented, the original problem is underdetermined, the optimization scheme
related to Eq. (4.14) is not: as a matter of fact, we would have to model the nine independent
probability entries of (4.13) by means of the 20 probability parameters qm and pm. To reduce this
large overdeterminacy, we rely on a few phenomenological inputs:

(i) We assume that we can model the observed coherence (time persistence) of low-speed streaks
by a single mode-independent and not small probability parameter p, where p=p2=p3= · · · =p10.

(ii) P0 turns out to be negligible, so we suppress transitions from the OS mode m = 1 to m = 0,
by imposing that p1 = 1 (other transitions to the mode m = 0 from modes m �= 1 are possible, but
they are of O[(1 − p)2].

Therefore, we end up with 11 parameters (q0, q1, . . . , q9 and p) to locate the minimum value of
(4.14). The result is a slightly overdetermined system, but if besides P∞, the correlation functions
F (t − t ′) and G(t − t ′) turn out to be well reproduced with the same set of probability parameters,
as an extra bonus, then the model can be taken as physically appealing. That is the heuristic setup
that we have in mind.

We have resorted to a straightforward Monte Carlo procedure to obtain the set of qm that
minimizes (4.14) for various fixed values of p. We find, as shown in Fig. 6, that the quadratic error
quickly drops for p � 0.85. The modeled asymptotic probabilities for the occurrence of OS modes
are excellently compared, in Fig. 7, to the empirical ones for the cases p = 0.86 and p = 0.95.
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FIG. 6. Minimization of the quadratic distance d ({q}, p) for various values of p.

These are the values of p that lead to good accounts of F (t − t ′) and G(t − t ′), as reported in Fig. 8.
The related values of the probabilities qm are listed in Table II. Even if a point of subjective concern,
the uncertainty of about 10% in the definition of p should be taken as relatively small, vis-à-vis the
model’s accuracy in predicting the decaying profiles of the OS correlation functions.

Also evidenced in the inset Fig. 8 is the exponential decay profile of the modeled G(t − t ′) for
time intervals larger than δt . At present, this point rests as a prediction of the modeling scenario
introduced in this work. A more extensive study of larger time series is necessary to settle the issue,
since accidentally the observed sudden undersampling of the time series for larger decimations of
S takes place around the expected crossover timescale δt .

The physical picture that emerges from our analysis is that the OSs are packed as chains of
low-speed streaks and vortical structures which are strongly correlated within sizes that scale with
the pipe’s diameter, although they are merged along the entire turbulent flow. They can be taken as
the analogous of the hairpin vortex packets of turbulent boundary layers, evidenced from both visual
inspections and statistical treatments [15–17]. The relevant phenomenological difference, however,
is that pipe flow is confined, so that vortex packets are likely to mix and interact in a more complex

FIG. 7. Occurrence probability of OS modes obtained from the experiment (dots) and from the stochastic
model (open circles: p = 0.86; crosses: p = 0.95), defined by the transition matrix elements (4.9).
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FIG. 8. Empirical (dots) and modeled (crosses) correlation functions F (t − t ′) and G(t − t ′). Crosses refer
in (a) and (b), respectively, to modeling parameters p = 0.86 and p = 0.95. The semilog plot in the inset of
(b) indicates the simple exponential form of G(t − t ′) at large enough |t − t ′|.

way as they grow from the pipe walls towards the bulk of the flow. In this situation, at variance with
the case of turbulence boundary layers, the well-developed vortex packets lose their spatial patterns
but are nevertheless expected to leave a trace of their presence in the self-similar behavior of the
correlation functions given in Fig. 4.

V. CONCLUSIONS

We have investigated the stochastic properties of the non-Markovian OS mode transitions in a
turbulent pipe flow, recovering them as a surjective mapping of a lower-level Markov process. The

TABLE II. List of probabilities qm which describe the persistence of inactive streak channels for the cases
p = 0.86 and p = 0.95.

p q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

0.86 0.53 0.96 0.95 0.92 0.92 0.85 0.95 0.75 0.86 1.0
0.95 0.22 0.98 0.98 0.97 0.97 0.96 0.97 0.93 0.94 0.49
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essential idea that underlies the model construction is that a given OS mode may be associated with
several spatial arrangements of its low-speed streaks into a fixed number of “streak channels” which
azimuthally partition the pipe’s cross section.

As is commonly known, a given discrete stochastic process may be not Markovian due to the
fact that if the timescales under scrutiny are too short, the dynamical evolution of the microscopic
variables may depend on the details of their specific phase-space trajectories. However, it is worth
stressing—and this is at the core of our discussion—that even in the absence of microscopic
memory effects, transitions between the chosen stochastic variables may not satisfy the Chapman-
Kolmogorov equation if they are not uniquely defined from the underlying microscopic state
variables [18].

We have found, accordingly, that a lower-level Markov model can account for the scaling
behavior of specifically introduced correlation functions of OS mode transitions. Further work is
in order, not only to enlarge the size of sPIV ensembles, but also to address, in an analytical way,
the very unexpected self-similar dynamics of the OS mode transitions. Such improvements could
lead to more accurate estimates of the transition probabilities given in Table II. It is likely that the
uncertainty in the definition of the probability parameters reported in that table has to do with the
assumption of the independency of p upon the OS modes and/or with the specific optimization
procedure we have carried out for the evaluation of the q′s. These are, surely, points for alternative
formulations in additional studies of the OS mode transitions.

It turns out, furthermore, that the self-similar scaling range of the recurrent OS transitions can be
interpreted as the statistical signature of finite-sized OS packets along the pipe flow, correlated at
integral length scales (i.e., the pipe’s diameter). In contrast with the geometric self-similar structure
of hairpin packets in turbulent boundary layers [15–17], a phenomenological understanding of the
scale-invariant behaviors given in Fig. 4 is not clear yet. It is possible that the origin of self-similarity
here, analogously to what is verified in other nonlinear processes, relies on the fact that the OS mode
transitions induced by flow instabilities occur in the form of direct and inverse cascades across their
associated length scales.

An interesting theoretical direction to pursue, in this connection, is related to the use of instanton
techniques [19] to evaluate the transition probabilities between unstable flow configurations as are
the OS modes (which in a first approximation can be tentatively modeled as the appropriately
rescaled traveling wave solutions of [5,6]). In the turbulence or transitional context, instantons are
taken, respectively, as extreme events or flow configurations that dominate the probability measures
in the weak coupling limit. They have been successfully applied to a number of fluid dynamic
problems, as in geophysical models, homogeneous turbulence, and the laminar-turbulent transition
in shear flows [20–22].

We conclude by noting that the findings here presented are likely to add relevant phenomeno-
logical information to the discussion of fundamentally important issues in pipe flow turbulence, as
drag control and particle-laden dynamics, once they are closely connected to the statistical features
of near-wall coherent structures [23–28].
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APPENDIX: CHAPMAN-KOLMOGOROV ANALYSIS OF THE OS MODE TRANSITIONS

While it is not possible to conclude, in general, if a given finite time series is a Markov chain, one
may check whether the Chapman-Kolmogorov (CK) equation holds for it, a necessary condition for
a stochastic process to be Markovian [29].

064609-11
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FIG. 9. Eigenvalues of the probability transition matrices for the original process (h = 1) and a decimated
one (h = 2). The dashed lines should intercept eigenvalue pairs if S were a Markovian process. In other words,
we find that the transition probability matrix of the decimated process is not given as the square of the transition
probability matrix of the original process, as would be expected for a Markovian process.

In the particular case of (2.3), the CK equation would imply that the eigenvalues of the transition
probability matrix for OS modes separated by the time interval h� can be represented in some
arbitrary ordering as the set of powers {λh

1, λ
h
2, . . . , λ

h
k∗

max
}. A straightforward computation of the

transition matrix eigenvalues for the cases h = 1 and h = 2 indicates, however, that S is not
Markovian; see Fig. 9.
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